Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбент по хроматографической полярности

    Селективность адсорбентов, как и селективность неподвижных жидкостей, может оцениваться с помощью условной хроматографической полярности, а также факторов полярности Роршнайдера— Мак-Рейнольдса [87]. Это обеспечивает более широкий подход к оценке возможностей хроматографических сорбентов при подборе условий разделения анализируемых смесей. [c.114]


Рис. 7. Зависимость линейных индексов удерживания бензола (/), толуола (II), этилбензола (III) от условной хроматографической полярности адсорбентов (46] Рис. 7. Зависимость <a href="/info/522893">линейных индексов удерживания</a> бензола (/), толуола (II), этилбензола (III) от <a href="/info/522839">условной хроматографической полярности</a> адсорбентов (46]
    Для очистки насыщенных углеводородов от следов аренов или полярных молекул в качестве адсорбента следует применять силикагель. Еслп углеводород представляет собой арен, который может быть загрязнен кислородными, сернистыми или азотистыми соединениями, то активированная окись алюминия оказывается обычно более селективной, В некоторых случаях применяется хроматографическая колонка, заполненная обоими этими адсорбентами. [c.500]

    При разделении неизмененных нефтяных смол первое п основное требование, предъявляемое к адсорбенту и десорбирующим жидкостям, заключается в том, чтобы они не вызывали химических изменений компонентов разделяемой смеси. Размеры пор адсорбентов должны соответствовать размерам молекул разделяемой смеси, что определяет его общую адсорбционную емкость. Адсорбент должен обладать достаточно хорошей специфичностью или адсорбционной избирательностью по отношению к молекулам различных типов структур, что в значительной мере и определяет эффективность разделения нри помощи хроматографических методов. Растворители должны характеризоваться высокой степенью чистоты и определенной вымывающей (десорбирующей) способностью. Многочисленные данные, полученные при изучении вымывающей способности растворителей разной химической природы, показывают, что существует довольно определенная закономерная связь (пропорциональность) между их диэлектрической постоянной, т. е. полярностью, и вымывающей способностью или, что то же самое, адсорбируемостью [38]. [c.448]

    Используя высокую чувствительность адсорбционной хроматографии к структуре молекулы адсорбата, можно реш ать и обратную задачу, т. е. определять некоторые параметры структуры молекулы на основании экспериментальных хроматографических определений константы Генри на том же адсорбенте. Применяя в качестве адсорбента ГТС, можно находить такие параметры геометрической структуры молекул, как двугранные углы, положения отдельных атомов и потенциальные барьеры внутреннего вращения. Используя полярные адсорбенты, можно опреде- [c.25]


    Для более полного изучения влияния состава элюента на удерживание на полярном адсорбенте необходимо проведение систематических исследований межмолекулярных взаимодействий в таких системах как адсорбционными и хроматографическими, так и спектроскопическими методами. [c.297]

    Наряду с возможностью использования полярных неподвижных фаз или адсорбентов известное преимущество капиллярных заполненных колонок состоит в том, что для них максимально допустимая величина пробы (10—20 мг) несколько больше, чем для обычных капиллярных колонок. Правда, из-за высокого перепада давления (0,2—1,5 ат на 1 л колонки) длина колонки ограничена несколькими метрами. Но, несмотря на это, можно получить хорошие результаты в отношении разделительной способности, отнесенной ко времени. Хотя такие хроматографические колонки на практике считают капиллярными колонками и хотя они требуют при эксплуатации таких же приспособлений (делитель потока в дозирующем устройстве, высокочувствительный детектор), их лучше рассматривать как заполненные колонки чрезвычайно малого диаметра, а не как капиллярные колонки. Свободное поперечное сечение, которое является характеристикой капиллярных колонок, здесь не указывается. Внутреннее пространство капиллярной трубки, которая может иметь капиллярный диаметр (как правило, 0,2—1 мм), заполнено частицами, диаметр которых равен /5— /3 внутреннего диаметра трубки. [c.335]

