Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы переход в кристаллическое состояние

    Переход газа в жидкое и кристаллическое состояния называется конденсацией. Иногда процесс перехода газа в жидкость называют сжижением, а в кристалл — десублимацией. Переход [c.11]

    Из изложенного ясно, что энтропия возрастает при переходе вещества из кристаллического состояния в жидкое и из жидкого в газообразное, при растворении кристаллов, нри расширении газов, при химических взаимодействиях, приводящих к увеличению числа частиц, и прежде всего частиц в газообразном состоянии. Напротив, все процессы, в результате которых упорядоченность системы возрастает (конденсация, полимеризация, сжатие, уменьшение числа частиц), сопровождаются уменьшением энтропии. [c.78]


    Переход охлаждаемой жидкости в кристаллическое состояние не всегда начинается точно при температуре замерзания. Если жидкость не содержит хотя бы мельчайших твердых частиц, которые могут служить центрами кристаллизации, то имеет место переохлаждение, и выделение кристаллов начинается при более низкой температуре. Процесс кристаллизации сопровождается выделением теплоты, вследствие чего температура системы вновь повышается и достигает равновесной температуры замерзания, при которой и протекает весь остальной процесс кристаллизации. [c.361]

    Указанные два внешних признака кристаллического состояния — резко выраженная температурная точка перехода в жидкое состояние и определенная внешняя геометрическая форма — не всегда применимы для характеристики кристаллической, структуры. Более общим признаком может служить присущее кристаллам явление анизотропии, заключающееся в том, что некоторые свойства (например, теплопроводность) данного кристалла неодинаковы для разных направлений в нем это явление называют иначе векториальностью свойств. Векториальность свойств кристаллов является их общим признаком. Она не свойственна ни газам, ни большинству жидкостей в обычных условиях. [c.122]

    Пользуясь О — Т-диаграммами, в удобстве которых мы уже могли убедиться в предыдущих главах, применение принципа эквивалентности можно проиллюстрировать рис. 1.23. Верхняя группа кривых соответствует системе жесткоцепных макромолекул с субкритическим значением критерия гибкости /, которые могут существовать как минимум в трех фазовых состояниях изотропном (аморфном), нематическом и кристаллическом. Переход из нематического в обычное кристаллическое состояние приводит к образованию кристаллов с вытянутыми цепями (КВЦ). [c.219]

    Процесс плавления полимера происходит в некотором температурном интервале, ширина которого зависит от предыстории образца. Резкий переход из кристаллического состояния в расплавленное может наблюдаться лишь при высокой степени кристалличности полимеров. Если кристаллы полимера имеют достаточно большие размеры, то роль поверхностной свободной энергии будет несущественной. Однако для реальных полимеров эти условия не соблюдаются, что приводит к расширению температурного ин- [c.258]

    Наименьшую энтропию имеют идеально правильно построенные кристаллы при абсолютном нуле. Энтропия кристалла, в структуре которого имеются ка-кие-либо неправильности, уже при абсолютном нуле несколько больше, так как нарушения идеальности могут реализоваться не единственным способом. С повышением температуры энтропия всегда возрастает, так как возрастает интенсивность движения частиц, а следовательно, растет число способов их расположения. Возрастает она также при превращении вещества из кристаллического состояния в жидкое и, в особенности, при переходе из жидкого состояния в газообразное. Изменяется энтропия и при протекании химических процессов. Эти изменения обычно особенно велики в случае реакций, приводящих к изменению числа молекул газов увеличение числа газовых молекул приводит к возрастанию энтропии, уменьшение — к ее понижению. [c.181]


    Переход охлаждаемой жидкости в кристаллическое состояние не всегда происходит при температуре замерзания. Образование кристаллической решетки происходит не мгновенно, и поэтому возможно существование жидкости в метастабильном (неустойчивом) переохлажденном состоянии. Внесение кристалла твердой фазы или перемешивание приводят к быстрой кри- [c.159]

    Согласно исследованиям А. Приходько с сотрудниками твердый кислород при сверхнизких температурах имеет три кристаллических состояния, которые отличаются друг от друга взаимным расположением молекул. При определенной температуре структура кристалла резко меняется, имеются точки перехода . [c.174]

