Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам отделение от ванадия

    Другой рекомендуемый метод состоит в отделении молибдена от железа, марганца и хрома щелочью и в восстановлении молибденовой кислоты цинком в кислом растворе до Мо . Последний титруют марганцовокислым калием. Подробности восстановления—см. ниже. Вольфрам и ванадий не должны присутствовать. Д. М.]. [c.157]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]


    При анализе образцов металлического плутония сильно влияло железо, содержание которого составляло 0,02—0,08%. Так как железо титруется вместе с плутонием, то определение его следует проводить другим подходящим методом. В данной работе железо определяли фотометрически. Определению мешают хром, титан, молибден, вольфрам, уран и ванадий. Нитрат-ионы мешают определению за счет их восстановления в редукторе. При отделении плутония от примесей необходимо учитывать полноту выделения. [c.183]

    В присутствии ниобия и железа результаты оказываются слегка завышенными, необходимо вводить поправку. Молибден даже в небольших количествах мешает анализу и должен быть отделен. Медь, алюминий и никель при содержании каждого из этих элементов до 5%, ванадий — до 0,5% и вольфрам — до 0,2% не оказывают заметного влияния на определение 2—7% тантала. Цирконий также не-мешает анализу, но титан в количествах, превышающих 0,01 %, влияет на результаты анализа. [c.151]

    При ректификационной очистке пентахлоридов ниобия и тантала происходит эффективное отделение многих сопутствующих примесей — таких, как титан, кремний, железо, цирконий, ванадий, олово, алюминий, вольфрам, фосфор и др. [34, 39]. [c.163]

    При относительно небольшой плотности тока (0,01 а/смР-) оно достигает весьма значительной величины (1,2 в). Это обстоятельство может быть использовано для разделения металлов. При электролизе подкисленных растворов с применением ртутного катода все металлы, ионы которых разряжаются на ртути при потенциалах еще более отрицательных, чем ионы водорода, останутся в растворе. Не осаждаются в этих условиях щелочные и щелочноземельные металлы, алюминий, металлы подгрупп скандия, титана и ванадия, вольфрам, уран. Таким образом удается отделить эти металлы от железа, хрома, цинка, кадмия и других металлов, которые разряжаются на ртути и образуют с ней амальгаму. Этот метод широко применяется при анализе алюминиевых сплавов для отделения железа. При анализе сталей железо таким же образом отделяется от алюминия, титана, ванадия и некоторых других компонентов сталей. Все эти металлы остаются в сернокислом растворе взятой навески стали, а железо уходит в амальгаму. Такое предварительное групповое разделение весьма облегчает весь ход анализа и может применяться для самых различных сплавов. [c.294]

    Осаждение ванадия в виде ванадата свинца может служить лишь для его предварительного отделения, обычно группового, так как осадок нельзя непосредственно взвешивать и, кроме того, совместно с ванадием осаждаются молибден, вольфрам и хром (VI). Этот метод применяют после переведения ванадия в раствор в виде ванадата щелочного металла. Раствор слабо подкисляют азотной кислотой, вводят ацетат свинца в небольшом избытке, нагревают до кипения и перемешивают до коагуляции осадка. Затем осадок отфильтровывают, промывают сильно разбавленной уксусной кислотой, растворяют в азотной кислоте и отделяют свинец в виде сульфата после выпаривания с серной кислотой. [c.511]


    Вольфрам можно отделить от небольших количеств олова, ниобия и тантала обработкой свежеосажденной вольфрамовой кислоты аммиаком, взятым в небольшом избытке, при нагревании. Отфильтрованный нерастворимый остаток следует тш ательно проверить на содержание вольфрама, так как некоторые элементы, главным образом железо удерживают значительные его количества. Этим методом можно отделить также мышьяк, ванадий и фосфор, если они содержатся в таких небольших количествах, которые могут быть захвачены осадком от аммиака. Об отделении вольфрама от больших количеств ниобия и тантала см. стр. 677. [c.769]

