Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фториды ионный обмен

    Комплексонометрический анализ различных сплавов, руд и концентратов. При комплексонометрическом анализе сложных объектов используют обычные приемы химического разделения (осаждение, ионный обмен, экстракция и т. д.) и маскировки (цианидом, фторидом, триэтаноламином, оксикислотами и другими реагентами), но почти все компоненты определяют комплексо-нометрическим титрованием. Например, при анализе сплавов цветных металлов, содержащих медь, свинец, цинк и алюминий (бронзы, латуни и т. д.), медь определяют иодометрически, а свинец и цинк — комплексонометрически после оттитровывания меди. Перед определением свинца цинк маскируют цианидом, алюминий — фторидом и титрование производят в присутствии соли магния. Затем демаскируют цинк, связанный в цианидный комплекс, раствором формалина и титруют ЭДТА. [c.244]


    В этой главе описывается техника переработки облученного реакторного топлива. К числу рассматриваемых водных процессов относятся осаждение, ионный обмен и экстракция органическими растворителями к числу сухих процессов относятся дробная дистилляция фторидов, экстракция жидкими металлами, экстракция расплавленными солями, вакуумная возгонка расплавленных металлов, окислительное шлакование и электрорафинирование. Наиболее подробно рассматривается процесс экстракции органическими растворителями из водной среды, так как в настояш,ее время он является самым распространенным способом переработки облученного топлива. [c.308]

    К водным процессам относятся осаждение, ионный обмен, экстракция органическими растворителями безводные процессы — это дробная дистилляция фторидов, экстракция жидкими металлами, экстракция расплавленными солями, вакуумная возгонка, окислительное шлакование и электрорафинирование. Следует отметить, что водные процессы, особенно экстракция органическими растворителями, широко описаны в литературе и, по-видимому, являются наиболее распространенными способами переработки облученного топлива. [c.414]

    В кристаллах веществ, молекулы которых состоят из атомов двух видов, может быть различное взаимное расположение атомов. Атомы двух видов могут располагаться совершенно беспорядочно по отношению друг к другу или же строго чередуясь (рис. 4.10). Для большинства таких веществ характерно именно второе расположение атомов. Например, в кристалле иодоводорода Н1 иодид-ион по размерам значительно превосходит ион водорода и кристаллическая решетка, по-видимому, должна состоять из слоев молекул, подобных указанным на рис. 4.10, в. Обмен атомами (ионами) в отдельных узлах решетки кристалла невозможен при различных размерах атомов. В кристалле фтороводорода размерный фактор делает вероятным обмен между ионами и Н+, однако этого не происходит, так как ион водорода обладает значительными валентными силами, оставшимися не использованными полностью после взаимодействия с атомом фтора, и за счет этих сил (водородная связь) каждый ион водорода окружен фторид-ионами. Поэтому в кристаллической решетке веществ типа галогенидов при абсолютном нуле проявляется максимальный порядок в расположении атомов и 5°о=0, что и подтверждается экспериментально. [c.170]

    Радиоактивные изотопы применяют для исследования распределения какого-либо элемента в данном веществе. Например, при добавлении радиофосфора Р (период полураспада 14,3 дня) можно судить о распределении фосфора в образце стали. По изотопам также можно судить о распределении в организме животного фосфора, стронция кобальта. Это — метод меченых атомов. Меченые атомы позволяют определять растворимость солей свинца — фторида, оксалата, сульфата (В. И. Спицын, 1917 г.), ионный обмен, экстрагирование, соосаждение, самодиффузию. [c.533]