    Основными преимуществами сорбентов с привитыми нитрильными или аминогруппами по сравнению с адсорбентами являются следующие 1) вследствие отсутствия силанольных групп вероятность необратимой адсорбции веществ заметно уменьшается 2) заметно уменьшается влияние воды на хроматографическое разделение, отпадает необходимость строго контролировать содержание воды в растворителях 3) быстро достигается равновесие с новым составом растворителя, что позволяет быстро переходить от методики к методике или успешно использовать градиентное элюирование 4) возможно использование растворителей в широком диапазоне полярностей, колонки легко могут быть регенерированы 5) сорбенты с привитыми аминогруппами проявляют свойства слабых анионообменников. [c.22]

    В новейших хроматографических методиках активированный уголь в ряде случаев все же применяют как адсорбент, что обусловлено некоторыми его ценными свойствами. Так, при фронтальном анализе, вытеснительной хроматографии и т. п. можно с успехом использовать активированный уголь, несмотря на то что ход адсорбции на нем выражается изотермой Фрейндлиха. Преимущества активированного угля заключаются в его высокой активности, большой емкости и значительной селективности. Поэтому активированный уголь в отличие от полярных адсорбентов позволяет осуществить разделение некоторых гомологических рядов на индивидуальные соединения. [c.349]

    При разделении веществ с очень близкими адсорбционными свойствами часто употребляют смеси двух растворителей, занимающих соседние положения в элюотропном ряду. Прибавлять более полярный растворитель к менее полярному рекомендуется сначала в небольшом количестве. Как правило, содержание более полярного растворителя в смеси должно составлять от 1—2% до 5—10%, максимально 50%. В последнем случае смесь растворителей имеет свойства, приближающиеся к свойствам более полярного компонента. Действие смеси растворителей можно представить себе так, что более полярный компонент смеси растворителей постепенно адсорбируется при прохождении через столбик адсорбента, благодаря чему менее прочно связанный компонент разделяемой смеси вытесняется, т. е., иными словами, ускоряется передвижение адсорбционных полос по колонке. Само собой разумеется, что нет смысла промывать колонку менее полярным растворителем после того, как через нее был пропущен более полярный растворитель, который вызвал частичную дезактивацию адсорбента. По тем же соображениям не следует использовать для хроматографии смеси растворителей, не находящихся по соседству в элюотропном ряду. В этом случае столбик адсорбента насытится более полярным растворителем и неполярный растворитель не окажет никакого действия. Следует также указать, что адсорбент, на котором уже было проведено хроматографическое разделение, нельзя повторно использовать для следующей порции смеси. [c.352]

    Жидкостная адсорбционная хроматография. Жидкостная адсорбционная хроматография применяется для группового разделения углеводородов на алкано-циклоалкановую и ареновую фракции, а также для разделения аренов по степени цикличности. Хроматографические колонки заполняют силикагелем или двойным адсорбентом — оксидом алюминия и силикагелем. В качестве десорбентов при анализе керосиновых и масляных фракций для вымывания насыщенных углеводородов используют н-алканы С5 — С7, для десорбции ароматических и гетероатомных компонентов — бензол, спиртобензольные смеси, ацетон, хлороформ. Применение ступенчатого или непрерывного увеличения полярности подвижной фазы позволяет значительно уменьшить время удерживания веществ. Этот метод называется градиентным элюированием. [c.130]


    Вместо бумажной хроматографии можно использовать тонкослойную хроматографию. Адсорбент, например силикагель, распределяют равномерным слоем толщиной 1 мм на стеклянной пластине, для закрепления слоя добавляют инертное вяжущее вещество. Анализируемый образец наносят на один край пластины и погружают ее в растворитель, который постепенно мигрирует в слое адсорбента. При этом происходит образование зон компонентов образца, причем как и в хроматографической колонке, быстрее всего перемещаются наименее полярные компоненты. Методом тонкослойной хроматографии недавно было установлено высокое содержание (до 15—20 7о) алкенов в некоторых нефтях. [c.132]