    Молибден (VI) количественно экстрагируется хлороформом из 1 М растворов НС1 [25]. Хром(VI) необходимо предварительно восстанавливать, поскольку он окисляет реагент. Ванадий(V) необходимо восстановить до V". Вольфрам (VI) можно замаскировать фосфатом. В методике анализа стали предусмотрено отделение молибдена от Та, Nb и W [26]. [c.106]

    Теллур — молибден — вольфрам — ванадий. 0,1 мл раствора, содержащего все четыре элемента, выпаривают в микротигле досуха с несколькими каплями царской водки. Затем сухой остаток вновь выпаривают с раствором И н. соляной кислоты. Остаток растворяют в 2 н. соляной кислоте и раствор кипятят несколько минут. Вольфрамовая кислота выделяется в виде желтого осадка, который отделяют центрифугированием, промывают, растворяют в нескольких каплях концентрированного (13 н.) аммиака и выпаривают досуха вольфрам обнаруживают по реакции Б (стр. 78), прибавляя после охлаждения каплю 1 н, раствора хлорида олова(II). В присутствии вольфрама появляется синее окрашивание, вызываемое низшими окислами вольфрама-Фильтрат, полученный после отделения вольфрамовой кислоты, разбавляют двукратным объемом воды и насыщают сероводородом. Нагревают в закрытой пробирке 10 мин. в водяной бане. Затем прибавляют воды в количестве /з объема имеющейся в пробирке жидкости, вновь насыщают сероводородом и нагревают в водяной бане 15 мин. Полученный таким образом осадок растворяют в минимальном количестве царской водки и затем выпаривают досуха. Остаток растворяют в нескольких каплях 1 н. раствора соляной кислоты, прибавляют несколько капель 1 н. раствора роданида калия и небольшое количество порошка цинка. Появление красной окраски указывает на наличие молибдена, а образование черного осадка свидетельствует [c.95]

    Отделить титан от алюминия, хрома, марганца, никеля, урана (VI), фосфора и бора можно осаждением купфероном в сернокислой среде . Осаждение можно проводить также и из виннокислого раствора, который более устойчив в отнощении гидролиза. Совместно с титаном купферон осаждает железо, ванадий, цирконий, ниобий, тантал, уран (IV) и частично вольфрам. От циркония титан может быть отделен осаждением циркония фосфатом натрия или фениларсоновой кислотой в присутствии перекиси водорода  [c.139]

    Прежний метод отделения хрома и ванадия вместе с такими элементами, как молибден и вольфрам, основанный на осаждении нитратом ртути [1], теперь, по-видимому, используется мало. [c.188]

    Предварительное осаждение ниобия таннином необходимо для отделения его от железа, титана, ванадия и некоторых других элементов, осаждаемых купфероном. Вольфрам при этом соосаждается с ниобием. По охлаждении осадок отфильтровывают через фильтр диаметром 7—9 см (белая лента) и промывают 6—8 раз холодным 4% ным раствором НС1. В случае необходимости танниновый осадок переосаждают. Фильтр с осадком помещают в платиновый тигель или чашку, осторожно озоляют до полного сгорания угля фильтра и прокаливают при температуре не выше 500° С. [c.348]

    Определению рения на фоне 2 н. раствора сульфита натрия мешают молибден, вольфрам, медь, цинк, свинец, кадмий, олово, ванадий, никель, селен и теллур, которые восстанавливаются при потенциалах, близких к потенциалу восстановления рения. В ходе анализа предусмотрено отделение рения от указанных выше элементов спеканием навески исходного материала с окисью кальция. [c.57]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]


    Хороший метод выделения незначительных количеств ванадая в определенных случаях основан на том, что из слабокислого раствора (рн около 4—5) извлекают хлороформом соединение ванадия с о-оксихинолином V2 b( 9H5N)4 хром (VI) не извлекается После выпаривания хлороформа остаток можно сплавить с карбонатом натрия и перевести таким образом ванадий в ванадат. Железо (III) и молибден (VI) также извлекаются, и поэтому метод не применим к материалам, содержащим железо. Алюминий, силикат, фосфат, фторид и т. п. не препятствуют извлечению ванадия. Вольфрам, дающий с о-оксихинолином осадок (нерастворимый в хлороформе), должен отсутствовать допустимо его присутствие лишь в очень малых количествах. Об отношении других металлов к о-оксихинолину см. на стр. 117. Некоторые результаты анализа силикатов, приведенные на стр. 166, свидетельствуют об удовлетворительном отделении ванадия от 100—200-кратного количества хрома. [c.161]

