Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод расстояние между атомами углерод

    Рентгеноструктурными, электронографическими и другими новыми методами исследования структуры углерода установлено, что чистый углерод кристаллизуется с образованием кубической (алмазы) и гексагональной (графит) форм. В узлах кристаллической решетки алмаза каждый атом углерода направляет свои четыре о-связи к четырем соседним атомам. Расстояние между атомами в решетке алмаза такое же, как между атомами углерода в органических соединениях— 1,54 А. Энергия связи между атомами углерода весьма высока, что обусловливает высокую твердость алмаза, малую его летучесть и большую химическую стойкость. Теплота сгорания алмаза несколько выше, чем графита. В связи с этим при нагреве алмаза без доступа воздуха он переходит в термодинамически более устойчивое состояние — в графит. В кристалле графита (рис. 12) атомы углерода в базисных плоскостях расположены в углах шестиугольников, на расстоянии 1,42 А, т. е. на таком л<е расстоянии, как и в молекулах бензола. Прочность связей углерода в базисной плоскости кристалла графита примерно в шесть раз выше, чем в атомах углерода, расположенных на двух плоскостях, находяш,ихся на расстоянии 3,345 А. Относительно большое расстояние между базисными плоскостями обусловливает специфические физико-химические и механические свойства графита. Значительное расстояние между базисными плоскостями приводит к тому, что между ними могут внедряться атомы других элементов меньших размеров. [c.50]


    Расстояние между атомами углерода в плоскости слоя равно 1,415 А, между соседними слоями 3,3538 А. Внутри слоя каждый атом окружен тремя соседними, углы между связями равны 120°, [c.7]

    Графит состоит из непрерывного ряда слоев, параллельных основной плоскости, гексагонально связанных атомов углерода. Ближайшее расстояние между атомами в плоскости составляет 0,142 нм, а между соседними слоями 0,3345 нм. Величина энергии связи между атомами углерода в плоскости составляет по различным данным от 340 до 420 кДж/г-атом, а величина энергии связи между слоями не превышает 4,2-8,4 кДж/г-атом, Возможны два типа идеальной кристаллической решетки фафита гексагональная с четырьмя атомами углерода в элементарной ячейке и ромбоэдрическая структура. [c.7]

    Кроме углового напряжения в циклических соединениях существует напряжение, связанное с тем, что атомы водорода находятся частично или полностью в заслоненных (см. стр. 510 сл.) положениях в циклопропане, циклобутане и циклопентане каждый атом водорода практически соприкасается с двумя соседними. Для циклопропана к энергии углового напряжения добавляется энергия взаимного отталкивания трех пар атомов водорода. Б циклопропане каждый углерод связан с двумя другими и невалентных взаимодействий атомов углерода друг с другом нет. Иначе обстоит дело в случае циклобутана, где помимо углового напряжения ж энергии взаимодействия четырех пар атомов водорода существует некоторое дополнительное напряжение, связанное со взаимодействием между первым и четвертым атомами углерода, расстояние между которыми равно всего 2,2 А. Теоретический расчет суммы всех напряжений в циклобутане приводит к цифре, которая намного превосходит экспериментальную величину, полученную из термохимических данных. Поэтому в настоящее время принято считать, что -в циклобутане один из атомов цикла несколько выдается над плоскостью трех остальных. Такой выход из плоскости уменьшает общую энергию циклобутана. Напряжение моле- [c.526]

    В пространственных (сетчатых) полимерах между цепями образуются химические связи. Если число поперечных химических связей намного меньше числа связей между атомами в основной цепи и если сетка имеет беспорядочное строение, то соединение сохраняет специфические для полимера свойства. При соединении атомов друг с другом только химическими связями с образованием трехмерной кристаллической решетки (при отсутствии межмолекулярных связей) вещество теряет свойства, специфические для полимеров. К таким веществам относится алмаз и все твердые тела аналогичной структуры, например карбид бора, окись алюминия (корунд) и др. В алма- е каждый атом углерода связан ковалентными химическими связями с четырьмя другими углеродными атомами, удаленными от него на расстояние 1,54 А. [c.17]