    Аморфные вещества менее устойчивы, чем кристаллические. Любое аморфное вещество в принципе должно кристаллизоваться, и этот процесс должен быть экзотермическим. Поэтому теплота образования аморфного вещества всегда менее отрицательна, чем теплота образования кристаллического (из одних и тех же исходных веществ). Так, теплоты образования аморфной и кристаллической модификаций ВаО] из простых веществ равны соответственно -1254 и -1273 кДж/моль. Этот пример подтверждает также сравнительно небольшое различие в структуре кристаллов и аморфных веществ, а одинаковый порядок значений теплоты перехода из аморфного в кристаллическое состояние (в данном примере она равна -19 кДж/моль) с теплотами кристаллизации подтверждает сходство аморфного состояния с жидким. [c.170]

    Следует тем не менее подчеркнуть, что структура кристаллической решетки играет определенную роль, нанример, в эффекте связывания лизоцимом ионов металлов. Так, после вымачивания тетрагонального лизоцима в растворе Gd (III) в течение 20 часов степень заполнения активного центра ионами металлов составляла 24—38%, а в случае триклинного лизоцима эта величина составила 1,6—3,6% после вымачивания в течение 4 недель [33]. Это говорит о различной межмолекулярной упаковке белков в двух данных полиморфных формах кристаллического лизоцима. Тем не менее результаты исследования методами ЯМР [46] и рентгеноструктурными методами [2] в целом показали, что кон- формация лизоцима и ориентация функциональных групп его активного центра весьма близки (если не идентичны) в растворе и кристалле [46]. В цитируемой работе [46], однако, ие обсуждается, что рентгеноструктурный анализ был выполнен при низких или комнатных температурах, а изучение ЯМР — ири 54° С [46]. Иначе говоря, эти исследования выполняли по разные стороны от температуры конформационного перехода фермента (25—30° С 47—54]) и, следовательно, с различными конформациями лизоцима, которые заметно различаются по эффективности связывания фрагментов субстрата и, возможно, по конформации активного центра. Вопрос этот остается пока открытым в литературе, но требует более критического анализа при сопоставлении экспериментальных данных, полученных при различных условиях (в особенности, данных по изучению структуры фермента в растворе и кристаллическом состоянии). [c.158]

    Продолжение кривой ОВ на диаграмме пунктирной линией представляет собой кривую давления насыщенного пара над переохлажденной жидкостью. Упругость пара над переохлажденной жидкостью больше упругости пара над кристаллами. Поэтому переохлажденная жидкость является системой неустойчивой и может самопроизвольно переходить в кристаллическое состояние. Такое [c.173]

    Температура разрушения кристаллической фазы, или температура плавления, Гпл, как это видно на кривой, находится в пределах 225—230°С, т. е. выше (145—160°С), когда аморфный полимер того же состава переходит в состояние текучести (кривая I). Очевидно, что в этом случае высокоэластическое состояние не проявляется, так как в температурной области этого состояния полимер закристаллизован. Если кристаллы разрушаются до перехода аморфной фазы в состояние текучести, то выше Гпл и ниже Гт полимер находится в высокоэластическом состоянии, что условно показано кривыми V и 2 (участок кривой АВ). Переход такого типа из кристаллического [c.20]

    Металлические кристаллы отличаются от всех остальных кристаллов высокой пластичностью, электрической проводимостью и теплопроводностью. Эти свойства, а также и многие другие обусловлены особым видом связи между атомами металла — металлической связью. Она возникает между атомами металлов в результате их сближения за счет перекрытия внешних орбиталей. Эта связь не является ковалентной неполярной связью, так как электроны не фиксируются между двумя атомами, а переходят в состояние проводимости и могут принадлежать всем атомам данного кристалла и даже куска металла, содержащего громадное количество кристаллических зерен. Эти мигрирующие электроны, или обобщенные электроны, — электроны проводимости (свободные электроны или электронный газ) — и осуществляют ненаправленную связь между остовами атомов в кристаллической решетке металлов (подробнее о возникновении связи см. гл. 10). [c.108]


