Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия зависимость от радиуса

    Исследуем полученную зависимость радиуса ядра ССЕ от удельной объемной энергии среды (/ ), т. е. от влияния различных внешних условий изменения состава растворителя, температуры и т. д. В предельном случае при / =0 из формулы (12) следует, что Гк = —2а//2- Физически этот случай не реализуется, так как соответствует отсутствию межмолекулярных взаимодействий между молекулами среды. И вместе с тем, он выражает физическое условие, что радиус г не может быть меньше значения Гк- [c.110]


    Постройте графики зависимости радиусов атомов и ионов 3" +, энергии ионизации от порядкового номера элементов подгруппы титана. Объясните ход кривых.. [c.116]

    Постройте графики зависимости радиусов атомов и энергии ионизации от порядкового номера элемента по следующим данным  [c.37]

    Таким образом, растворение пузырьков под влиянием сил поверхностной энергии определяется квадратичной зависимостью радиуса от времени процесса. Время полного растворения подчиняется выражению  [c.33]

    Таким образом, растворение пузырьков газа под влиянием только сил поверхностной энергии жидкости, когда поверхностная пленка не лимитирует процесс, определяется кубической зависимостью радиуса от времени процесса. [c.40]

    Если, однако, т очень мало, то зависимость этой электрической энергии от радиуса ие может быть установлена, так как поверхностная плотность также зависит от т. Электрические силы всегда стремятся увеличить поверхность в противоположность силам сцепления а, соединяющим частицы, электрические силы действуют на частицы разъединяющим образом. Поэтому поверхностное натяжение а = а — е для больших частиц можно назвать моментом устойчивости стабильность падает, если с > О, т. е. когда даже при больших частицах а больше е- [c.247]

    Периодический закон указывает на периодический характер функциональной зависимости свойств элементов от заряда ядра атомов такой вид имеет эта зависимость для огромного числа самых разнообразных характеристик элементов. На рис. 21, а и б показаны графики зависимости атомных объемов и температур плавления, а на рис. 21, в — первых энергий ионизации атомов от порядкового номера элементов. Эти зависимости выражаются периодическими кривыми, имеющими ряд максимумов и минимумов. Аналогичный характер имеет подобная зависимость и для многих других свойств (коэффициенты сжимаемости, коэффициенты расширения, температуры плавления и кипения, магнитные свойства, энергии диссоциации, радиусы ионов [c.59]

    Большой разброс значений радиусов объясняется, по-видимому, не только тем, что расчет их был основан на довольно упрощенных представлениях (равенство ионных радиусов при одинаковой электронной структуре [81, пропорциональность радиуса иона радиусу атома ближайшего инертного газа [51, простая зависимость радиуса иона от порядкового номера и энергии ионизации [6, 7]) но, главным образом, неопределенностью самого понятия ионного радиуса. В самом деле, как уже отмечалось, вследствие большой энергии ионизации весьма трудно предположить существование таких многозарядных ионов, как Ge или Ge . [c.9]


    Зависимость изменения свободной энергии от радиуса зародыша кристаллизации [c.90]

Рис. 18. Зависимость суммы первых четырех энергий ионизации и орбитальных радиусов атомов элементов IV группы от порядкового номера Рис. 18. <a href="/info/826197">Зависимость суммы</a> первых четырех <a href="/info/7142">энергий ионизации</a> и <a href="/info/21087">орбитальных радиусов</a> атомов элементов IV группы от порядкового номера
    На рис. 2 представлена зависимость времени т от радиуса цилиндрической поверхности ротора при различной вязкости обрабатываемой смеси. Из приведенных данных следует, что с увеличением радиуса Яр (при прочих равных параметрах) уменьшается время переходного процесса. Такая зависимость т от Кр объясняется тем, что с увеличением Кр возрастает линейная скорость ротора Vp = со р К р, увеличивается градиент скорости и, следовательно, напряжение сдвига, приводящее в движение обрабатываемую в аппарате смесь. По данным И. О. Протодьяконова известно, что при увеличении вязкости смеси увеличивается время установления стационарного поля скоростей из-за возрастания диссипации энергии, сообщаемой жидкости вращающимся ротором. [c.325]

Рис. 17. Зависимость энергии образования единичной частицы дисперсно / фазы, окруженной сольватным слоем, от радиуса зародыша Рис. 17. <a href="/info/362259">Зависимость энергии</a> <a href="/info/1492879">образования единичной</a> <a href="/info/7865">частицы дисперсно</a> / фазы, окруженной <a href="/info/56186">сольватным слоем</a>, от радиуса зародыша
    Анализ поведения радиусов ССЕ был проведен без учета сольватной оболочки. Молекулы, находящиеся в сольватной оболочке, взаимодействуют друг с другом с энергиями, отличающимися как от энергий взаимодействия молекул в дисперсионной среде, так и в дисперсной фазе. Кроме того, наличие ад-сорбционно-сольватного слоя требует учета зависимости ио-верхностного натяжения от радиуса кривизны раздела фаз и [c.111]