    ККМ). При высокой концентрации полиоксиэтиленовых групп наиболее вероятная конформация их соответствует не вытянутой цепочке, а свернутой меандровой форме (рис. 8). В такой форме существуют молекулы полимеризованной окиси этилена в жидком состоянии и в водных растворах при степени полимеризации более 9 [42 —441. При этом сохраняются валентные углы связей С—С и и С—О сами пятичленные фигуры, образованные двумя звеньями цепи, размещаются не в одной плоскости, а несколько смещены в пространстве. В каждом пятиугольнике изогнутой полиокси-этильной цепи расстояние между атомами углерода, примыкающими к атому кислорода, оказывается больше, чем между двумя углеродными атомами, более удаленными от кислородного атома. Длина оксиэтиленовой группы в такой структуре приблизительно равна 2А (см. рис. 8), ширина площадки, занятой проекцией [c.43]

    Для применения этих представлений к изучаемой реакции единственным необходимым условием является, по-видимому, близость углеродных атомов, между которыми происходит обмен атомов водорода. Когда катализатором является алкоголят алюминия, расстояние между атомами углерода мало, потому что они присоединен через кислород к одному и тому же атому алюминия. В этом же случае можно допустить, что два соответствующих фрагмента органических молекул адсорбируются на одном и том же атоме магния, расположенном в узле или на ребре кристаллической решетки окиси магния. Однако трудно себе представить, что количество образовавшихся комплексов подобного рода будет достаточным, чтобы обусловить наблюдаемую скорость реакции. Необходимая близость между а-угле-родными атомами соответствующих осколков органических молекул может быть достигнута в случае решетки окиси магния также и за счет их адсорбции на ближайших соседних ионах магния. Активные для переноса водорода места можно представить себе как такие участки решетки, где в результате частичной или полной ионизации связи О—Н могло возникнуть ста-бильное необычное распределение зарядов. [c.856]

    Величина радиуса молекулы складывается из долей расстояний между соседними атомами, например расстояние между атомами водорода и углерода (ковалентные радиусы соответственно равны 0,30 и 0,77 А) в связи Н—С составит 0,30 + 0,77 = 1,07 А. Значение ковалентного радиуса зависит также от того, какими связями атом соединен с другими соседними атомами, поэтому [c.63]

    Зная расстояния между атомами и углы между связями, можно в простых случаях построить модель молекулы органического вещества и, таким образом, определить ее форму и размеры. При построении модели необходимо помнить, что углеродная цепь молекулы (например, углеводородов парафинового ряда) представляет собой ломаную линию, вследствие чего часть длины молекулы, приходящаяся на один атом углерода, меньше его ковалентного радиуса. Если принять, что ковалентный радиус равен [c.64]

    Рассмотрим атом углерода, соединенный с четырьмя различными атомами или группами, которые обозначим буквами А, В, В и Е (рис. 1.21). Такой атом называется асимметрическим. Как видно из рис. 1.21, возможны два варианта структуры — а и б, при этом структура а является как бы зеркальным изображением структуры б. Поскольку все расстояния между атомами, равно как и углы между связями в обеих структурах одинаковы, то химические свойства таких изомеров должны быть тождественными. [c.55]

    Определите расстояние (м) между атомами водорода в молекуле СН4, если момент инерции относительно оси вращения, проходящей через атом углерода и один из атомов водорода, равен 5,30-10 кг-м . Молекула СН4 представляет собой правильный тетраэдр с углом между связями 109°28.  [c.8]

Рис. 21.5. Сравнение образования л-связи в результате бокового перекрывания -орбиталей между двумя атомами углерода и между двумя атомами кремния. При переходе от углерода к кремнию расстояние между парой ядер возрастает, поскольку атом кремния имеет значительно больший радиус. Перекрывание р-орбиталей двух атомов кремния происходит гораздо менее эффективно из-за большего расстояния между ядрами. Рис. 21.5. <a href="/info/1757078">Сравнение образования</a> л-связи в результате бокового перекрывания -<a href="/info/1788987">орбиталей между</a> двумя атомами углерода и между двумя атомами кремния. При переходе от углерода к кремнию <a href="/info/24920">расстояние между</a> парой ядер возрастает, поскольку <a href="/info/31799">атом кремния</a> имеет значительно больший радиус. Перекрывание р-орбиталей <a href="/info/1696521">двух</a> атомов кремния происходит гораздо менее эффективно из-за <a href="/info/749293">большего расстояния</a> между ядрами.
    Рассмотрим атом углерода, соединенный с четырьмя различными атомами или группами, которые обозначим буквами А, В, О и Е (рис. 1.20). Такой атом называется асимметрическим. Как видно из рис. 1.20, возможны две пространственные структуры - а и б, при этом структура а является зеркальным изображением труктуры б такие структуры называют оптическими изомерами. Поскольку все расстояния между атомами, равно как и углы между связями в обеих структурах одинаковы, то химические свойства таких изомеров должны быть тождественными. Однако физические свойства оптических изомеров различны, что позволяет разделять их смеси с помощью физических методов. [c.59]