    Кокриш и Фараг [950] изучали поведение комплексных соединений ванадия, молибдена и вольфрама с аскорбиновой кислотой в колонках с сильноосновным анионитом амберлит IRA-400 (в аскорбинатной форме) и разработали метод отделения ванадия от молибдена, вольфрама, железа и других элементов. Ванадий, молибден и вольфрам образуют в растворах аскорбиновой кислоты при pH 4 отрицательно заряженные комплексные ионы различной устойчивости, которые неодинаково сильно удерживаются названным анионитом. При промывании колонки 0,1 N раствором НС1 количественно извлекается ванадий и только около 1 % W. Весь молибден удерживается амбер-литом. [c.130]

    Для разделения элементов четвертой группы представляют интерес растворы, содержащие аскорбиновую кислоту. В отсутствие пероксида водорода аскорбатные комплексы титана сорбируются на анионообменниках. В разбавленных растворах аскорбиновой кислоты в присутствии HjOj титан не сорбируется [28, 29]. Цирконий также образует комплексы с аскорбиновой кислотой, пригодные для его отделения. Из растворов, содержащих аскорбиновую кислоту (pH 4 — 4,5), торий сорбируется сильноосновными анионообменниками. Вместе с торием на ионообменнике удерживаются уран, титан, цирконий, ванадий, вольфрам и молибден, в то время как другие элементы не сорбируются на нем. [c.230]

    Разделение сероводородом и сульфидом аммония. Отделение катионов IV и V групп от кобальта сероводородом 83]. В сильнокислых растворах (pH 1) сероводород осаждает катионы IV и V групп в виде. малораствори.мых сульфидов. Таким путе.м отделяют. медь, серебро, ртуть, свинец, висмут, кад-.мий, рутений, родий, палладий, осмий,. мышьяк, золото, платину, олово, сурьму, иридий, гер.маний, селен, теллур, молибден, таллий, индий, галлий, ванадий и вольфрам от кобальта и других катионов III группы. Однако в присутствии четырехвалентного олова часть кобальта увлекается осадком сульфида олова. Соосаждение предотвращается при пропускании сероводорода в нагретый до 60 " С раствор в I соляной кислоте и акролеин в концентрации 0,5 мл на 100 мл раствора 715]. [c.62]

    Суспензия окиси цинка не должна показывать щелочной реакции по фенолфталеину. В присутствии большого количества железа (III), что имеет место, например, при анализе стали, после окЕСЛения раствора пробы, осадок от окиси цинка будет содержать все железо, вольфрам, ванадий, хром, уран, цирконий, титан, алюминий, фосфор, мышьяк, олово и почти полностью медь, молибден и кремний. Железо (II), вольфрам (если они не полностью окислены) и малые количества кремния, меди, молибдена, сурьмы и свинца могут оказаться в фильтрате, если они присутствовали в первоначальном растворе в значительных количествах. Фильтрат содержит марганец и кобальт почти полностью если осадок переосадить и соединить фильтраты, то отделение марганца и кобальта можно считать полным. Отделение никеля не так удовлетвори- [c.108]

    Вольфрам частично осаждается, независимо от концентрации серной и винной кислот в растворе. S. G. С 1 а г к е [Analyst, 52, 466. 527 (1927)] установил, что вольфрам не выделяетсч купфероаом в присутствии HF и может быть таким образом отделен от ванадия. [c.144]

    Осаждение меди едким натром (стр. 109) служит для отделения ее от таких элементов, как молибден, ванадий, мышьяк и вольфрам, при условии, что органические соединения отсутствуют. Конечная концентрация едкого натра в растворе не должна превышать 1%, осаждение надо проводить в горячем растворе и затем кипятить 2—3 мин, после чего дать постоять 30 мин и фильтровать. Отделение меди от олова и сурьмы этим способом неудовлетворительно, потому что при добавлении едкого натра в количестве, достаточном для удержания олова и сурьмы в растворе, медь осаждается не полностью. Медь может быть Количественно отделена от мышьяка, селена и теллура осаждением едким натром в киняш,ем растворе, конечная щелочность которого тщательно приводится к pH = 10. При pH = 1,5 медь не осаждается, и поэтому ее мощно отдадить от элементов, количественно осаждающихся при этой концентрации ионов водорода например от олова (IV) в солянокислом растворе. [c.283]

