Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические непредельные соединения, полимеризация

    В процессе очистки коксового газа от ароматических соединений в поглотительном масле постепенно накапливаются продукты взаимодействия масла с такими компонентами газа, как кислород, сероводород, непредельные соединения. Эти продукты склонны к полимеризации и образованию осадков на поверхности аппаратуры, в результате чего ухудшается извлечение бензольных углеводородов. Во избежание этого нежелательного явления примерно 1% находящегося в системе циркуляции масла непрерывно выводят на регенерацию. Для этого масло нагревают до 300—310°С и в ректификационной колонне в присутствии большого количества водяного пара отгоняют очищенное масло, которое возвращают в цикл абсорбции бензольных углеводородов, а отделившиеся полимеры направляют в сборник каменноугольной смолы. [c.143]


    Глубокая очистка бензола от тиофена с использованием алкилирования побудила исследователей изучить возможность получения бензолов высших марок непосредственно из фракции БТК, минуя промежуточную стадию выделения чистого бензола [43]. Непредельные соединения расходуются не только на алкилирование тиофена, но и на параллельно протекающие реакции полимеризации и сополимеризации, а также на алкилирование ароматических углеводородов. Так, скорость полимеризации стирола и непредельных соединений пипериленовой и бутадиеновой присадок примерно на порядок превышает скорость алкилирования тиофена [44]. Поэтому при алкилировании необходимо поддерживать достаточно высокое соотношение реагирующих компонентов. [c.220]

    Детально эта реакция на протяжении многих лет изучалась С. В. Завгородним. Им была изучена реакция 13 органических кислот (пяти жирных одноосновных, трех двухосновных, двух ароматических и трех га-лоидуксусных) с 18 непредельными соединениями (шестью олефинами, одним циклоолефином, одним арилолефином, тремя галоидолефинами, двумя алкилвиниловыми эфирами, тремя аллилалкиловыми эфирами, одним терпеном и одним диеновым углеводородом). В результате этих исследований показано, что фтористый бор является весьма активным катализатором для реакции присоединения органических карбоновых кислот к этиленовым соединениям. Он может применяться или самостоятельно или в виде молекулярных соединений с простыми эфирами, или с органическими и минеральными кислотами. В тех случаях, когда нет большой необходимости в изучении количественной стороны процесса, фтористый бор можно применять самостоятельно или в виде молекулярного соединения с уксусной кислотой. Однако лучшим катализатором во всех отношениях является этилэфират фтористого бора, который позволяет вести реакцию присоединения кислот к этиленовым соединениям в относительно мягких условиях, не вызывающих побочных процессов (главным образом, полимеризации олефинов), и получать эфиры с выходом 40—95% [44]. [c.193]

    Кокс отлагается на поверхности катализатора в процессах, осуществляемых под давлением водорода, в результате конденсации ароматических углеводородов или полимеризации непредельных. Термодинамически вероятен также распад молекул углеводорода до элементарного углерода и водорода [10]. При конденсации ароматических углеводородов образуются обедненные водородом полициклические ароматические соединения, содержащие, как правило, небольшое количество кислородных и сернистых соединений. [c.13]


    В незначительной степени протекают реакции гидрирования ароматических углеводородов и их уплотнения, а также полимеризации непредельных соединений, приводящие к отложению кокса на катализаторе. [c.310]

    Восстановительная обстановка осадконакопления приводит к тому, что основными процессами преобразования ОВ являются реакции гидрирования, циклизации и полимеризации ненасыщенных структур, а также осернения 08. Именно эти процессы формируют особый тип ОВ, обладающий высоким нефтематеринским потенциалом, и обусловливают особенности состава образовавшихся из них нефтей (тип 1А). Восстановительные условия благоприятствуют сохранению от окисления наименее стабильных компонентов ОВ — непредельных соединений и богатых азотом белковых веществ. Активная сульфатредукция способствует осернению ОВ и следовательно, росту отношения S/N. Циклизация ненасыщенных структур дает начало нафтеновым и ароматическим структурам. Совместное присутствие в системе реакционноспособных азот-, серосодержащих веществ и непредельных соединений благоприятствует протеканию реакций полимеризации и конденсации, что приводит к образованию высокомолекулярных соединений — смол и асфальтенов. [c.124]

    Антиоксиданты ингибируют только радикально-цепные реакции окисление углеводородов и отчасти полимеризацию непредельных соединений. Однако в топливах, содержащих активные соединения разной природы (диеновые и полицик-лические ароматические углеводороды, азотсодержащие гетероциклы и т. д.), возможны и другие реакции уплотнения, приводящие к образованию осадка и смол. Это особенно характерно для среднедистиллятных фракций, полученных в процессах деструктивной переработки нефти. Введение антиоксидантов в такие топлива не дает ожидаемого эффекта. Поэтому антиоксиданты используются в основном для стабилизации бензинов и реактивных топлив. [c.92]