    Для каждой такой связи, как мы видели, существует вполне определенное равновесное расстояние между атомами. Если атом имеет несколько внешних электронов, то он может образовывать несколько ковалентных связей с другими атомами. Например, атом углерода, имеющий четыре внешних электрона, может образовывать с другими атомами четыре ковалентные связи, каждая из которых обслуживает- [c.283]

    Г р а ф и т — темно-серое кристаллическое вещ,ество со слабым металлическим блеском, жирное на ощупь. Углеродные атомы в кристаллах графита находятся в состоянии 5/) -гибридизации (с. 46). Они объединены в плоские слои, состоящие нз правильных шестиугольников (рис. 4.2). В них каждый атом углерода связан прочными ковалентными связями с тремя соседними атомами с расстоянием между ними 0,142 нм. Связи направлены друг к другу под углом 120 Четвертый электрон каждого атома в слое остается подвижным, как в металле, и может перемещаться от одного атома углерода к другому. Этим объясняется хорошая электрическая проводимость графита (но хуже, чем у металлов), а также его теплопроводность и металлический блеск. [c.128]

    Таким образом, пространственная анизотропия СТС приводит к результатам, во многом аналогичным анизотропии -фактора. Константа СТС является тензором, который имеет три главных значения. На рис. 87 приведен спектр радикала НСО, зарегистрированный при 77 К- Форма компонент СТС, возникших в результате расщепления на протоне, указывает на аксиальную анизотропию константы сверхтонкого расщепления (ср. с рис. 82). Анизотропное взаимодействие резко падает при увеличении расстояния между магнитными диполями. Поэтому, например, анизотропное взаимодействие с протоном, находящимся в -положении к атому углерода, на р -орбитали которого локализован неспаренный электрон, практически не проявляется. [c.245]

    Первый максимум на кривых распределения электронной плотности при Н = 1,5 А соответствует длине связи С—С второй при 7 = 2,35 А — расстоянию С...С, взятому через один атом углерода. Третий и четвертый максимумы соответствуют расстоянию между атомами углерода через два и три атома в рассматриваемых молекулах. Валентный угол С—С—С в молекуле равен 103°. [c.221]

    Анизотропное взаимодействие резко падает при увеличении расстояния между магнитными диполями. Поэтому, например, анизотропное взаимодействие с протоном, находящимся в р-положении к атому углерода, па рг-орбитали которого локализован неспаренный электрон, практически не проявляется. [c.36]

    На рис. 100 показано схематическое строение элемента линейной макромолекулы углеводорода, имеющей вытянутую форму. Угол между тремя соседними атомами углерода везде имеет постоянное значение, равное 109°28. Атом углерода А может вращаться вокруг связи ВС без изменения валентного угла. Также может вращаться атом В вокруг связи D и т. д. Так как таких связей в молекуле много, то много и возможных ее конформаций. Однако внутреннее вращение в молекулах не может происходить свободно. В каждой макромолекуле кроме атомов углерода, образующих основную цепь, есть атомы водорода, расположенные сбоку от нее, а также атомы или группы атомов других элементов, замещающие водород. Они могут взаимодействовать друг с другом, находясь или в одной макромолекуле, или в разных молекулах. При повороте одного звена в какой-либо макромолекуле изменяется расстояние между этими боковыми атомами или группами атомов, что, в свою очередь, вызовет изменение энергии молекулы. Следовательно, для поворота одной части молекулы относительно другой необходимо совершить работу, значение которой зависит от строения молекулы. Наиболее гибкие цепи —СНг—СИг—, так как взаимодействие атомов водорода в них невелико. Если вместо атомов водорода в молекулу входят полярные атомы и группы, например — I, —ОН, [c.244]