    И комплексообразующих агентов. Можно добиться большей селективности, если сочетать ионный обмен с процессом комплексообразования в растворе. Прибавляя комплексообразующий агент, можно удалить ион металла из обменника, если образуется нейтральный комплекс или комплекс, имеющий знак заряда, одинаковый с функциональными группами обменника. Если образующиеся комплексы имеют заряд, противоположный заряду функциональных групп, то поглощение ионов металла возрастает. Дополнительно к ионному обмену в огромном большинстве методов разделения металлов используют селективное комплексообразование [наиболее удивительный пример — анионообменное разделение металл-хлоридных комплексов (гл. 8)1. Работая с растворами солей металлов, нельзя забывать, что присутствие комплексов в растворе скорее правило, чем исключение. Свинец(П) и ртуть(П) в хлоридных и нитратных растворах ведут себя по-раз-ному металлы высокой степени окисления, например цирко-ний(1У), будут образовывать аквокомплексы, если не присутствует более сильный комплексообразующий реагент, чем вода, например фторид-ион. Такие аквокомплексы имеют высокий молекулярный вес и не могут войти в поры обменника. [c.64]

    В настоящее время большинство исследований в области солевых расплавов связано с изучением расплавленных фторидов, так как фтор имеет очень низкое поперечное сечение захвата тепловых нейтронов. В этом случае для растворения делящегося вещества наиболее часто используются фториды бериллия, лития, калия, натрия, циркония и рубидия. Изучались способы очистки этого топлива и наиболее перспективным методом признан процесс испарения фторидов и ионный обмен [6]. Метод ионного обмена считается наилучшим, так как при нем запас топлива может быть на 50% меньше, а выжигание его на 30% меньше. Смесью фторидов, имеющих наименьшую температуру плавления, является эвтектика фторида натрия и бериллия, содержащая 57 мол.% фторида натрия. Точка плавления этой смеси равна 350° [71. [c.57]

    Для фторид-иона характерно интенсивное его поглошение почвами и породами, а также значительное влияние на свойства и состав загрязненных почв. Уровень связывания Р" определяется многими факторами. В первую очередь сорбция фтора почвами зависит от характера материнской породы. Почвы на известняках сорбируют примерно в 2 раза больше фтора, чем почвы на базальтах, и в 3—4 раза больше, чем песчаные почвы. Интенсивная сорбция фтора имеет важное экологическое значение это, в частности, снижает поступление фтора в почвенно-грунтовые воды при химическом загрязнении. Преимущественные механизмы связывания — взаимодействие фторид-иона с оксидами и гидроксидами алюминия и железа. При хемосорбции фторида на гидроксидах, вероятно, обменно вьщеляется в раствор гидроксид-ион и pH равновесного раствора повышается. Связывание фторид-иона гидроксидами железа зависит от концентрации Р , от pH и строения минеральной фазы. Минимальное связывание наблюдается при pH > 7. В кислой среде связывание фторид-иона увеличивается в ряду гематит лимонит й гидроксид железа. [c.80]

    Ионный обмен и другие методы отделения фторидов [c.435]

    В разд. 14.3.6 мы указывали на использование фторид-иона как метки активного центра карбоксипептидазы А. Из других ионов наибольшее применение для этой цели получил хлорид-ион [120— 122]. Ядро имеет спин и вследствие этого обладает квадрупольным моментом (см. разд. 1.10). Как и для (см. разд. 13.3.2), время его спин-решеточной релаксации зависит от симметрии окружающего электростатического поля. Ион С1 в воде симметрично гидратирован, и его резонансная линия имеет ширину 10—15 Гц, в то время как для ССЦ ширина линии составляет около 14,5 кГц. Если атом хлора связан с белком (обычно через атом ртути, который сам присоединен, например, к сульф-гидрильной группе), то его резонансная линия должна быть широкой, но ширина линии будет уменьшаться пропорционально времени, которое ион проводит в водной среде (при условии, что обмен между связанным и гидратированным состояниями протекает быстро). Этот вопрос подробно рассмотрен Холландом и сотр. [122]. [c.394]