    Хннализариновый метод. Галлий можно определить колориметрическим методом, основанным на его реакции с хинализарином в результате которой образуе тся лак, окрашенный в розовый до аметистового цвет. Эта реакция весьма чувствительна (можно открыть 0,02 мг1л галлия), но крайне н специфична, и при ее применении требуется предварительное отделение от галлия многих посторонних металлов. Наилучшие результаты получаются при pH раствора, равном 5, и содержании в растворе ацетата аммония (1 н.) и хлорида аммония (0,5 н.). В этих условиях влияние алюминия, бериллия, титана, циркония, тория, редкоземельных металлов олова (IV), таллия (III) и других элементов можно устранить введением фторида который, однако, нё препятствует реакции хинализарина с железом (III), оловом (II), сурьмой (III), медью, свинцом, индием, германием, ванадием (IV) и (V) и молибденом (VI). При pH = 5 магний, марганец, железо (II), ртуть (II), таллий (III), Кадмий, вольфрам, уран (VI) [c.556]

    Осаждение циркония купфероном с последующим прокаливанием осадка до окиси дает точные результаты. Этот метод удобен тем, что в результате прокаливания получается остаток определенного состава, который можно взвешивать, и, кроме того, при атом происходит полное отделение циркония от алюминия, хрома, урана (VI), борной кислоты и малых количеств фосфата. Однако определению циркония купфероновым методом препятствуют многие элементы, например титан, торий, церий (и, возможно, другие редкоземельные металлы), большинство элементов сероводородной группы, железо, ванадий, ниобий, тантал, вольфрам, кремнекислота и уран (IV). [c.643]

    Осаждение купфероном (стр. 143) обычно служит лишь для группового отделения, так как цирконий, редкозмельные металлы (по крайней мере частично), некоторые элементы сероводородной группы, железо, ванадий, вольфрам и уран (IV) выделяются совместно с титаном. Этот метод позволяет, однако, отделять титан от алюминия, хрома, марганца, никеля и небольших количеств фосфора. [c.653]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    В кислых средах для отделения вольфраматов и молибдатов от других ионов удобно пользоваться лимонной кислотой, образующей с молибдат- и вольфрамат-ионами прочные комплексы. Клемент [53] изучал отделение молибдат-ионов от таких металлов, как медь, свинец, никель, железо, хром и ванадий (IV), которые в лимоннокислой среде при pH 1 могут быть поглощены катионитами в Н-форме. Как показали И. П. Алимарин и А. М. Медведева [3], при более высоких значениях pH поглощение катионов затрудняется вследствие образования цитратных комплексов. Методика Клемента была тщательно проверена и слегка видоизменена Уоткинсопом [118 ], который установил, что она пригодна также для удаления элементов (железа, меди, олова и ванадия), мешающих спектрофотометрическому определению вольфрама (вольфрам и молибден оказываются в вытекающем растворе). Метод применялся для определения этих элементов, а также ванадия, в почвах и растениях. Аналогичный метод использовался для удаления иопов, мешающих полярографическому и снектрофотометрическому определению молибдена в сталях [17. 84] и минералах [51]. Если в растворе присутствует ванадий в виде ванадата, то перед катионообменным отделением от молибдата он должен быть восстановлен двуокисью серы [56]. [c.352]

    Большинство металлов не поглощается анионитами из сульфатных растворов. Широко известное исключение из этого правила составляют уран и торий. Некоторые другие элементы, принадлежащие к побочным подгруппам групп IV—VI, также поглощаются анионитами. Подробно изучалось поглощение циркония из сульфатных растворов [60]. Отделение циркония от непоглощаемых элементов, в частности, от щелочноземельных, редкоземельных и переходных металлов, хорошо протекает в 0,1н. H2SO4. Кроме циркония, в этой среде анионитами поглощаются ванадий (V), молибден (VI), вольфрам (VI), а также уран (VI) и олово (II). [c.357]