    Расстояния между атомами углерода в каждом цикле одинаковы и равны 1,41 А, т. е. близки к расстояниям между атомами углерода в бензоле (1,39 А). Атом железа представляет собой двухзарядный катион, а в кольцах сосредоточены отрицательные зарядь , так что молекула в целом электрически нейтральна. [c.553]

    Пренслоу и Хэлси [32] применяли адсорбционное модифицирование графитированной сажи нанесением на нее плотных слоев молекул ксенона, который сначала адсорбировался из газовой фазы, а потом сильно охлаждался вместе с адсорбентом-носителем. При атом модификатор — ксенон (нредадсорбированное вещество) наносился на поверхность сажи в количестве, соответствовавшем от одного до шести молекулярным слоям. Поскольку при таком модифицировании концентрация силовых центров на поверхности резко уменьшается (валентные расстояния между атомами углерода в базисной грани графита заменяются ван-дер-ваальсовыми расстояниями между атомами ксенона в его мономолекулярном слое), энергия неспецифического взаимодействия адсорбат — адсорбент резко уменьшается. В соответствии с этим изотермы адсорбции пара аргона на плотном мономолекулярном слое ксенона, нанесенном на графитированную сажу, типичны для адсорбции на близкой к однородной поверхности с малым адсорбционным потенциалом (рис. 11,33). По сравнению с изотермой адсорбции аргона на исходной графитированной термической саже (см. также рис. П,9) изотерма адсорбции аргона на плотном монослое обладает значите [c.76]

    Графит — устойчивая при нормальных условиях аллотропная форма углерода. Он имеет серо-черный цвет и металлический блеск, кажется жирным на ощупь, очень мягок, оставляет черные следы на бумаге. Графит хорощо проводит теплоту и электрический ток, но его свойства резко анизотропны. Атомы углерода в графите расположены отдельными слоями, образованными из плоских шестиугольников (рис. 144). Каждый атом углерода на плоскости окружен тремя соседями (лр .гибридизация), расположенными вокруг него в виде правильного треугольника на расстоянии 0,142 нм. А расстояние между ближайшими атомами соседних слоев равно 0,340 нм и более чем в два раза превышает кратчайшее расстояние между атомами углерода в плоском слое. Поэтому графит имеет меньшую плотность по сравнению с алмазом, легко расщепляется на тонкие чешуйки. Химическая связь между атомами углерода внутри слоя имеет ковалентный характер с ярко выраженной склонностью к металлизации. Последняя обусловлена возникновением делокализованных тгр.р-связей в пределах шестиугольников (как в молекуле бензола) и всего макрослоя. Этим и объясняются хорошая электрическая проводимость и металлический блеск графита. Углеродные атомы различных слоев связаны слабыми силами Ван-дер-Ваальса. [c.359]

    По числу кусочков угля и объему, занятому ими, мсжно вычислить объем,, занимаемый одним кусочком угля. Из средней толщины кусочка угля, его ширины и длины можно вычислить псверхность одного кусочка угляЧ а затем общую поверхность. Наконец, зная расстояние между атомами углерода, мсжно получить действительную поверхность, занимаемую одним атомом углерода. Число атомов на данной поверхности носителя вычисляется делением общей поверхности угля на поверхность, приходящуюся на один атом углерода. Число атомов осажденного на носителе катализатора получается делением числа атомов металла в моле на молекулярный вес и умножением полученной величины на вес металла в использованном для осаждения объеме раствора. [c.476]

    Расстояния между атомами углерода в каждом цикле одинаковы и равны 1,41 А, т. е. близки к расстояниям между атомами углерода в бензоле (1,39 А). Атом железа представляет собой двухзарядный катион, а в кольцах сосредоточены отрицательные заряды, так что молекула в целом электрически нейтральна. Связь между кольцами и атомом железа осзчдествляет-ся всеми двенадцатью я-электроиами. [c.553]