    В результате кислотной активации адсорбционная емкость монтмориллонита по гексану резко возрастает (см. табл. 1). Это говорит об увеличении в структуре сорбента количества переходных пор, активные центры которых доступны для больших молекул непредельных углеводородов и продуктов их полимеризации и поликонденсации. Кислотные свойства активированного 5 % -ной НаЗО монтмориллонита так йе выше по сравнению с природным образцом. Оба фактора Ь определяют повышенные адсорбционно-каталитические свойства активированного сорбента при очистке с его помощью ароматических углеводородов от непредельных соединений. [c.150]

    Основное количество бензола получают путем извлечения его из газов промывкой средним маслом. В сыром бензоле, наряду с ароматическими углеводородами, содержатся частично ги.дри-рованные бензолы, пиридиновые основания и фенолы. Раньше для очистки сырого бензола применяли концентрированную серную кислоту. При этом вследствие осмоления (полимеризации) части компонентов и сульфирования непредельных соединений потери достигали 20%. [c.59]

    Огромные возможности в химии раскрыло использование гетерогенного катализа с применением высоких давлений. На этой основе, в частности, была решена важнейшая экономическая проблема деструктивной гидрогенизации (переработка с присоединением водорода) низкосортного топлива — твердых горючих ископаемых (угля), мазутов, смол и т. п. до высококачественного жидкого моторного топлива, масел, получения нефтяных бензинов и т. д. Гетерогенный катализ сделал реальной возможность практического осуществления широкого круга таких важнейших процессов, как окисление органических соединений, полимеризация, дегидрогенизация (отщепление водорода) и т. д. Это позволило получать ценные продукты нефтепереработки, непредельные и ароматические углеводороды (бензол, толуол) и многое Другое. [c.274]

    Институтом химии уральского филиала АН СССР разработан метод полимеризации легкой пиролизной смолы в присутствии фтористого водорода, применяемого в жидкой и в паровой фазе. Для полной полимеризации непредельных соединений легкого. масла требуется 10% фтористого водорода. При большем его количестве образуется часть неплавких и нераство-ри.мых смол при. меньшем же количестве не все непредельные углеводороды вступают в реакцию полимеризации и часть из них при перегонке уходит вместе с ароматическими углеводородами, уменьшая степень их чистоты. В присутствии газообраз- [c.18]

    Отложение кокса на катализаторе вызывается также процессами конденсации ароматических углеводородов с непредельными соединениями, уплотнением ароматических углеводородов, полимеризацией непредельных соединений и в меньшей степени — распадом углеводородов до углерода и водорода [13]. Образование кокса в условиях высокотемпературной гидроочистки связано также с прямым наращиванием конденсированных молекул за счет углеводородов С4  [c.11]


    Первые попытки применить хлористый алюминий для очистки бензола относятся еще к прошлому столетию. Хлористый алюминий очень легко вызывает полимеризацию ароматических углеводородов с непредельными соединениями, а также тиофена с непредельными соединениями [1]. При применении хлористого алюминия, несмотря на то, что общие потери обычно меньше,чем в случае сернокислотной очистки, выход чистых продуктов получается меньшим благодаря очень большому выходу кубового остатка [2, 31. [c.64]

    Схема переработки смолы должна предусматривать предварительное выделение фракции выше 120—150°, содержащей высокий процент непредельных соединений, для направления ее на полимеризацию с получением смол кумароно-инденового типа, и обработку более легкой фракции (75—150°) с получением чистого ароматического дистиллата, который может либо направляться на извлечение бензола, толуола, ксилола и этилбензола, либо целиком добавляться к моторному топливу для повышения его октановой характеристики. Комплексная схема использования жидких продуктов пиролиза должна предусматривать также переработку тяжелой смолы пиролиза в направлении получения из нее фенантрена, антрацена, сажи, электродного кокса и других ценных продуктов. [c.149]

    В настоящем исследовании была поставлена задача—создать метод переработки пиролизных смол, который давал бы возможность, наряду с получением чистых ароматических углеводородов, превращать непредельные соединения в ценные товарные продукты. Этого можно достичь путем полимеризации непредельных соединений пиролизной смолы в присутствии кислотных катализаторов. [c.150]

    Таким образом, на основании проведенных исследований [10— 19] нами предложена комплексная схема переработки жидких продуктов пиролиза, включающая полимеризацию непредельных соединений И дальнейший риформинг углеводородной части полимеризата с целью получения синтетических смол и низкомолекулярных ароматических углеводородов. [c.159]