Рис. 11.24. Зависимость энергии Гиббса образования зародыша от его радиуса. Рис. 11.24. <a href="/info/389703">Зависимость энергии Гиббса</a> <a href="/info/4356">образования зародыша</a> от его радиуса.
    Рассчитайте и постройте графическую зависимость энергии притяжения сферических частиц полистирола, находящихся в водной среде, от расстояния между поверхностями частиц, которое изменяется от 2 до 20 нм. Радиус частиц равен 50 нм, константа Гамакера А = [c.183]

    S- и р-Элементы. Мы рассмотрели общие тенденции в характере изменения значений радиусов и энергии ионизации атомов, их сродства к электрону и электроотрицательности в зависимости от атомного номера элемента. При более глубоком изучении этих тенденций можно обнаружить, что закономерности в изменении свойств элементов в периодах и группах значительно сложнее. В характере изменения свойств элементов по периоду проявляется внутренняя периодичность, а по группе — вторичная периодичность. [c.36]

    Постройте график зависимости первой энергии ионизации и радиуса атомов х-элементов I группы от и.х атомного номера. Объясните характер графиков. [c.40]

    Однако при больших частотах со, более высоких температурах окружающей среды или больших амплитудах напряжения подводимая в образец механическая энергия превышает тепловую, которая может быть отведена из образца теплопроводностью или излучением. В зависимости от экспериментального устройства ослабление образца происходит путем термического размягчения и (или) пластического течения. Интервал напряжений и диапазон частот, в котором следует ожидать данный тип термического ослабления, можно рассчитать, зная подводимую энергию, форму образца и его тепловые свойства. Если в цилиндрическом образце радиусом R достигается термическое равновесие, то выражение [c.292]

    Постройте график зависимости от порядкового номера атомного радиуса, первой энергии ионизации и сродства к электрону для галогенов. Объясните характер кривых. Почему с увеличением порядкового номера энергия ионизации уменьшается немонотонно, а сродство к электрону вначале увеличивается, а затем уменьшается  [c.42]

    Постройте график зависимости орбитального атомного радиуса и энергии ионизации от порядкового номера / -элементов IV группы. Объясните ход кривых. [c.84]


Рис. 27. Экстре.мальиая зависимость радиуса частиц г от отношения объем-И1, х энергий межмо.мекуляриы.к взаимодействий диснерсноинон среды н. дисперсной фазы Рис. 27. Экстре.мальиая <a href="/info/308107">зависимость радиуса частиц</a> г от <a href="/info/214311">отношения объем</a>-И1, х энергий межмо.мекуляриы.к взаимодействий диснерсноинон среды н. дисперсной фазы
    Ион НзО может подходить к отрицательно заряженной поверхности электрода только до некоторого расстояния, определяемого его эффективным радиусом. Дальнейшее приближение протона к поверхности будет сопряжено с растяжением связи —ОН , а потому потребует затраты значительной энергии. Зависимость потенциальной энергии протона в адсорбированном ионе гидроксония от расстояния до электрода должна поэтому иметь вид кривой с минимумом при некотором равновесном расстоянии Я = (см. кривую 1 на рис. 150, а). В свою очередь потенциальная кривая адсорбированного атома также должна проходить через минимум в зависимости от расстояния до электрода (кривая 2 на рис. 150, а). Положение минимума при / = / н на этой кривой соответствует равновесному состоянию связи Ме—Н. Как видно из рис. 150, совокупность потенциальных кривых 1 м 2 образует энергетический барьер, разделяющий равновесные положения протона в ионе НзО" и в состоянии адсорбированного атома. Таким образом, элементарный акт разряда в теории Гориути — Поляни связан с движением протона вначале по кривой 1 до точки пересечения (растяжение связи И —ОН2), а затем вдоль кривой 2 (переход растянутой связи Ме—И к своему равновесному состоянию). Координатой реакции здесь является расстояние, перпендикулярное поверхности электрода. [c.294]