    Исследование строения солей карбоновых кислот при помощи ряда физических методов (рентгеноструктурный анализ и др.) показало, что строение группы СОО анионов солей весьма своеобразно в солях расстояния между ато.мом углерода и обоими атомами кислорода почти одинаковы и равны около 1,27 А. Оказалось также, что катион металла, судя по дгежатомным расстояниям, в равной степени связан с обоими атомами кислорода. [c.144]

    При исследовании кристаллической структуры различных аминокислот и пептидов Полинг и Кори показали, что размеры пептидных групп примерно одинаковы и не зависят от того, какие именно аминокислоты образуют данную группу. Расстояние между атомами углерода и кислорода оказалось равным 1,24 А,, хотя сумма длин ковалентных двойных связей должна равняться только 1,21 А. Аналогичным образом и длина связи между углеродом и азотом в амидной группе равна 1,32 А, что также меньше суммы длин одиночных связей (1,47 А). Это доказывает, что С—Ы-связь на 40%, а связь в карбонильной группе на 60% имеют характер двойных связей в результате резонанса между связями (миграция электронов от азота к кислороду через атом углерода). [c.89]

    При извилистой форме цепей полиэтиленгликолей сохраняются значения валентных углов атомов углерода и кислорода в эти-ленгликоле (109 °28 и 12Г). Однако расположение извилистой, макромолекулярной цепи в одной плоскости энергетически невыгодно. Основываясь на аналогии с полиоксиметиленовой цепью, следует принять, что извилистая цепь полиоксиэтилена имеег спиралеобразное строение. В соответствии с этим каждые девять звеньев макромолекулы благодаря кислородным атомам образуют вокруг оси линейной молекулы спираль с периодом идентичности 19,5 А. В пятиугольнике, образуемом двумя звеньями цепи, расстояние между атомами углерода, примыкающими к атому кислорода, больще, чем между двумя более удаленными от кислорода атомами углерода. При присоединении одной оксиэтиленовой группы цепь удлиняется на 2,17 А. [c.102]

    С помощью сдвигающих реагентов в принципе можно определять геометрию молекул в растворе [40]. Этот экспфимент обычно проводится в диапазоне быстрого обмена. Предполагают, что спектральные сдвиги протонного ЯМР, обусловленные СР, имеют по своей природе дипольный характер. В идеальном случае можно задаться структурой молекулы и рассчитать по уравнению (12.22) дипольные сдвиги для большого числа различных ядер исследуемой молекулы. Чтобы добиться соответствия расчетных и эксцфиментальных данных по сдвигу, меняют задаваемую структуру молекулы. Поскольку структура исследуемой молекулы и структура комплекса в растворе, как и величина и положение магнитного диполя металлического центра в комплексе, неизвестны, то в общей сложности система имеет восемь неизвестных. Что это за неизвестные, можно увидеть из рис. 12.10, где показан такой жесткий лиганд, как пиридин, связанный в комплекс с СР. Для определения ориентации молекулы относительно СР нужны четыре параметра 1) г—расстояние между металлом и донором 2) а — угол между связями металл — донорный атом и азот — орто-углерод 3) р—угол между плоскостью лиганда и магнитной плоскостью х, у металла 4) у — угол, характеризующий поворот плоскости молекулы лиганда относительно оси азот — пара-углерод. Кроме того, нужны два угла для определения ориентации магнитной оси относительно связи металл — [c.193]

    В ульдегпллх и котопах атом кислорода свя ан о- и л-связями с одним и тем же атомом углерода. Вследствие высокой иоля-ри. уемости л-свя.чь сильно смещена в направлении более электроотрицательного атома кислорода. Несмотря иа то что длины связей С—О и С —О равны соответственно 0,143 и 0,121 нм, дипольный момент (который, как известно, является произведением заряда на расстояние между разноименными зарядами) этилового спирта [>авен 1.70 Д, а у ацетальде1 нда он составляет 2,70 Д. Эти значения свидетельствуют о том, что на атоме углерода карбонильной группы имеется значительно больший дефицит электронной плотности, чем на атоме углерода, связанном с группой ОН в спиртах, и поэтому альдегиды и кетоны должны легче реагировать с нуклеофильными реагентами. Первой стадией таких реакций является присоединение нуклеофильного реагента по связи С = 0  [c.162]