    Получение. Изотопы К. образуются при длит, облучении Ри, Am и (или) m нейтронами в ядерных реакторах. Смесь изотопов f с мае. ч. 249-254 обычно содержит ок. 60-90% СГ Этим путем в США получают неск. г f в год. К., выделенный после термоядерного взрыва, значительно богаче изотопами f и f f высокой изотопной чистоты выделяют из старых препаратов Вк. Легкие (нейтроио-дефицитные) изотопы К. обычно получают при облучении m а-частицами или в ядерных р-циях с тяжелыми иоиами, напр, бомбардировкой Th ионами О или U. Выделяют изотопы К. экстракцией, ионным обменом и экстракци-онно-хроматографически. Металлич. К. получают восстановлением его оксидов или фторидов лантаном или литием. [c.286]


    В настоящее время серьезной проблелюй является захоронение радиоактивных веществ, образующихся при переработке ядерного топлива. Исследования, проведенные в США, показали, что цеолиты могут быть использованы для выделения долгоживущих изотопов цезия и стронция. Указанные изотопы выделяют из жидких отходов радиоактивного производства, превращают в безводные хлориды цезия или фториды стронция и запаивают в металлические канистры для долговременного хранения. В качеств адсорбентов используются клиноптилолит, зеолон (морденит), NaA и AW-500 (см. гл. 9). Применяя зеолон, удалось выделить несколько килокюри изотопа s со степенью частоты выше 98% [2, 86]. Для извлечения радиоактивных изотопов пригодны цеолиты, обладающие достаточной химической стабильностью, устойчивостью к действию высокого уровня радиации. Другой метод хранения радиоактивных изотопов основан на их селективном извлечении при ионном обмене с последующей сушкой и дегидратацией изотопсодержащих цеолитов. Дегидратированные цеолиты, содержащие радиоактивные изотопы, запаивают в контейнеры, предназначенные для захоронения [87]. [c.606]

    Следовало ожидать по крайней мере два препятствия при осуществлении такой синтетической схемы. Первое заключается в том, что наиболее типичной реакцией изотиоцианатов с соединениями трехвалентного фосфора является десульфирование изотиоцианатной группы [199-201]. Вторым, особенно для соединений со связями Р-0, является очень высокая энергия связи Р-Р. По этой причине в реакциях, сопровождающихся вьщелением фторид-иона, получаются сложные смеси продуктов, в которых часть атомов кислорода замещена на атомы фтора (Р-Р связи) [202]. Более того, авторами [203] показано, что обмен атомов кислорода на атомы фтора может идти вплоть до образования РР аниона. Тем не менее авторам [204] удалось показать, что взаимодействие пер-фтор-2-метил-1-изотиоцианато-1-пропена 235 с триэтилфосфитом может про- [c.149]

    Нет нужды подробно описывать все стадии химического разделения плутония и урана. Обычно разделение их начинают с растворения урановых брусков в азотной кислоте, после чего содержащиеся в растворе уран, нептуний, плутоний и осколочные элементы разлучают , применяя для этого уже традиционные радиохимические методы — осаждение, экстракцию, ионный обмен и другие. Конечные плутонийсодержащие продукты этой многостадийной технологии — его двуокись РиОг или фториды — РиРз или РиР4. Их восстанавливают до металла парами бария, кальция или лития. Однако полученный в этих процессах плутоний не годится на роль конструкционного материала — тепловыделяющих элементов энергетических ядерных реакторов из него не сделать, заряда атомной бомбы не отлить. Почему Температура плавления плутония — всего 640° С — вполне достижима. [c.400]

    Для количественного разделения циркония и гафния достаточно удовлетворительных методов неизвестно, Для этой цели предложен метод ионного обмена. При соответствуЮш ем подборе катионитов и раствора для элюирования эти методы могут дать- хорошие результаты в аналитической практике, но они еще недостаточно детально разработаны, чтобы лх здесь можно было излагать. Комплексные оксалаты, а также фториды циркония и гафния были хроматографически разделены на анионите. сильноосновного типа Для очистки циркония и разделения циркония и гафния предложены также и некоторые другие способы, основанные на ионном обмене. Для разделения этих элементов рекомендуется, кроме того, использовать различное давление паров их тетрахлоридов,-а также их фосфоридхДоридов . [c.635]