    Успешное использование колоночной жидкостной хроматографии обусловлено, в первую очередь, универсальностью, эффективностью и удобством метода ОФ ЖХ с неполярными неподвижными жидкими фазами на основе силикагеля с привитыми группами. Название метода было предложено Говардом и Мартином [116], которым впервые в 1950 г. удалось его успешно реализовать. Суть метода состоит в изменении на противоположную обычной полярности подвижной и неподвижной фаз и, как результат, последовательности выхода компонентов смеси в жидкостной распределительной хроматографии. Хроматографисты под термином "хроматография с обращенными фазами" понимают использование в хроматографическом процессе неподвижных фаз, менее полярных, чем растворитель. Еще более 60 лет назад [117] было показано, что последовательность элюирования смеси жирных кислот меняется на обратную при замене силикагеля (неорганический полярный адсорбент) и толуола (менее полярный растворитель) на, соответственно, уголь (неполярный адсорбент) и воду (полярный растворитель). [c.387]

    Некоторые неполярные молекулы, например ароматические и непредельные соединения, под влиянием дипольных моментов абсорбента или локальных зарядов адсорбента способны деформироваться с образованием наведенного дипольного момента. Взаимодействие последнего с полярной молекулой или локальным зарядом называют индукционным, обычно оно не превышает 5—7% от общей энергии взаимодействия, однако и этого вклада часто оказывается достаточно для хроматографического разделения. [c.33]

    Выбор состава подвижной фазы в ЖАХ основывается на эмпирическом подборе индивидуальных растворителей или их смесей, обладающих необходимой элюирующей способностью и обеспечивающих необходимую селективность при разделении компонентов смеси. На основании накопленного опыта элюенты для полярных сорбентов сопоставляют по элюирующей способности или хроматографической активности, располагая их в элюотропные ряды [62]. Элюирующая способность подвижной фазы характеризуется параметром д, величина которого зависит от силы взаимодействия молекул подвижной фазы с поверхностью адсорбента. Величина д° пропорциональна приведенной к единице площади поверхности (разности между энергиями взаимодействия молекул соответствующей подвижной фазы и молекул пентана), для которой ус- [c.198]

    Пластичные смазки, содержащие в качестве загустителя также высокоплавкие воски, церезины, парафины, полимеры, бентонитовые глины кизельгур, дисульфид молибдена и т. д., а в качестве дисперсионной среды — синтетические масла, разделяют центрифугированием после предварительного селективного растворения масляной части смазки подходящим растворителем и фильтрования [571, 572]. В частности, при наличии в смазке силиконовой жидкости, фтор-производных углеводородов и минерального масла в качестве растворителя применяют бензол. Неорганические составляющие смазки могут адсорбировать полярные части смазки. Для полного отделения последних осадок после первого центрифугирования подвергают повторному центрифугированию при разбавлении диэтиловым эфиром, ацетоном или метанолом. После отгона растворителей выделенную органическую часть смазки (минеральное масло, полимеры и т. д.) подвергают жидкостному хроматографическому разделению на силикагеле или окиси алюминия. При этом минеральное масло элюируют из слоя адсорбента к-гексаном и бензолом, а полярную часть смазки — диэтиловым эфиром, ацетоном, метанолом или смесями этих растворителей. [c.339]

    Хроматографическая колонка изображена на рис. 16-1. Она представляет собой стеклянную трубку с внутренним диаметром примерно 1 см. Колонка, длина которой составляет около 15 см, заполнена до уровня несколько ниже верхней границы трубки неподвижной, или стационарной, фазой. Незаполненный отрезок колонки играет роль резервуара для подвижной фазы к нижней части колонки припаивают кран для регулирования потока подвижной фазы. Хотя стационарная фаза может иметь самые различные формы, допустим, что в данном случае ею является некоторый адсорбент (например, оксид алюминия или силикагель), активированный путем высушивания при 150 °С, со средним диаметром частиц около 100 мкм. Колонку заполняют суспендированной в растворителе стационарной фазой, а избыток растворителя сливают через кран. Подвижной фазой может быть некоторая жидкость, которая легко растворяет пробу, но не реагируя с ней, и не настолько полярна, чтобы вытеснять адсорбированные на стационарной фазе молекулы. [c.525]