    Простая связь, как известно, допускает вращение одной части молекулы относительно другой (см. с. 273) без деформации валентных углов или химических связей. В случае макромолекул такое вращение приводит к возникновению множества различных конформаций нерегулярной формы. Это объясняется тем, что такое вращение может происходить вокруг большого числа последовательно расположенных простых связей в цеин (рис, 38). Если представить, что три атома углерода С , Сз и Сз молекулы лежат в одной плоскости, то атом С4 может равномерно занимать любую точку по краю окружности конуса , образованного вращением связи Сг—Сз как оси вращения. То же касается и атома Сд, допуская его свободное вращение вокруг простой связи Сз—С4. Продолжая рассуждать так и дальше, можно предположить, что в случае очень длинной молекулы полимера в результате таких произвольных поворотов вокруг множества простых связей форма макромолекулы будет довольно сложной н нерегулярной, с высокой степенью асимметрии. Такую линейную макромолекулу можно представить в виде спутанного клубка шерсти. Однако, как известно, такое внутреннее вращение вокруг простых связей не совсем свободно. Это связано с различными стерическими препятствиями, возникаюн ими за счет взаимодействия соседних замещающих атомов или групп атомов этой или соседней макроцепи. Такие препятствия особенно проявляются в случае огромных молекул, занимающих в пространстве различное положение. При внутреннем вращении происходит изменение общей энергии молекулы, так как энергия взаимодействия между атомами или группами атомов определяется расстоянием между ними, Поэтому для высокомолекулярных соединений еще в большей степени, чем для низкомолекулярных, характерно заторможенное внутреннее вращение. [c.381]

    Предположим, что шесть углеродных атомов СвНв лежат в одной плос-косги, образуя правильный шестиугольник с расстоянием между соседними атомами, равным R. Тогда, как видно из рис. 67, каждый атом углерода имеет кроме самого себя пять соседей, два из которых находятся на расстоянии R, два других —на расстоянии R 1,74./ и один на расстоянии 2R. Отсюда для интенсивности рассеяния получаем выражение [c.128]

    Графит — темно-серое, непрозрачное, со слабым металлическим блеском, мягкое, слабо проводящее электрический ток вещество. Он также тугоплавок, мало летуч и при обычной температуре химически инертен. Кристаллическая решетка графита, структура которой показана на рис. 45, существенно отличается от решетки алмаза. Кристаллы графита построены из параллельных друг другу плоскостей, в которых расположены атомы углерода по углам правильных шестиугольников. Расстояние между соседними атомами углерода (сторона каждого шестиугольника) 1,43 А, между соседними плоскостями 3,4 А. Каждая промежуточная плоскость несколько смещена по отношению к соседним плоскостям, как это видно на рисунке. Каждый атом углерода связан с тремя соседними в плоскостях атомами неполярными ковалентными связями. Четвертые валентные электроны каждого атома располагаются между плоскостями и ведут себя подобно электронам металла, чем и объясняется электропроводность графита в направлении плоскостей. Связь между атомами углерода, расположенными в соседних плоскостях, очень слабая (межмолекулярная, или ван-дер-ваальсова). В связи с этим кристаллы графита легко расслаиваются даже при малых нагрузках ка отдельные чешуйки. Этим [c.191]

    Каждый атом углерода в плоскости сетки ( паркета ) соединен ковалентными связями с тремя другими. Связи эти значительно короче [d( ) = 1,42 А], чем в алмазе, что указывает на их высокую прочность. Расстояние между отдельными слоями велико [3,35 А], и связь между ними слаба (она оценивается в 4 ккал/г-атом). Внешне 8T0 выражается в легкой расщепляемос1и графита по показанным иа рис. Х-9 линиями ПС плоскостям спайности кристалла на отдельные тонкие пласты ( чешуйки ), [c.502]

    Аддукт состава СаК образуется экзотермически (8 ккал/моль) при контакте графита с избытком жидкого или парообразного калия. Он имеет вид бронзы и обладает гораздо более высокой электропроводностью, чем исходный графит. Внедрение атомов калия не искажает паркеты , но вызывает их смещение в точно одинаковые позиции (структура ААА...). Расстояние от одного из них до другого становится при этом равным 5,4 А, а каждый атом калия располагается между центрами двух шестиугольников, имея соседями двенадцать атомов углерода [ (КС) = 3,07А]. Схема координации в СаК показана на рис. Х-12. Аналогично калию ведут себя по отношению к графиту рубидий и цезий (расстояние между паркетами 5,6 для sRb и 5,95 А для a s), причем теплота внедрения по ряду К (87)—Rb (116) — s (159 кал/г графита) [c.504]