    Обычно между высокоупорядоченным кристаллическим состоянием и менее упорядоченным жидким состоянием существует резкий переход. Однако молекулы некоторых веществ имеют настолько сильную тенденцию к упорядоченности, что при плавлении кристалла сначала образуется мутная жидкость, которую называют мезоморфным или паракристаллическим состоянием. Вещества в этом состоянии сохраняют некоторые признаки кристаллических свойств. При более высоких температурах мутная жидкость резко переходит в прозрачную, обладающую уже свойствами обычных жидкостей. Вещества в мезоморфном состоянии называют жидкими кристаллами. [c.48]

    Рассматривая путь перехода иона из гидратированного состояния в растворе в кристаллическое состояние на электроде, М. Фольмер показывает, что получившиеся после разряда адатомы должны принять в кристаллической решетке ориентированные положения. И даже в том случае, есЛи разряд катиона металла совершается беспрепятственно на любых участках электрода, стадия образования и роста кристаллов может оказаться замедленной. [c.240]

    Порядок в пространственном расположении частиц (атомов, молекул, ионов) у кристаллических тел — кристаллическая решетка — определяет основные внешние признаки кристаллического состояния, К таким признакам относятся 1) определенная и резко выраженная температура плавления (переход в жидкое состояние) 2) определенная геометрическая форма одиночных кристаллов 3) анизотропия. [c.29]

    Кристаллический или аморфный характер веи ества зависит прежде всего от его собственных свойств, а затем и от условий, при которых происходит переход в твердое состояние. Соответственно меняя эти условия, удавалось получать в кристаллическом состоянии такие типично аморе >ные вещества, как каучук, клей и др. Детальные исследования показали, что и многие другие аморфные вещества в действительности слагаются из кристаллов, одиако настолько мелких, что они незаметны даже под микроскопом. [c.377]

    Кристаллическое, стеклообразное, аморфное состояния. В подавляющем большинстве случаев твердые тела представляют собой кристаллы. Если в структурном отношении жидкость характеризуется наличием только ближнего порядка, то в кристаллах ближний порядок переходит в дальний, т.е. упорядоченное расположение атомов распространяется на весь объем твердой фазы. С термодинамической точки зрения образование упорядоченной кристаллической структуры энергетически выгодно (ниже температуры плавления), т.е. в этих условиях кристаллическому состоянию отвечает минимум свободной энергии Гиббса. Хотя при понижении температуры энтропия уменьшается (упорядоченность возрастает), но при этом наблюдается значительное уменьшение внутренней энергии (или энтальпии). В результате, как следует из уравнения (VI.5), при образовании кристалла происходит уменьшение свободной энергии (Д(7 < 0). [c.186]

    Важно отметить, что при высоких температурах жидкости по своим свойствам приближаются к газам. В критическом состоянии различие между жидкостью и газом исчезает, а при температурах выше критической жидкость превращается в газ. Наоборот, при низких температурах, близких к температурам кристаллизации, жидкости по своим свойствам приближаются к кристаллам. Однако переход жидкости в кристаллическое состояние всегда происходит скачкообразно. Когда жидкости по тем или иным причинам не могут перейти в кристаллическое состояние, они с понижением температуры переходят в стеклообразное (аморфное) состояние. [c.56]

    Жидкие кристаллы были открыты в результате наблюдений за процессами плавления. При плавлении некоторых веществ образуется мутная жидкость, обладающая интенсивным светорассеянием. Это явление особенно удобно наблюдать в капилляре. Оно встречается у сильно диспергированного кристаллического вещества. Последующее изучение показало, что мутные расплавы обнаруживают двойное лучепреломление, которое свойственно истинным кристаллам. Благодаря этому свойству такие вещества и назвали жидкими кристаллами. При дальнейшем нагревании мутный расплав переходит в прозрачную жидкость, обладающую изотропными свойствами. Например, холесте-рилбензоат плавится при 145°С с образованием мутной жидкости и затем при 179° С переходит в прозрачный расплав. В жидком состоянии молекулы располагаются беспорядочно. В жидко-кристаллическом состоянии наблюдается определенная взаимная ориентация молекул. Длинные оси молекул располагаются параллельно одна другой, о обстоятельство является причиной существования дальнего порядка в одном или двух направлениях и тем самым анизотропности физических свойств жидких кристаллов. Образование жидко-кристаллического состояния при плавлении истинного кристалла сопровождается лишь частичным разрушением дальнего порядка, создающим некото- [c.242]