    Целлюлоза. Положение с целлюлозой более сложное. Обычно-ее в основном рассматривают как распределяющую среду, поскольку структура целлюлозы такова, что удерживает микроскопические скопления воды, в которых может распределяться растворенное анализируемое вещество. Однако целлюлоза функционирует также и как адсорбент, что следует учитывать при рассмотрении любых возможных схеМ удерживания. Обычно целлюлозу применяют для хроматографического-разделения сильно полярных веществ, которые претерпевают необратимую адсорбцию на более активных средах, таких как оксиды кремния и алюминия. Для разделения подобных веществ бумажная хроматография применялась даже после того, как было доказано преимущество тонкослойной хроматографии для большинства других разделений. Пластинки в тонкослойной хроматографии можно покрыть слоями микрокристаллической целлюлозы, которая напоминает по свойствам бумагу, но в то же время обеспечивает высокую скорость разделения. [c.559]

    Для успешного проведения хроматографического анализа большое значение имеют правильный выбор адсорбента и его подготовка. Для увеличения поверхности адсорбента его следует применять в измельченном виде. Активность полярного адсорбента сильно падает по мере его увлажнения, поэтому силикагель должен быть хорошо высушен. [c.92]

    О количестве смол судят по сумме соединений, отделенных вследствие их повышенной полярности от углеводородной смеси на активном адсорбенте. Отделяемая хроматографическим путем смесь нет углеводородных соединений состоит из всей суммы присутствовавших [c.197]

    Теоретическое введение. Условная хроматографическая полярность Р адсорбентов может быть определена по уравнению (128) при использовании в качестве стандартных сорбентов, как и в задаче V. 2, сквалана и р,р -дицианодиэтилового эфира при [c.103]

    Влияние дезактивации на результаты количественных определений было подробно изучено Канманом [208], использовавшим силикагель и циклогексан или смесь циклогексан — бензол для выделения БаП из его раствора с концентрацией 1,25 мкг/м л. Регистрацию осуществляли спектрофотометром при 296 нм. Результаты были представлены в форме, позволяющей сопоставить их с результатами, полученными Вейль-Мальхербом на активном силикагеле [201]. Увеличение содержания воды в силикагеле приводило к возрастанию скорости движения хроматографических зон. Было найдено, что на силикагеле, содержащем 3% воды, зона БаП уже и отчетливей, чем на полностью активированном или сильно дезактивированном силикагеле (18—24 /о воды). Кроме того, при 3%-ном содержании воды для элюирования требуется меньшее количество растворителя, чем в других случаях, Появление хвостов начинается при содержании воды выше 12%, Этот эффект можно устранить, добавив к неполярному растворителю определенное количество полярного. Было установлено, что скорости движения зоны БаП одинаковы при следующих комбинациях адсорбентов и растворителей силикагель с 14—15% воды и циклогексан силикагель с 6% воды и смесь циклогексан — бензол (8%) полностью активированный силикагель и смесь циклогексан — бензол (16%). Из приведенных данных ясно, в какой степени адсорбционная элюентная хроматография зависит от активности адсорбентов и полярности используемых для элюирования растворителей, Канман обратил также внимание на то, что частично дезактивированные адсорбенты можно применять с неполярными растворителями, например с пентаном, и циклогексаном, которые не поглощают в ультрафиолете и, таким образом, позволяют проводить спектрофотометрию непосредственно, без обычного упаривания полярного растворителя и повторного растворения фракций в непоглощающих растворителях. Эфир, используемый в малых количествах для улучшения элюирующих свойств элюента, также не поглощает в ультрафиолете. [c.147]