    Хорошим реактивом для осаждения циркония является фениларсоновая кислота. И. П. Алимарин и О. А. Медведева [530] подробно исследовали условия образования осадка и наиболее полного отделения циркон)ия от примесей. Р. Б. Голубцова показала, что фениларсоновая кислота с брльшим успехом может быть применена для определения 0,1% и больше циркония в высоколегированных сталях, содержащих титан, ниобий, бор, ванадий, алюминий, медь, хром 1и вольфрам. Фениларсоиовую кислоту рекомендует также А. М. Дымов [226] для определения циркония в ферроцирконии, Соста]в осадка отвечает формуле 2гО(СбН5АзОзН)2, весовая форма после прокаливания осадка — 2 г02. Прокаливание ведут обязательно под тягой. [c.199]

    По J. KasslerV отделения эфиром можно избежать, действуя на сталь при нагревании разбавленной серной кислотой, причем большая часть ванадия остается нерастворенной немного перешедшего в раствор ванадия осаждают при нагревании взбалтыванием со взмученной в воде окисью цинка и отфильтровывают вместе с нерастворенной частью. Путем такой предварительной обработки стали в полчаса можно удалить от 94 до 99°/(j железа. Выделенный осадок подвергают действию соляной кислоты (плотн. 1,12), прибавляя для окисления концентрированной азотной. Вольфрам превращается в нерастворимую желтую вольфрамовую кислоту, которую потом отфильтровывают, а ванадиевая и молибденовая кислоты остаются в растворе, откуда их извлекают концентрированным едким натром. В дальнейшем ходе анализа ванадиевую кислоту осаждают хлористым марганцем, растворяют ванадиевокислый марганец в серной кислоте и, восстановив сернистой кислотой, титруют марганцовокислым калием. В фильтрате можно осадить молибден сероводородом в слабокислом растворе. Способ пригоден как для низколегированных, так и для высоколегированных сталей, и приблизительно через три часа дает безукоризненные результаты. [c.165]

    Другим важным экстрагентом является бензоин а-оксим, который осаждает вольфрам (VI) и молибден (VI). Образующиеся комплексы экстрагируют хлороформом [13,14]. Для полного выделения вольфрама экстракцию проводят несколько раз. Ванадий и хром также экстрагируются, но их можно замаскировать. Как и молибден, вольфрам экстрагируется из кислых растворов в присутствии восстановителей и роданида, но хуже, чем молибден. Этот метод используют для отделения вольфрама, предшествующего его гравиметрическому определению с помощью тетрафениларсоний-хлорида [15]. Вместо обычного восстановителя — хлорида олова (II)— применена ртуть, а комплекс экстрагируют раствором трибензиламина в хлороформе. Вольфрам реэкстрагируют слабощелочным раствором, содержащим пероксид водорода, для разрушения избытка роданида и окисления вольфрама до Ш . Метод позволяет отделять менее 50 мг вольфрама, но не рассчитан на отделение микросодержаний вольфрама. [c.235]

    V) присутствуют одновременно, можно определить содержание каждого в отдельности, проводя измерение оптической плотности раствора при двух различных длинах волн проходящего света ( при 430—436 М.МК и при 546—565 ммк ). Можно также связать титан в комплекс добавлением фторида и определить с перекисью водорода один ванадий. В последнем случае такое же количество фторида надо ввести в стандартные растворы (пользоваться фотоколориметром не следует, так как плавиковая кислота разрушает кюветы). Железо (III) при этом также обесцвечивается. При отсутствии титана можно железо (III) связывать в комплекс фосфорной кислотой, добавляя ее и в стандартные растворы. Если анализируемый раствор содержит одновременно фосфор (V), ванадий(V) и вольфрам (что бывает при анализе некоторых сталей), то в растворе образуется желтого цвета фосфорованадиевовольфрамовая кислота (см. предыдущий метод). Отделение осадка вольфрамовой кислоты приводит к потере некоторого количества ванадия. [c.731]