    Энтропия плавления не так постоянна при переходе от одного вещества к другому, как энтропия испарения. Энтальпии и энтропии плавления ряда веществ в их точках плавления даны в табл, 3.3. Энтропия плавления удлиненных молекул особенно велика. Это связано с тем, что для подобных молекул число конфигураций и видов движения сильно возрастает при переходе из кристалла в расплав (если в кристаллическом состоянии нет свободного вращения молекул).  [c.101]

    Вероятность состояния V — это число различных взаимных расположений частиц, допустимых для данного состояния системы. Например, в растворах молекулы могут быть ориентированы относительно друг друга значительно больпшм числом способов, чем в кристаллическом состоянии, в связи с чем энтропия раствора или жидкости вообш,е больше энтропии кристалла. В последнем случае атомы (молекулы) упакованы в кристаллическую решетку и лишены возможности перемещаться относительно друг друга. Значит переход кристаллического состояния в жидкое должен сопровождаться возрастанием энтропии. Если говорить о самопроизвольных процессах в замкнутых системах, то утверждение второго закона относительно возрастания энтропии означает физически переход системы из менее вероятного состояния в более вероятное. Для газов, жидкостей и растворов более вероятно равномерное распределение всех частиц по всему объему, занимаемому системой. Самопроизвольное накопление частиц одного сорта в одной половине объема, а частиц другого сорта — в другой, событие маловероятное. Этому препятствует тепловое движение частиц, нарушающее их упорядоченное движение. Поэтому можно также сказать, что энтропия есть мера беспорядка в систе- [c.32]

    Кондуктометрическую ячейку заполняют раствором ПАВ, термостатируют и измеряют электрическую проводимость X. Затем повышают температуру на 5°С, выдерживают при этой температуре 10 мин и снова замеряют х. Таким образом исследуют электрическую проводимость при определенной концентрации ПАВ в интервале температур 5—90°С. Далее операцию повторяют с другой концентрацией ПАВ. Каждый раз строят зависимости X — Т. При этом получают кривые трех видов. Первая кривая отвечает концентрации и температуре, лежащим ниже точки Крафта (низшие температура и концентрация, при которых возможно образование мицелл). Она имеет один перегиб, соответствующий переходу кристаллическое состояние — раствор. Вторая кривая имеет два перегиба, первый из которых соответствует переходу кристалл — мицеллярный раствор, а второй — мицеллярный раствор — истинный раствор. При высоких концентрациях ПАВ наблюдается скачок электрической проводимости, начало которого соответствует моменту возникновения мицелл (точке на линии нодды), а конец — исчезновению кристаллов. Перенося все перегибы рис. 3.4 на график зависимости С — Т, получаем диаграмму состояния, показаную на рис. 3.5. [c.184]

    В кристаллическом состоянии часть электронов из ё — оболочек переходит а зону проводимости и возникает возможность обмена электронами между (1— и внешней з —оболочкой. Энергетическая легкость подобного перехода (определяемая работой выхода электрона из металла) приводит к тому, что на внешней поверхности кристалла обрс1зуется определенное число свободных электронов. Их наличие [c.93]

    В этом растворе на 100 г воды приходится 20 г соли АХ и Юг соли ВХ . По мере упарнвания концентрации обеих солей увеличиваются, но отношение между количествами имеющихся солей остается постоянным. Это значит, что точки, выражающие составы получающихся при упаривании растворов, должны лежать на прямой. В нашем случае это прямая HjO—D. По мере упаривания фигуративная точка всей системы переходит из положения / в положение II. В этот момент система представляет собой раствор, насыщенный относительно АХ, но ненасыщенный относительно ВХ. В 100 2 воды этого раствора содержится 40 г АХ и 20 г ВХ. При дальнейшем упаривании из раствора выпадают кристаллы соли АХ и, наирнмер, точка /// отвечает системе из насыщенного раствора и кристаллов АХ. В этой системе на 100 г воды приходится 60 г АХ и 30 г ВХ. Кристаллы АХ находятся в равновесии- с раствором р, в котором содержится на 400 г воды 30 г АХ и 30 г ВХ остальные 30 г АХ находятся в кристаллическом состоянии. После удаления определенного количества воды раствор становится насыщенным по отношению к обеим солям (точка IV). При этом система состоит из раствора, в который входит 100 г воды, 25 г АХ и 40 г ВХ, и из кристаллической соли АХ (55 г). Последующее упаривание обусловливает выпадение кристаллов обеих солей, и состав раствора остается неизменным. Таким образом, например, фигуративной точке У отвечает система, состояш,ая из того же раствора, насыщенного относительно обеих солей (на 100 г воды 25 г АХ и 40, г ВХ), и кристаллов обеих солей (75 г АХ и 10 г ВХ). [c.431]