    Специальные части II, III и IV посвящены непредельным и ароматическим кремнийорганическим соединениям, а также кремнийгидридам, т. е. основным типам кремнийорганических мономеров. Почти не затрагивая реакции полимеризации мономеров, а также физических и технических свойств полимеров, так как эти вопросы составляют особый раздел химии полимере , мы детально останавливаемся на синтезе и реакциях мономеров. [c.9]

    Жизнь, научная, педагогическая и общественная деятельность академика Сергея Васильевича Лебедева, выдающегося советского ученого, является примером беззаветного и самоотверженного служения Родине, своему народу. С именем Лебедева неразрывно связано зарождение и развитие новой отрасли химической промышленности— промышленности синтетического каучука. Глубокий теоретический подход С. В. Лебедева к решению одной из крупнейших центральных проблем органической химии — проблемы строения нестойких органических молекул и зависимости их реакционной способности от химического состава и строения — позволил ему создать серьезные научные основы для решения большого числа важных для народного хозяйства химико-технологических задач и прежде всего для осуществления технического синтеза каучука. Всестороннее изучение реакций непредельных соединений позволило С. В. Лебедеву выяснить общие закономерности протекания реакций полимеризации и каталитической гидрогенизации и влияние на них количества, положения и химической природы заместителей в непредельных молекулах. Классические исследования С. В. Лебедева по полимеризации и гидрогенизации непредельных органических соединений являются научным фундаментом для большого числа современных химико-технологических производств. С. В. Лебедев — один из первых исследователей в области использования нефти как ценного химического сырья. Накануне первой мировой войны и в годы самой войны С. В. Лебедев разработал метод получения толуола и других ароматических углеводородов путем пиролиза керосина. Под его руко- [c.120]

    При Д. И. Менделееве вопрос получения углеводородов путем каталитического синтеза не был разработан в-достаточной степёди. С особой показательностью он выступает в вышеупомянутых опытах Сабатье, где роль катализаторов играет никель. В носдед-нее время исследования Бергиуса показали, что гидрогенизация непредельных соединений может происходить и без наличия катализаторов, но при высоком давлении и температуре в 200— 300° С. Опыты В.. Н. Ипатьева также показали, что в случае высокого давления и- присутствия окислов металлов возможны реакции полимеризации ацетилена и его ближайших гомологов и образование ароматических углеводородов, которые при последу-юш,ей. гидрогенизации дают нафтены. Другимп исследователями произведен ряд опытов по полимеризации и гидрогенизации разного рода ненасыщенных углеводородов, в результате которых получались углеводороды аро. штического и нафтенового рядов. Одним словом, при действии воды на карбиды и в результате последующих реакций полимеризации и гидрогенизации, при наличии катализатора, пли высокого давления и температуры могла возникнуть сложная смесь углеводородов, являющихся главнейшей составной частью современных нефтей. Допуская же существование в земных недрах не только карбидных, но и карбонильных соединений железа, никеля и других тяжелых металлов, а также нитридов металлов, п принимая во внимание наличие в земной коре сульфидов, можно вполне объяснить присутствие в нефти азотистых, сернистых соединений, водорода и окиси углерода, т. е. всех второстепенных компонентов современных нефтей и все разнообразие пх. [c.304]

    Гидрокрекинг представляет собой совокупность ряда параллельных и последовательных реакций расщепления парафиновых, нафтеновых и непредельных углеводородов, гидрирования ароматических и олефиновых углеводородов, деструктивного гидрирования, изомеризации и гидрогенолиза серо- и азотсодержащих соединений. В неблагоприятных условиях процесс может сопровождаться реакциями, противоположными основному направлению дегидрогенизацией некоторых алици-клических соединений, полимеризацией непредельных углеводородов и конденсацией их с ароматическими соединениями эти реакции приводят к коксообразованию. Под высоким давлением водорода реакции уплотнения молекул и дегидрирования подавляются и практически могут предотвращаться полностью [3, 4, 49—54]. [c.140]

    Серная кислота Н2804. Используется для удаления ароматических углеводородов из бензинов-растворителей, осветительного керосина, жидких и твердых парафинов для очистки смазочных масел от асфальто-смолистых веществ, удаления следов непредельных соединений из индивидуальных ароматических углеводородов. Является сырьем в производстве сульфонатных присадок, катализатором в процессах алкилирования и полимеризации. Промышленностью выпускается серная кислота и олеум различных сортов. Технические требования, предъявляемые к серной кислоте, приведены в табл. 6.11, а свойства растворов серной кислоты и олеума различной концентрации охарактеризованы в табл. 6.12 и 6.13. [c.318]