    Если содержание сульфатов в воде мало (нанример, 10 мг/л), то быстрые и точные результаты дает титрование перхлоратом бария с индикатором Торина. Определения но этому методу, предложенному Фрицем и Ямамура, выполняются в 80%-ном спирте для уменьшения растворимости сульфата бария [60 ]. Фосфаты мешают определению и должны быть удалены перед ионным обменом (нанример, осаждением карбонатом магния). На результаты определения влияют также фториды, нитраты и хлориды (ср. [98]). Предлагались объемные определения с родизонатом в качестве индикатора [91, 141 ], но конечная точка титрования выражена в этом случае менее четко. [c.251]

    Все виды хроматографии используют для отделения мешающих определению катионов и анионов. Если, например, отделение проводят с ализаринкомплексоном, то необходимо отделить ионы, взаимодействующие с лантаном и тем самым затрудняющие его реакцию с ализаринкомплексоном, и те ионы, которые образуют комплексы с фторидом, например, РЬ +, Рц2+, АР+, Fe + и др. Ионы металлов-комплексообразователей можно отделить, используя ионный обмен. Этот метод был применен [52] при определении фторида в стандартных образцах. [c.339]

    Получаемые в результате этих процессов хлориды, оксиды и сульфаты являются исходным материалом для получения индивидуальных редкоземельных металлов. С этой целью используют методы металлокерамического восстановления безводных хлоридов, бромидов, фторидов с помощью металлического кальция, магния, калия, лантана, электролиз безводных хлоридов, расплавленных галоидов, восстановление водородом и т. д. Для разделения редкоземельных металлов используют 1) реакции, связанные с изменением валентности РЗМ, 2) реакции осаждения, 3) фракционную кристаллизацию, 4) ионный обмен. 5) жидкостную экстракцию. Эффективная очистка редкоземельных металлов (лаитаиоидов) от примесей достигается дистилляцией н вакуумным переплавом. [c.550]

    В приведенных уравнениях Са(о.к.) и Na (о.к.) — соответственно кальций и натрий обменного комплекса пород Kf. — константа ионного обмена ПРр, ПРк и ПРфл - произведения растворимости техногенных гипса, кальцита и флюорита концентрации свободных ионов кальция, натрия, сульфат-, карбонат- и фторид-ионов в метаморфизованных водах и — содержания обменных кальция и натрия. [c.135]

    Впервые актиний был выделен из минералов, содержащих уран, где он присутствует в ничтожных количествах в настоящее время его получают в небольших количествах (порядка миллиграммов) из Ра (табл. 32.3) он образуется за счет реакций захвата нейтронов с последующим -распадом. Ион Ас отделяют от избытка Ра и изотопов ТЬ, Ро, В1 и РЬ (также образующихся при распаде или бомбардировке) ионным обменом или экстракцией теноилтрифтор-ацетоном. При осаждении АсРд из растворов и восстановлении безводного фторида парами лития при 1100—1275° или АсС1з парами калия при 350 получается серебристо-белый металл (т. пл. 1050°). Вследствие радиоактивности металл светится в темноте. Как и лантан, это реакционноспособный металл, он окисляется во влажном воздухе его реакционная способность отчасти обусловлена интенсивной радиоактивностью. Химические свойства иона Ас как в [c.539]

    Отделение циркония от иттрия может быть выполнено ионно-обменным путем цирконий извлекают из катионита раствором щавелевой кислоты, не нзвлекающсй игтрия. Можно облученную окись иттрпя после растворения в соляной кислоте осадить в виде фторида. [c.271]

    Гидратированные соли меди имеют голубую или зеленую окраску Поляризацией ионов (в частности, усилением поляризуемости аннона) можно объяснить и уменьшение термической устойчивости в ряду СиРг — СыЬ если фторид меди начинает разлагаться при luOO С, то иодид двухвалентной меди не существует в обычных условиях. Поэтому при взаимодействии mSOi и KI протекает не обменная, а окислительно-восстановительная реакция с образованием иодида одновалентной меди  [c.227]