    По данным [15], переход растворенных солей в кристаллическое состояние и их отложение в призабойной зоне скважины происходят при степени пересыщения С/Снас = 1,01. В работе [10] отмечается, что при таких малых степенях пересыщения в пористых пластах многих месторождений формирование зародышей твердой фазы, например гипса, исключается, так как средний размер пор в 2—4 раза меньше критического радиуса кристаллов Са304-2И20. Но на практике возможно выпадение твердой фазы, так как пористая среда может способствовать образованию зародышей с радиусом меньшим, чем г р. [c.231]

    ЖИДКИЕ КРИСТАЛЛЫ — термодинамически устойчивое состояние веще-стпа, промежуточное по своим свойствам между жидким состоянием и кристаллическим. На диаграмме состояния Ж- к. всегда имеют четкую замкнутую область устойчивого существования. Известно около 3000 органических веществ, способных к образованию Ж- к. Молекулы этих веществ имеют удлиненную форму, а наличие боковых ответвлений сокращает область существования Ж. к. Для Ж. к. известны две структурные формы существования 1) нематическая форма, при которой молекулы вытянуты параллельно друг другу, и 2) смектическая форма, в которой молекулы образуют слои, располагаясь перпендикулярно к плоскости этих слоев. Некоторые коллоидные системы, например водные растворы мыл, дают образования типа Ж. к., называемые лиотропными. По мере увеличения количества растворителя система становится сначала смектической, затем нематической и, наконец, переходит в изотропную жидкость. В смектических мыльных растворах молекулы мыла образуют двойные слои, обращенные полярными группами к воде, выполняющей роль прослойки между этими двойными слоями. Наличие такой структуры объясняет моющее действие мыльных растворов. Исследование Ж- к. имеет важное значение для теории строения вещества и представляет большой интерес для техники, био-логин медицины. [c.97]

    Переход вещества из кристаллического состояния в газообразное называют сублимацией, или возгонкой. Переход жидкости в кристалл — кристаллизация, или отвердевание. Процесс отвердевания, протекающий при невысоких температурах, — замерзание. Обратный процесс перс. ода вещесгва нз кристаллического состояния в ж 1дкое — плавление. [c.11]

    Некоторые жидкие кристаллы могут находиться и в смектическом, и в нематическом состояниях. Фазовые превращения таких веществ из кристаллического состояния в жидкое при повышении температуры проходят по схеме кристалл смектиче-ская фаза->-нематическая фаза->-жидкость. Все эти превращения—фазовые переходы первого рода, сопровождающиеся изменением внутренней энергии, плотности и энтропии системы. Энтальпия перехода жидкого кристалла в жидкость в десятки раз меньше энтальпии плавления, а энтальпия перехода смектической фазы в нематическую еще меньше. [c.166]

    Мы рассматривали электрическую проводимость кристаллов в основном состоянии, когда заполнены электронами самые низйие энергетические уровни. Однако кристалл всегда находится в возбужденном состоянии. Дело в том, что при температуре, отличной от абсолютного нуля, в кристаллической решетке всегда имеются тепловые колебаний, характеризующиеся определенной энергией. Если ширина запрещенной зоны невелика, часть этой.энергии может передаваться некоторым электронам, которые переходят в свободную зону. При этом в прежде заполненной валентной зоне образуются свободные энергетические уровни, а в бывшей свободной зоне таких уровней много. При таких ус-.ловиях возможно ускорение движения электронов, как тех, которые остались в валентной зоне, так и тех, которые перешли в свободную зону (зона проводимости). Такая ситуа-. ция характерна для полупроводников. [c.171]