Рис. 1. Полиэкстремальныб зависимости радиуса ядра ССЕ (Л ) от а - энергии межмолекулярного взаимодействия дисперсионной среды (Эдс), б - соотношения бдс Эт дисперсных система в - отношения удельных объемных энергий среды ( и фазы Рис. 1. Полиэкстремальныб <a href="/info/363335">зависимости радиуса</a> ядра ССЕ (Л ) от а - <a href="/info/330065">энергии межмолекулярного взаимодействия</a> <a href="/info/3689">дисперсионной среды</a> (Эдс), б - соотношения бдс Эт <a href="/info/2488">дисперсных система</a> в - <a href="/info/960063">отношения удельных</a> <a href="/info/21518">объемных энергий</a> среды ( и фазы
    Уравнение (1.41) проверяли на системе газовые пузырьки в вискозе, в которой образуется достаточно стабильная пленка адсорбированного ксантогената целлюлозы на поверхности раздела фаз [24, 26]. Кинетику роста и растворения исследовали при разных АР для пузырьков такого размера, что влиянием поверхностной энергии можно было пренебречь. Полученные результаты (рис. 1.11) показывают, что принятая модель процесса в данном случае хорощо оправдывается. Рассчитанные значения коэффициента массопередачи при разных температурах приведены на рис. 1.12. Линейная зависимость радиуса [c.32]

    Как и в случае плоской пленки, каждый из поверхностных слоев искривленной тонкой пленки не может быть охарактеризован своим термодинамическим фундаментальным уравнением в отдельности, 25. Взаимное распо-и соответствующее уравнение можно за- ложение фаз (а), (Р), раз-писать лишь для совокупности обоих по- деляющих поверхностей верхностных слоев. Помимо члена, учиты- ( V ). (Ру) и частей пленки вающего энергию взаимодействия поверх- с объемами ностей разрыва, это уравнение будет со- и держать члены, показывающие зависимость внутренней энергии от радиусов кривизны [c.275]

    В тех случаях, при которых с хорошей точностью выполняются не только общие закономерности [например, d gkld le) = onst], но и получаются разумные расчетные значения наклонов зависимостей, свободных энергий сольватации, радиусов частиц и расстояний максимального сближения, не зависящие или мало зависящие от химической природы растворителя, следует смело утверждать, что в исследуемой реакции доминируют электростатические взаимодействия реагентов со средой. В противном случае надо учитывать специфическую сольватацию и искать термодинамические характеристики комплексообразования реагентов с растворителем. [c.238]

    Несмотря иа трудности количественного описания, электростатические взаимодействия демонстрируют особенно четко, что поведение молекул в водном растворе главным образом определяется свойствами самого растворителя. Рассмотрим образование иоиных пар в воде. В качестве исходного состояния при вычислеиии энергии электростатического взаимодействия обычно берут ион в газовой фазе (рис. 5). Точные величины энергий сольватации или гидратации отдельных ионов являются в настоящее время предметом дискуссий, однако несомненно, что они находятся в пределах от —50 до —200 ккал/моль (от —210 до —838-10 Дж/моль). Эти величины можно противопоставить свободной энергии образования ионных пар из одновалентных ионов в воде, не превышающей 1 ккал/моль (4,2-10 Дж/моль). Энергия переноса попа из кристаллической фазы в водную также на несколько порядков меныпе, чем теплота гидратации. Таким образом, энергия ионного взаимодействия в воде представляет собой небольшую разность между энергией стабилизации иона (за счет взаимодействия с диполями воды), переносимого из газовой фазы, и энергией взаимодействия с противоположно заря кенным ионом в воде, который может сохранить все окружающие его молекулы воды или потерять часть из них при образовании ионной пары. Эти соотношения для некоторого гипотетического иона иллюстрируются рис. 5, где различия между энергиями иона в кристалле, растворе и ионной паре сильно преувеличены. Если бы зависимости этих энергий от радиусов катионов и анионов были точно известны, можно было бы предсказать энергии взаимодействий иоиов в воде. Теория иоиных взаимодействий в воде еще недостаточно разработана, чтобы произвести вычисление этих небольших разностей энергий исходя только из основных законов электростат1жи. Применение обычных уравнений электростатики для вычислений взаимо- [c.283]

    Важной для физики дисперсного состояния и измельчения твердых тел является задача о зависимости термодинамического значения поверхностной энергии от радиуса кривизны поверхности раздела фаз. Однако даже для сравнительно простых случаев жидкости в капиллярных системах и в тонких слоях она не решена еще однозначно. Имеются совершенно противоречивые исследования, в одних иа которых знак производной до1дг) считается положительным, в других — отрицательным для одних и тех же условий. Молекулярно-кинетическое рассмотрение зтой задачи осложняется изменением структуры жидкостей и особенно твердых тел в высокодисперсном состоянии. Свойства жидкости в тонких слоях изу- [c.46]