    Осаждение а-бензоиноксимом. Из сильнокислой среды а-бен зоиноксимом осаждаются только молибден (VI), вольфрам (VI) хром (VI), ванадий (V), ниобий (V), палладий и тантал (V) Хром (VI) и ванадий (V) можно восстановить перед осаждением молибдена. Этим способом можно отделить молибден (VI) и воль фрам (VI) практически от всех других элементов, включая ре ний (VII). Уран (VI) мешает. При отделении следов молибдена например 1 мкг, выделяется около 70%. [c.890]

    Осаждение сероводородом в кислом растворе — важцый метод отделения и концентрации следов олова в присутствии железа и других металлов, не осаждаемых при этих условиях. Если раствор содержит вольфрам, ванадий и титан, осаждение производят в присутствии винной кислоты. От меди и других металлов подгруппы меди олово отделяют, осаждая эти элементы в виде сульфидов в щелочной среде, но при этом часто теряют олово вследствие соосаждения последнего. Олово можно-осадить и отделить от меди сероводородом в кислом растворе, если добавить достаточно тиомочевины, чтобы связать медь в комплекс . [c.366]

    Растворы реагента в 7 -ном водном растворе этанола имеют максимум светопоглощения при 468 нм соединение с У(У1) максимально поглощает при 475 и 560 нм, молярный коэффициент погашения 2,55-10, оптимальный интервал кислотности pH 0,5—3. Отношение компонентов 1 1, константа образования 5.5-10 . Реагент применен [330] для фотометрического определения вольфрама в ванадии металлическом, УаОз и КН4УОз. Предварительно вольфрам и другие элементы экстрагируют в виде бенз-гидроксаматов смесью изобутанола с хлороформом (1 1) из растворов, содержащих аскорбиновую кислоту для восстановления У(У). После отделения, озоления экстрактов, сплавления и переведения в раствор маскируют Зп, Мо и Ге тиогликолевой кислотой, а Т1, КЬ, Та и ЗЬ — фторидом аммония. Определению 2—9 мкг У не мешают по 100 мкг Зп, Т1, Ът, ТЬ, В1, 1п 20 мкг КЬ 40 мкг Та 10 мкг Мо 500 мкг ЗЬ. Мешают Се и Са. [c.134]

    С этим свойством титана нужно считаться, когда для отделения от хрома, ванадия, молибдена и вольфрама исследуемую пробу сплавляют с перекисью натрия. При этом не только хром, в(анадий, молибден, вольфрам и алюминий переходят в раствор, но в значительной части и титан в виде Ма4Т105, почему раствор, полученный после обработки сплава водой , нужно к ипя-тнть для разрушения образовавшейся вследствие гидролиза, надтитановой кис лоты [c.206]

    Куифероновым методом титан не отделяется от железа, циркония, ванадия, ниобия и тантала, которые количественно осаждаются торий, редкоземельные элементы и вольфрам соосаждаются только в известных пределах. Отделение титана от небольших количеств фосфорной кислоты протекает удовлетворительно. [c.159]

    Однократное осаждение циркония (гафния) по методу Клаасена и Виссера обеспечивает количественное отделение от больших количеств двухвалентных металлов, алюминия, хрома, железа (III) (до 10 г), урана, ванадия и молибдена вольфрам частично осаждается. Для количественного отделения от висмута, бериллия, тория, олова и титана необходимо двукратное осажденпе. Отделение от титана требует добавления 10 мл 3%-ной перекиси водорода и 40 мл 10%-ной мышьяковой кислоты. [c.180]


Смотреть страницы где упоминается термин Вольфрам отделение от ванадия: [c.280]    [c.123]    [c.180]    [c.280]    [c.359]    [c.173]    [c.123]    [c.180]    [c.302]    [c.550]   
Анализ минералов и руд редких элементов (перевод с дополнениями с третьего английского издания) (1962) -- [ c.323 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий отделение от мышьяка ниобия, тантала, вольфрама

Ванадий отделение от мышьяка, молибдена вольфрама, хрома

Отделение урана от молибдена, вольфрама и ванадия



© 2025 chem21.info Реклама на сайте