    Удаление одного из интранулярных водородов понижает внутреннюю энергию циклодекана, особенно если этот водород принадлежал атому типа III. Поэтому тригональные углеродные атомы (карбонильная группа, экзоциклическая двойная связь, карбониевый ион) или гетероатомы (азот, кислород) занимают в десятичленном кольце положение типа III. При этом наблюдается [91] уменьшение расстояния между двумя С-атомами типа III (или соответственно атомом углерода и гетероатомом), находящимися на противоположных сторонах кольца (в положении 1 и 5). Для самого циклодекана соответствующее расстояние составляет 3,29 А, для циклодеканона СНа - - - СО 3,04—3,13 А, для 1-оксациклодекано-на-5 О - - - СО 2,83 А. [c.374]

    Алмаз — бесцветное кристаллическое вещество, самое твердое из всех природных веществ. Углеродные атомы в кристаллах алмаза находятся в состоянии 5р -гибриднзации (с. 47). Они связаны прочными ковалентными неполярными связями. Каждый атом углерода в алмазе окружен четырьмя другими, расположенными от него в направлениях от центра тетраэдра к его вершинам при расстоянии между атомами 0,154 нм (рис. 4.1). Все это обусловливает исключительную твердость, значительную плотность (3,5 г/см ) и другие характерные свойства алмаза. Поэтому его широко применяют для резки стекла, бурения горных пород и шлифования особо твердых материалов. Алмаз плохо проводит теплоту и практически не проводит электрический ток. Образцы его в чистом виде- [c.127]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    Алмаз — бесцветное, прозрачное, сильно преломляющее свет вещество. Он тверже всех найденных в природе веществ, но довольно хрупок. Кристаллы алмаза имеют координационную структуру, в которой атомы углерода связаны друг с другом посредством направленных 5/ -гнбридных связей. Кубическая решетка алмаза отличается от ГЦК тем, что углеродные атомы располагаются не только на гранях куба, но и в центрах малых кубов, чередующихся с нустыми малыми кубами (рис. 30, а). Каждый атом углерода имеет четыре ближайших соседа (валентность и к. ч. 4), расстояние между которыми 0,154 нм. По отношению к любому атому углерода четыре ближайших соседних атома расположены в углах правильного тетраэдра. Поэтому структуру алмаза можно представить в виде комбинации тетраэдров (рис. 30, б), у которых в центре находится пятый атом углерода. Каждая вершина тетраэдра является общей для четырех смежных тетраэдров. Непрерывная трех- [c.182]

    Этилен С2Н4 начинает гомологический ряд, отвечающий общей формуле С Н2я, Наличие двойной связи (ст-Ьп) между атомами углерода делает соединение атомов углерода между собой более прочным, но в то же время двойная связь может донасыщаться атомами водорода или других элементов, так как в этом случае л-связь переходит в а-связь, что сопровождается выигрышем энергии. Наличие в цепи углеводорода двойной связи изменяет расстояние между атомами углерода (0,134 нм) и соответственно угол между связями (120°). На рис. 214 схематически представлена молекула пропилена с указанием углов и расстояний между ато-1 мами углерода. [c.441]

    Расстояние между слоями в кристалле графита больше расстояния между соседними атомами углерода в эдной плоскости в 2,5 раза, поэтому связь между ат(1мами углерода в одном слое гораздо прочнее, чем связь между атомами углерода, находящимися в различных слонх. [c.410]


Смотреть страницы где упоминается термин Углерод расстояние между атомами углерод: [c.57]    [c.183]    [c.96]    [c.53]    [c.262]    [c.50]    [c.283]    [c.172]   
Физическая химия Книга 2 (1962) -- [ c.439 , c.440 , c.458 , c.460 , c.486 ]




ПОИСК





Смотрите так же термины и статьи:

Расстояние



© 2025 chem21.info Реклама на сайте