    Как известно (гл. I, 5), химическую природу элементов определяет со ютание восстановительных и окис,тн тельных свойств не1"1-тральных атомов, количественной характеристикой которых являются значения энергии ионизации и энергии сродства к электрону, которые изменяются в зависимости от изменения заряда ядра и размеров атома с увеличением заряда ядра энергии ионизации и сродства к электрону увеличиваются, а с увеличением радиуса атома уменьшаются. В связи с этим в периодах энергия ионизации слева направо — от щелочных метал.лов к инертным элементам—увеличивается, а в группах сверху вниз уменьп1ается. 3 побочных подгруппах закономерность изменения эиергии ионизации сложнее. Энергия сродства к электрону, вообще изменяющаяся симбатно с изменением энергии ионизации, увеличивается для элементов от четвертой до седьмой главных подгрупп и резко падает ири переходе от седьмой к восьмой главной подгруппе. [c.108]

    Зависимость энергии Гиббса от радиуса частицы дисперсной фазы в данном случае приведена на рис. 17. В отличие от изменения потенциала Гиббса бет учета наличия переходного сольватного слоя между частицей дисперсной фазы и дисперсионной средой (см. рис. 16), величина АО (г) имеет точку минимума, что указывает на существование устойчивых дозародышей радиуса Гкртш. Дальнейшее развитие новой фазы требует преодоления потенциального барьера Д(5кртах—Д кртш и образования частиц радиуса / кртах- [c.87]

    Экстремальные изменения радиуса надмолекулярной структуры II толщины сольватного слоя непосредственно влияют на характер зависимости структурно-механической прочности и агрегативной устойчивости нефтяной системы. Кривые изменения этих свойств типичны для многих нефтепродуктов. В точке Ж устойчивость нефтяных дисперсных систем к расслоению на фазы максимальна толщина сольватной оболочки в точке А имеет максимальное значение Я кс, благодаря чему уменьшается движущая сила процесса расслоения. Толстая прослойка дисперсионной среды между надмолекулярными структурами снижает структурно-механическую прочность нефтяных дисперсных систем, первый минимум которой достигается в точке К. Утоньшение сольватного слоя на поверхности надмолекулярных структур повышает движущую силу расслоения системы на фазы. После удаления основной части сольватного слоя (точка 3) дисперсионная среда начинает взаимодействовать непосредственно со слоем надмолекулярной структуры, обуславливая его полное разрушение в точке Б. В этой точке сложные структурные единицы переходят в состояние молекулярного растбора с бесконечной устойчивостью к расслоению на фазы. Предлагаемое объяснение экстремальных изменений структурномеханических свойств и агрегативной устойчивости нефтяных систем справедливо, если считать, что межфазная энергия на границе структурная единица — дисперсионная среда меняется незначительно. [c.41]

    Добываемая нефть содержит значительное количество воды, механических примесей, минеральных солей. Поступающая на переработку нефтяная эмульсия подвергается обезвоживанию и обес-соливанию. Характерными чертами нефтяных эмульсий являются их полидисперсность, наличие суспендированных твердых частиц в коллоидном состоянии, присутствие ПАВ естественного происхождения, формирование при низких температура х структурных единиц. По данным [144] в процессе диспергирования капель воды в нефти образуется до триллиона полидисперсных глобул в 1 л 1%-ной высокодисперсной эмульсии с радиусами 0,1 10 мк, образующаяся нефтяная эмульсия имеет большую поверхность раздела фаз. Высокие значения межфазной энергии обуславливают коалесценцию глобул воды, если этому процессу не препятствует ряд факторов структурно-механический барьер, повышенные значения вязкости дисперсионной среды. Установлено, что повышению структурно-механической прочности межфазных слоев в модельной системе типа вода — мас о — ПАВ способствует добавка частиц гЛины [145]. Агрегативная устойчивость нефтяных эмульсий обеспечивается наличием в них ПАВ — эмульгаторов нефтяного происхождения так, эмульгаторами нефтяных эмульсий ромашкинской и арланской нефтей являются смолисто-асфальтеновые вещества, а эмульсий мангышлакской нефти алканы [144]. Интересные результаты об изменении степени дисперсности нефтяных эмульсий в зависимости от pH среды и группового состава нефтей получены в работе [146]. Механизм разрушения нефтяных эмульсий состоит из нескольких стадий столкновение глобул воды, преодоление структурно-механического барьера между rлoбyJ лами воды с частичной их коалесценцией, снижение агрегативной устойчивости эмульсии, вплоть до полного расслоения на фазы. Соответственно задача технологов состоит в обеспечении оптимальных условий для каждой стадии этого процесса, а именно - снижении вязкости дисперсионной среды (до 2—4 ммУс) при повышении температуры до некоторого уровня, определяемого групповым составом нефти, одновременно достигается разрушение структурных единиц уменьшении степени минерализации остаточной пластовой воды введением промывной воды устранении структурно-механического барьера введением определенных количеств соответствующих ПАВ — деэмульгаторов. Для совершенствования технологических приемов по обессоливанию и обезвоживанию нефтей требуется постановка дальнейших исследований по изучению условий формирования структурных единиц, взаимодействия [c.42]