    Длины связей в рядах однотипных соединений также подчиняются общей, закономерности (рис. 27). Длина связи увеличивается с возрастанием атомного номера элемента, что хорошо коррелирует с уменьшением энергии связи как в ряду молекул, так и в ряду кристаллов Однако при переходе от газообразных молекул к кристаллам наблюдается заметное увеличение длины связи, которое, тем не менее, сопровождается ее упрочнением. Это кажущееся противоречие легко объяснимо. В самом деле, несмотря на то что каждая отдельная связь в кристалле слабее, чем в соответствующей молекуле, число таких связей намного больше (6 для решетки типа Na l и 8 для решетки типа s l), что и увеличивает общую энергию взаимодействия. Таким образом, кристаллическое состояние вещества отличается от газообразного энергией связей и механизмом их образования. [c.78]

    Основу этого метода заложил Полинг. Сущность его можно понять, рассмотрев мысленно переход газообразной молекулы N301 в кристаллическое состояние. Поскольку натрий и хлор — одновалентные элементы, то можно считать, что и в газообразном, и в кристаллическом состоянии между Ыа и С1 будет существовать только одна нормальная связь. Но в кристалле ЫаС1 КЧ = 6 к каждый атом N3 (или С1) соединен с 6 партнерами. Полинг предположил, что ири переходе от молекулы к кристаллу наряду с одной нормальной связью Na—С1 возникает чисто электростатическое взаимодействие иона Ыа+ с 5С1 . Но так как все атомы натрия и хлора в координационном многограннике ЫаС1 эквивалентны, то нормальная химическая связь должна осциллировать (Полинг говорил резонировать) между всеми 6 положениями, т. е. облако валентных электронов должно быть равномерно размазано между 6 атомами Ыа или С1. [c.109]

    Представление об энергии связи является универсальным и в равной мере приложимо как к молекулам, так и к кристаллическому состоянию. Однако величина энергии связи при переходе от молекул к кристаллу изменяется, поскольку при этом изменяются координационное число и энергетическое состояние атомов. При образовании кристалла из газообразных молекул наблюдается выигрыш в энергии, обусловленный упорядоченным расположением атомов в кристаллической решетке. Чтобы оценить этот выигрыш, нужно сравнить между собой энергии разрыва связи в кристалле и газообразной молекуле. Разрыв связи в молекуле может быть осуществлен юмолитически (с образованием нейтральных атомов) и гетеролитически (с образованием ионов). Для молекулы Na l в первом случае, согласно уравнению [c.57]

    Этот ВЫВОД подтверждается спектральными данными Сопоставление спектров кристаллов (СЫзНб)Ыс1ес11а-ЗН20, для которых рентгеноструктурно было установлено для неодима к ч. 9, и их водного раствора (рис. 2 14) показывает, что строение ближайшего окружения иона Ыс1з+ не изменяется при переходе комплексоната из твердой фазы в раствор, где так же, как и в кристаллическом состоянии, присутствуют ионы [Ыс1(Н20)зе(11а]- [299].  [c.162]

    Было также показано, что у полиаминополикарбоновых хелантов бетаиновое строение может быть частичным, т е наряду с протонированными атомами азота в молекуле комплексона могут присутствовать и депротонированные (ЦГДТА, ДТПА) [203]. Предполагается [40, с 6], что асимметричное бетаиновое строение является следствием стремления к образованию энергетически выгодной системы внутримолекулярных водородных связей. Естественно, что переход кристалл — раствор может приводить к существенному перераспределению водородных связей и, как следствие, к таутомерной перегруппировке Несмотря на строго индивидуальные и жестко фиксированные в каждом отдельном случае конфигурации комплексонов в кристаллическом состоянии, есть основания полагать, что выявление общей основы конформации их молекул, хотя бы как частного случая вариантов, реализующихся в растворе, представляет безусловный интерес для описания их строения и свойств в жидкой фазе [c.312]


Смотреть страницы где упоминается термин Кристаллы переход в кристаллическое состояние: [c.164]    [c.198]    [c.24]    [c.24]    [c.74]    [c.34]    [c.242]    [c.243]    [c.26]    [c.160]    [c.249]    [c.359]   
Введение в термографию Издание 2 (1969) -- [ c.119 , c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Переход кристалл кристалл

Состояни кристаллическое

Состояние кристаллическое



© 2025 chem21.info Реклама на сайте