    Колоночная адсорбционная хроматография на силикагеле или оксиде алюминия позволяет выделить концентрат гетероатомных соединений. Лишь небольшая часть 2—10 % общего их количества может остаться в углеводородной фракции. Для адсорбционного выделения гетероатомных соединений можно воспользоваться стеклянными хроматографическими колонками, объемное отношение адсорбента к разделяемому сырью от 1 10 до 5 1. При максимальном отношении адсорбента к сырью получают фракции алкано-циклоалкановых, моноцикло- и бициклоаренов, а также адсорбционные смолы (концентрат гетероатомных соединений). Во фракции адсорбционных смол сосредотачивается подавляющая часть серу-, азот- и кислородсодержащих соединений нефтяной фракции. Элюентом углеводородных фракций служит изопентан, петролейный эфир или бензол, десорбентом смол — спирто-бен- зольная смесь (1 1) и некоторые другие полярные растворители. Например, выделение концентрата гетероатомных соединений из прямогонной высокосернистой, высокосмолистой фракции 150— 325 °С арланской нефти осуществлялось с помощью стеклянных хроматографических колонок с восходящим током сырья при объемном соотношении адсорбента силикагеля ШСМ к разделяемой фракции 5 1 [183]. С уменьшением размера частиц силикагеля четкость разделения возрастает, однако скорость перемещения компонентов сырья и растворителей уменьшается, удлиняется время разделения. Оперативный контроль хроматографического процесса и определение группового состава фракции осуществляется по адсорбтограмме, построенной в координатах показатель преломления — массовый выход узких фракций . Показатель преломления отдельных хроматографических фракций и гетероатомных [c.82]

    Одной из важных характеристик качества нефтей, дистиллятов и товарных продуктов является содержание адсорбционных смол, выделяемых хроматографически на полярных адсорбентах. Эти смолы приблизительно на состоят из кислородных соединений остальное — сернистые и азотистые соединения, а также высокомолекулярные продукты уплотнения. Кислородные соединения переходят из нефтепродуктов в адсорбционные смолы полностью, а сернистые и азотистые соединения лишь частично. Известны нефти, содержащие до 80% адсорбционных смол. Как правило, в среднедистиллятных фракциях прямой перегонки нефтей и топливах, полученных на их основе, адсорбционных смол содержится 0,2— 0,5 вес. %, а в керосинах термического крекинга 0,5— 3,0 вес. %. [c.206]

    Хроматографический метод. Адсорбционные смолы выделяют из нефтяной фракции или топлива перколяцией через слой полярного активированного адсорбента — окиси алюминия, силикагеля, крошки алюмосиликатного катализатора, применяемого в нефтяной промышленности, и др. Объемное соотношение адсорбента к пропускаемому через колонку нефтепр-одукту определяется содержанием в нем кислородных соединений. Обычно это соотношение составляет от 1 20 до 1 100. Емкость адсорбента тем больше, чем тоньше его размол. Однако с увеличением тонкости размола адсорбента ухудшается фильтруемость через него нефтепродукта. Емкость алюмосиликатного катализатора по отношению к адсорбционным смолам выше, чем силикагеля, что видно из следуюш,их данных (в мг смол на 1 г.адсорбента)  [c.227]

    Подвижные фазы в ЖКХ различают по их элюирующей способности. В адсорбционной хроматографии на полярных. сорбентах элюирующая сила тем больше, чем полярнее растворитель. Экспериментально уста ювленную последовательность растворителей с возрастающей элюирующей силой называют элюот-ропным рядом. Элюирующая сила е, как правило, возрастает с увеличением диэлектрической проницаемости растворителя. Чаще всего используют насыщенные углеводороды (гексан, гептан), тетрахлорид углерода, хлороформ, этанол, метанол, воду (растворители расположены в порядке возрастания элюирующей силы). Элюирующую силу можно изменять в необходимых пределах добавлением к растворителю с низкой элюирующей силой более активного растворителя. Элюирующая способность смеси резко возрастает при небольших добавлениях полярного растворителя к неполярному (рис. 28.8). Если различие в элюирующей силе растворителей незначительно, то зависимость близка к линейной. В том случае, если к неполярному элюенту добавляют полярный, способный к образованию водородных связей (спирты, эфиры и др.), удерживание и селективность определяются специфическими взаимодействиями вещество— адсорбент, вещество — элюент и элюент — адсорбент. Эту систему применяют для разделения полярных, сильноудерживаемых соединений. Водородные связи образуются как между сорбентом и веществом, так и между веществом и элюентом, что резко сказывается на хроматографическом поведении соединений. Так, фенол и анилин в элюен-те, не способном к образованию Н-связи, выходят в указанной последовательности, а в подвижной фазе, содержащей спирты, порядок противоположный. Это объясняется тем, что анилин, в состав молекулы которого входит аминогруппа —NH2, обладает большей способностью к образованию водородных связей с молекулами спирта, чем фенол. [c.600]