    Еще одной иллюстрацией правила Корнблюма является техническое получение алкил фторидов из алкилхлоридов. Обычным обменом по Финкельштейну в протонных растворителях хлорид нельзя превратить во фторид (см. стр. 211). Если же реакцию перевести в SNl-область, то промежуточно образующийся карбкатион реагирует с галогенид-ионом, имеющим наибольшую электронную плотность, т. е. с фторид-ионом. Этого можно достичь, добавляя SbFs в качестве особенно сильного электрофильного катализатора [см. (4.36)]  [c.221]

    При концентрации фтора в воде выше ПДК проводится дефторирование (обесфторирование). Сложность обработки воды для снижения содержания фтора заключается в том, что растворимость даже труднорастворимых фторидов превышает ПДК фтора в воде. Методы дефторирования воды основаны на способности некоторых труднорастворимых соединений (оксидов и гидроксидов алюминия, магния, фосфатов кальция, основных солей алюминия) избирательно сорбировать из воды ионы Р по механизму ионного обмена. В зависимости от качества исходной воды фториды могут извлекаться в процессе обработки сорбцией их свежеосажденными хлопьями указанных сорбентов или при фильтровании воды через слой сорбента. Последнее практикуется для подземных вод, не требующих дополнительной обработки. Эффективным сорбентом фторидов является свежеосажденный гидроксид магния. При наличии в воде фторидов проходит обмен ионов по схеме Мд(0Н)2-Ь -f-P =<=f MgOHP4-OH-. Свежеосажденный фосфат кальция, образующийся при введении 1%-ной фосфорной кислоты в известковое молоко, избирательно сорбирует из воды ионы Р . [c.143]

    Образование аринов протекает в две стадии первая — отрыв протона основанием (а) — дает анион, стабилизированный индуктивным эффектом [ср. с реакцией (2)] соседних атомов галогена (убывающим в ряду Г > С1 > Вг > I), определяющим и относительную скорость реакции (к ). Во второй стадии (б) скорость (/Сз) зависит от легкости отделения иона галогена и изменяется в обратном порядке I ]> Вг > С1 Г. Фторид-ион не вытесняется группой N113 в жидком аммиаке, но все же при этом происходит образование карбаниона с последующим отрывом протона (дейтерона) от растворителя что приводит к обмену атомов водорода. Бром- [c.179]

    Флуоресцентные реакции ряда 2,2-диоксиазосоединений с элементами группы алюминия изучали многие исследователи [93, 107, 128, 197, 312, 360, 365]. Кроме качественных реакций для открытия галлия, условия которых были описаны в ряде работ (табл. IV-7), некоторые из этих соединений были применены и для его количественного определения (табл. IV-8). Реакция понтахром сине-черного (кислотного хром сине-чер-ного) с галлием оказалась значительно менее чувствительной, чем с алюминием [197, 198]. При использовании солохрома красного и черного для отделения галлия от мешающих элементов применена его эфирная экстракция [270] или ионный обмен [268]. Сульфонафтолазорезорцин [120, 128] применен для определения галлия в полупроводниковом кремнии и цинке высокой чистоты [121] и в металлическом германии и его двуокиси германий удаляют путем выпаривания с соляной кислотой, но для устранения потерь галлия во время этой операции в раствор вводят хлорид натрия [119]. Значительно чувствительнее суль-фонафтолазорезорцина синтезированный в ИРЕА реактив лю-могаллион, позволяющий определять галлий в присутствии 100-кратных количеств алюминия [31, 107] при замораживании жидким азотом яркость флуоресценции этого комплекса возрастает в 10 раз [34]. Салицилал-2-аминофенол предложен для открытия галлия в глиноземе, бокситах, силикатах и сфалерите для устранения помех со стороны до 1000-кратных количеств алюминия в раствор вводят фторид или фтороборат натрия, а от больших количеств индия, цинка и окрашенных ионов галлий отделяют посредством эфирной экстракции [308]. К последнему реактиву близки производные резорцилового альдегида [247], формилгидразон которого описан для открытия галлия на бумажных хроматограммах [248]. [c.152]