    Отрицательный знак второй производной означает, что функция АС = f(r) проходит через максимум. Эта зависимость представлена па рпс. 11.24. Из рнс. 11.24 следует, что энергия Гиббса, которая затрачивается на образование зародыша конденсации с критическим радиусом г р, имеет максимальное положительное значение. Максимум функции свидетельствует о неустойчивом равновеснп между двумя фазами в данной точке. [c.100]

    Золи с металлическими частицами очень сильно поглощают свет, что обусловлено генерацией в частицах электрического тока, большая часть энергии которого превращается в теплоту. Установлено, что для золей металлов характерна селективность поглощения, зависящая от дисперсности. С ростом дисперсности максимум поглощения сдвигается в сторону коротких волн. Эффект влияния дисперсности связан с изменением как спектра поглощения, так и спектра рассеяния (фиктивного поглощения). Например, золи золота, радиус частиц которых составляет около 20 нм, поглощают зеленую часть спектра ( 530 им), н поэтому они имеют ярко-красный цвет, прн радиусе же частиц 40—50 нм максимум поглощения приходится на желтую часть спектра ( 590—600 нм) и золь кажется синим. Интересно, что очень высокодисперсный золь золота, поглощая синюю часть спектра ( 440—450 нм), имеет желтую окраску, как и истинный раствор соли, например, хлорида золота АиС1з. Кривые световой абсорбции золей серы по мере увеличения днсиерсности также постепенно передвигаются к кривой абсорбции молек /ляриых растворов серы. Это подтверждает наличие непрерывного перехода некоторых свойств от дисперсных систем к истинным растворам. Подобное изменение окраски в зависимости от дисперсности можно наблюдать у ряда других золей. [c.266]

    На какие вопросы должна ответить теория строения электронной оболочки атома Вот некоторые из них почему спектр одиоатом-ного газа имеет линейчатый характер и его структура зависит от атомного номера элемента Почему энергия последовательной ионизации атома имеет дискретные значения Чем определяется периодическая зависимость изменения энергии ионизации, сродства к электрону, радиуса атомов от атомного номера элементов Почему атомы способны образовывать химическую связь и химические свойства элементов подчиняются периодическому закону  [c.17]

    Между количественными и качественными изменениями в нефтяной дисперсной системе существует зависимость, которая определяется соотношением поверхностной и объемной энергий взаимодействия компонентов, составляющих надмолекулярную структуру. Обладая нескомпенсированной избыточной поверхностной энергией, зародыши формируют вокруг себя сольватные оболочки определенной толщины из молекул дисперсионной среды. Вместе с сольватной оболочкой зародыш образует сложную структурную единицу (ССЕ), которая при изменении вне-пших условий может разрушаться или расти. Во втором случае формируются вторичные ССЕ, размеры которых — радиус надмолекулярной структуры и толщина сольватной оболочки, а также упаковка молекул в надмолекулярной структуре могут изменяться по мере изменения межмолекулярного взаимодействия среды [ 16]. [c.47]

    Коагуляционные контакты. В коагуляционном контакте сцепление частиц ограничивается простым их соприкосновением — непосредственным или через остаточную пленку дисперсионной среды — с учетом преимущественно дальнодействующих (вандерваальсовых) сил такой контакт в принципе механически обратим. Оценим силу и энергию сцепления в таком контакте между двумя одинаковыми сферическими частицами в зависимости от геометрии системы (радиус г, зазор /г г) и физико-химических условий на границе фаз. Как было показано ранее, дисперсионная компонента свободной энергии взаимодействия (энергия притяжения на 1 см плоскопараллельных частиц 1) в среде 2 составляет по модулю [c.303]


Смотреть страницы где упоминается термин Энергия зависимость от радиуса: [c.277]    [c.277]    [c.277]    [c.69]    [c.148]    [c.32]    [c.32]    [c.345]    [c.41]   
Кинетика реакций в жидкой фазе (1973) -- [ c.98 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия зависимость



© 2025 chem21.info Реклама на сайте