    Преимущество распределительной хроматографии состоит, во-первых, в том, что жидких неподвижных фаз с различными свойствами намного больпхе, чем адсорбентов, и, во-вторых, в том, что в данном случае неподвижная фаза обладает гомогенной поверхностью, тогда как поверхность даже самых лучших адсорбентов содержит различные центры повышенной адсорбционной способности. Эта неоднородность поверхности адсорбента препятствует равномерной адсорбции или десорбции, снижая тем самым эффективность разделения колонки и, кроме того, делая почти невозможным разделение сильно адсорбируемых веществ. В случае жидкой неподвижной фазы, напротив, сильно адсорбируемые вещества могут быть разделены без труда. Так как имеются неподвижные фазы самой различной полярности, то в настоящее время хроматография может быть применена практически ко всем веществам, поскольку они в какой-то степени растворимы и летучи. Чтобы осуществить хроматографическое разделение пары веществ, достаточно иметь подходящую неподвижную фазу, в которой данные компоненты имели бы различную растворимость. [c.14]

    Методика хроматографического разделения карбоновых кислот описана Марвелом и Рендсом [3]. В качестве неподвижной фазы используется насыщенная водой кремневая кислота, а в качестве подвижной фазы — растворы бутилового спирта в хлороформе. Экстракт из адсорбента постепенно делали более полярным за счет увеличения концентрации бзлгиловогс спирта, что позволяло вымывать более водорастворимые кислоты. [c.28]

    Окись алюминия. Одним из наиболее часто прйменяемых адсорбентов является окись алюминия, на которой удается хроматографически разделить весьма широкий круг смесей веществ как из полярных, так и аполярных растворителей. Это свойство окиси алюминия как адсорбента определяется тем, что она обладает амфотерным характером. [c.21]

    Полоса должна быть как можно более прямой и узкой, должна отстоять по крайней мере на 1—3 см от каждого края пластинки во избежание краевых эффектов , из-за которых растворитель двигается быстрее или медленнее (обычно быстрее) по краям, чем в центре (14—18 см для пластинки 20X20 см). Для получения однородной полосы образца необходим тщательный контроль скорости движения и потока из пипетки. Часто для нанесения требуемого количества раствора операцию повторяют несколько раз. При этом, прежде чем нанести полосу следующий раз, очень важно полностью удалить растворитель. Если растворитель образца не полностью удален, то будут образовываться широкие полосы, неоднородные по концентрации в вертикальном направлении [15]. По этой же причине используемый метод нанесения полос не должен давать царапин или разрушать слой адсорбента. Царапины будут мешать правильному регулярному движению носителя, затрудняя последующее выделение компонента [15, 16]. Если при нанесении образца полоса становится чрезвычайно широкой (высокой), ее можно сделать более узкой с помощью предварительного проявления на расстоянии 1—2 см очень полярным растворителем. После этого растворитель тщательно выпаривают и проявление осуществляют с помощью подходящей хроматографической подвижной фазы [17]. Хонеггер [9] наносил образцы в У-образную канавку шириной 1—2 мм, высотой в половину слоя. В этом методе следует позаботиться, чтобы не удалить весь адсорбент, вплоть до стеклянной пластинки, поскольку это могло бы помешать движению подвижной фазы. Наносят также небольшие круглые пятна плотно друг к другу вдоль пластинки, для того чтобы получить полосу, однако эта операция трудоемка, занимает много времени и может приводить к неоднородности, которая будет вредить разделению компонентов с близкими значениями [c.136]