    Переработка. 5 — экстракция растворителем Н — ионный обмен V — дистилляция фторидов Р — методы осаждения Н — высокотемпературные (пиромегаллургические) процессы Я—возникают проблемы обработки расгворов вследствие разбавления продуктов деления легирующими примесями и т.д. [c.37]

    Интересный материал дает химия растворов фторидов ксенона в инертных растворителях. Предполагается, что химический обмен между связанным фтором и фторид-ионами в растворе будет значительным и должен увеличиваться с ростом степени переноса заряда (т. е. ХеРг > Хер4 > ХеРе). Диссоциация ХеР на XeP+ j и р-становится возможной в растворителях с высокой диэлектрической проницаемостью или в растворителях, где молекулы растворителя образуют связи с растворенными соединениями (например, НР в НР) (ср. стр. 337 и 366). [c.487]

    Следует подчеркнуть, что в большинстве обсуждаемых случаев новым в данной главе является лишь применение предлагаемых процессов к основным процессам аффинажа. Ионный обмен и экстракция органическим растворителем широко применяются в производстве рудных концентратов [1 ]. Так называемый мокрый процесс получения зеленой соли, упоминавшийся выше (п. 2), возник на основании исследований, относящихся к ранним работам по планам развития атомной энергии [2]. Первые исследования по возгонке фторидов были проведены в связи с переводом в UFg тетрафторида урана [3], руды [4] и концентратов. Более поздние экспериментальные исследования были направлены на разработку метода фторидной возгонки для количественного извлечения урана из шлака [5—9]. Последние исследования показали перспективность разработки метода фторидной возгонки для обработки шлаков, причем этот процесс будет конкурировать со старыми процессами карбонатного выщелачивания [10] и осаждения аммонийуранилфосфата [11]. [c.490]

    В настоящее время известны следующие методы разделения и очистки радиоактивных элементов избирательное (селективное) осаждение, экстракция органическими растворителями, ионный обмен, фракционная перегонка и иирометаллургическая переработка (высокотемпературные процессы). Методы ионного обмена, фракционной перегонки (разделение в форме фторидов на диффузионных установках) и пирометаллур-гической переработки (вакуумная перегонка плутония из расплавленного урана при 1500—1800°), экстракция расплавленными солями или металлами для полного разделения и очистки радиоэлементов еще изучаются в лабораториях и проверяются на небольших опытных установках. [c.279]

    Препаративно наиболее важными являются синтезы иодидов и фторидов. Однако техника МФК может быть использована также и для получения хлоридов, бромидов и иодидов, содержащих изотопную метку. Старкс [4] нашел, что полное равновесие С1/з С1 между 1-хлороктаном и На С1 в присутствии четвертичной соли в качестве катализатора достигается при кипении смеси за 5 ч. Аналогичный обмен иод — радиоактивный иод при 100 °С проходит полностью за 5 мин [4]. При обмене химически неэквивалентных групп X и превращение могут лимитировать как равновесие экстракции двух ионных пар Q+X и так и химическое равновесие [c.109]


Смотреть страницы где упоминается термин Фториды ионный обмен: [c.84]    [c.624]    [c.226]    [c.391]    [c.350]    [c.144]    [c.169]    [c.28]    [c.121]    [c.95]    [c.364]    [c.66]    [c.169]    [c.402]   
Фотометрическое определение элементов (1971) -- [ c.435 ]




ПОИСК





Смотрите так же термины и статьи:

Ионный обмен

Ионный обмен и иониты

Обмен ионов

Обмен фторидов



© 2024 chem21.info Реклама на сайте