    Полярные адсорбенты общего назначения. Используются для хроматографр ческого разделения каротиноидов и других веществ. Ниже приведены марки мг терналов, вырабатываемых специально для хроматографических целей, [c.284]

    Способность растворителя элюировать вещество нз хроматографической колонки зависит от природы как самого вещества, так н адсорбента, поэтому могут встречаться отклонения от приведенных рядов. Однако в общем в дайной таблице растворители расположены в порядке увеличивающейся полярности, т. е. в принципе растворители, находящиеся ниже в списке, легче элюнруют более полярные соединения. [c.579]

    Наряду с полярностью функциональных групп важнейшей характеристикой сорбентов является удельная поверхность, так как в основе метода лежит межфазный обмен между подвижной фазой и поверхностью твердого адсорбента, а не его объемом. Удельная поверхность зависит от общей пористости сорбента и размера пор. Обычно для силикагелей диаметр пор колеблется в пределах 5-30 нм, а удельная поверхность составляет от 100 до 500 м г [97, 99]. При создании специальных поверхностно-пористых сорбентов для улучшения кинетики массообменных процессов в режиме ВЭЖХ выбирается разумный компромисс между снижением удельной поверхности и соответствующим уменьшением фактора удерживания и улучшением разрешения хроматографических пиков. Удельная поверхность поверхностно-пористых сорбентов, как правило, всего в 10-20 раз меньше, чем у соответствующих объемнопористых. [c.195]

    Пригодные для липидов растворители выбирают, проводя хроматографическое разделение этих веществ при использовании нескольких полярных растворителей. Растворитель, который перемещает данный класс липидов вблизи фронта, следует применить в качестве элюирующего вещества (см. стр. 138). Для элюирования нейтральных липидов наиболее пригоден диэтиловый эфир, иногда с добавкой 10—20% метанола. Сильно полярные липиды имеют склонность образовывать трудно растворимые соли и комплексы с ионами кальция адсорбента, к которому в качестве связующего добавлен гипс. Однако, применяя специальные растворители, можно количественно элюировать и такие классы соединений, как, например, фосфолипиды [111]. Сильно полярные липиды чксто имеет смысл подвергнуть хроматографическому разделению в форме слабо полярных производных, которые элюируются затем без затруднений [80, 84]. [c.181]

    Колоночная адсорбционная хроматография на силикагеле или оксиде алюминия позволяет выделить концентрат гетероатомных соединений. Лишь небольшая часть (2-10 %) от их общего количества может остаться в углеводородной фракции. Для адсорбционного выделения гетероатомных соединений пользуются стеклянными хроматографическими колонками (объемное отношение адсорбента к разделяемому сырью от 1 10 до 5 1). При максимальном отношении адсорбента к сырью получают фракции алкано-циклоалконовых углеводородов, моноцикло- и бициклоаре-нов, а также адсорбционные смолы (концентрат гетероатомных соединений). Во фракции адсорбционных смол сосредоточивается подавляющая часть сера-, азот- и кислородсодержащих соединений нефтяной фракции. Элюентом углеводородных фракций служит изопентан, петролейный эфир или бензол, десорбентом смол — спирто-бензольная смесь (1 1) и некоторые другие полярные растворители. Выделение концентрата гетероатомных соединений из прямогонной высокосернистой, высокосмолистой фракции 150-325 °С ар-ланской нефти осуществляют с помощью стеклянных хроматографических колонок с восходящим током сырья при объемном соотношении адсорбента силикагеля ШСМ [c.44]

    Со, Мп, Сг, 8с и 8Ь 10 % Ре, 2п и Н в смолах не найдены (при чувствительности определения, равной 10 масс. %). Содержание серебра в асфальтепах в 4,7 раза меньше, чем в смолах. Уровни концентрации в аефальтенах составили 10 масс. % — для Ре, Ка, N1, Вг 10 масс. % — для V, 2п и Сг 10 " масс. % — для Со и Мп 10 масс. % — для Л , 8Ь, Hg, 8с. В составе асфальтенов предпочтительнее концентрируются Ре, Хп, Н (на 100 %), 8Ь (на 90 %), Сг, Ма, Вг (на 74-80 %) (табл. 6.99). Концентрация почти всех элементов в ас-фальтенах значительно выше, чем в смолах. Атомы ванадия концентрируются преимущественно в составе непорфириновых молекул, обладающих умеренной полярностью и повышенной степенью ароматичности. Сравнительно небольшая часть (от 4 до 30 %) находится в виде ванадийпорфиринов. Остальные микроэлементы при хроматографировании преимущественно аккумулируются в высокополярных фракциях, обогащенных кислородом и серой. Ре-и Ка-содержащие компоненты малоустойчивы, легко разрушаются при контакте с активной поверхностью адсорбентов, поэтому 77-98 % их элюируются из органической фазы в ходе хроматографического анализа, V, А , Н , Мп, N1, Со и Хп образуют с асфальтенами и смолами более прочные комплексы, причем 70 и более процентов металлов сохраняются в составе высокомолекулярных соединений (табл. 6.99). [c.559]

    Изучение электрофизических свойств — дипольного момента молекул, молекулярной рефракции, поляризации и диэлектрической проницаемости — продуктов переработки твердых топлив имеет большой познавательный интерес, открывая новые пути к расшифровке их химического строения. Для сланцевой смолы определение этих параметров имеет и важное прикладное значение. При использовании высококипящих фракций смолы в качестве пластификаторов для полимерных материалов, присадок к топливам и маслам, мягчителей для регенерации резины, компонентов покрытий и других продуктов полярность является одним из решающих условий их эффективности. Определение электрофизических констант оказывается полезным и при разработке хроматографических методов исследования смолы, поскольку распределение компонентов разделяемой смеси на полярных адсорбентах (силикагель, окись алюминия и др.) непосредст--венно зависит от дипольного момента их молекул и диэлектрической постоянной. Полярность существенно влияет и на важнейшие физико-химические свойства смолы. [c.15]

    Для четкого разделения ароматических и сернистых соединений и для фракционирования последних, а также для более совершенной дифференциации полярных гетероатомных компонентов (часто обозначаемых как смолы ) в последнее время был предложен ряд особых хроматографических и аналитических методов с применением повторной хроматографии со специальными адсорбентами. Окись алюминия, реактивированная прокаливанием при 700° С (D. Jesl, А. Stuart, 1958), позволяет отделить большую часть сернистых соединений от ароматических углеводородов в последних хроматографических фракциях. [c.233]

    Методика разделения адсорбцией на силикагеле заключается в том, что через колонку, наполненную адсорбентом, пропускается исследуемая жидкость. Для ускорения фильтрования можно применять давление инертных газов. Адсорбированные вещества затем вытесняются из колонки каким-либо десорбонтом — веществом более поверхностно-активным, например, метиловым спиртом, ацетоном п т. п. Нри фильтровании высокомолекулярных, вязких фракций их можно разбавлять н-пентаном или другим низкокнпя-щим парафиновым углеводородом, а вытеснять с поверхности адсорбента промывкой больщим количеством того же растворителя пли каким-либо полярным десорбентом. Так как в процессе адсорбции выделяется тепло, а за счет этого тепла и под каталитическим влиянием адсорбента возможны различные химические превращения на поверхности адсорбента (полимеризация, окисление и т. п.), то колонку с адсорбентом необходимо охлаждать. На фиг. 6 показана колонка для хроматографической адсорбции. [c.119]


Смотреть страницы где упоминается термин Адсорбент по хроматографической полярности: [c.198]    [c.126]    [c.80]    [c.272]    [c.162]    [c.599]    [c.141]    [c.257]    [c.297]    [c.195]    [c.320]   
Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.79 , c.80 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбенты полярные



© 2024 chem21.info Реклама на сайте