    Олеумная очистка парафинов производится с целью удаления ароматических и непредельных соединении. В обычных условиях олеум с 25-30%-ми сернистого ангидрида не реагирует с н-парафинами. Ароматические соединения образуют с олеумом сульфокислоты. Непредельные упеводороды сульфируются значительно легче ароматических с образованием кислых и средних эфирных соединений, а также различных продуктов полимеризации. [c.225]

    В настоящее время катализ с участием кислот и основавта широко используется в многотоннажвом промышленном органическом синтезе и нефтехимии. Это, в первую очередь, относится л процессам алкилирования изопарафиновых и ароматических углеводородов олефинами, полимеризации (олигомеризации) непредельных соединений, галогенирования, сульфатирования, сульфирования и нитрования, конденсации по карбонильной группе, этерификации, гидратации и дегидратации. [c.384]

    Из таблицы видно, что на константу передачи цепи существенное влияние оказывает как строение макрорадикала, так и строение алкил (арил)фосфина. Полистирольные радикалы более реакционноспособны в реакции с фосфинами, чем полиметилметакрилатные, и этим объягаяется возможность выделения теломеров при реакции фосфинов с акрилатами. Фосфины более реакционноспособны по отношению к полиметилметакрилатному радикалу, чем к-бутилмер-каптан. В алифатическом ряду заместитель мало влияет на реакционную способность. При переходе от алкилфосфинов к фенилфосфину константа передачи цепи на фосфин возрастает почти в 10 раз, что связано с возможностью образования более стабильных (за счет участия в распределении электронной плотности ароматического ядра) фенилфосфинильных радикалов. Этим объясняется легкость присоединения фенилфосфина к различным непредельным соединениям, которую наблюдали Б. А. Арбузов с сотрудниками [14]. Реакция фенилфосфина с эфирами акриловой и метакриловой кислот, нитрилом акриловой кислоты идет без инициатора при 120—130° С. При указанных температурах чистый метилметакрилат подвергается термической полимеризации с ощутимой скоростью [13]. Кроме того, источником радикалов могут быть пероксиды, образующиеся при взаимодействии растворенного в мономере кислорода сего молекулами, или перокси-радикалы со структурой СН2(Х)СН—О—О.  [c.27]

    Смолы — сложные смеси карбоновых кислот, омыляемых и неомыляемых веществ, среди которых имеются и непредельные соединения с полиизопреновым скелетом. Входящие в состав смол кислоты относятся либо к ароматическим, либо к так называемым смоляным (резинолевым). Смолы могут превращаться либо в нерастворимые и неплавкие вещества более сложного строения (полимеризация), либо в смесь нейтральных веществ (углеводородов, кетонов) вследствие потери кислотами своих карбоксилов. Полимеризованные смолы в свою очередь при соответствующих условиях путем реполимеризации могут превращаться в новые, более простые соединения, которые при потере карбоксилов превратятся в углеводороды. [c.27]

    Олефины. В УСЛОВ1ИЯХ деструктивной гидрогенизации, т. е. крекинга при давлении водорода, основной реакцией превращения олефинов является их гидрирование в соответствующие парафины. Применение катализаторов (платина, палладий, никель) позволяет снизить температуру гидрирования. Экспериментально показано, что скорость гидрирования снижается по мере увеличения числа атомов углерода в молекуле олефнна — для этилена относительная скорость равна 1, для пропилена — 0,8, для н-октена 0,6. Указанные данные позволяют объяснить, почему на первой стадии гидрогенизации (в жидкой фазе) в полученных тяжелых жидких продуктах содержится значительное количество непредельных соединений, а в газах почти отсутствует этилен. При деструктивной гидрогенизации практически сведена до м инимума лолимеризация олефинов, поскольку скорость 1ИХ гидрирования значительно выше скорости полимеризации. В условиях деструктивной гидрогенизации возможна циклизация олефинов с образоваиием ароматических углеводородов — циклодегидрогенизация. Этот процесс проводят в присутствии оксидных катализаторов. [c.166]

    К непредельным соединениям типа дивинила (осмоление lipii действии кислот, полимеризация и т. п.). С другой стороны, опи напоминают ароматические соединения (способность к замещению атомов водорода при галоидировании, нитровании, сульфировании н ацилировании). Такие типичные реакции, как гидрирование, идут с ними так же, как и с дивинилом (водород становится первоначально в положение 1,4)  [c.580]

    Легко полимеризующиеся непредельные соединения при очистке должны быть удалены во избежание осмоления нефтепродуктов при сжигании в цилиндре двигателя. Олефины и ароматические углеводороды, обладающие высоким октановым числом, целесообразно сохранить. Для этого к очищенным нефтепродуктам добавляют специальные вещества — ингибиторы, предохраняющие непредельные углеводороды от полимеризации. [c.105]

    Кроме физико-химических процессов в массе твердого топлива при газификации протекают также вторичные реакции в газообразной и жидкой фазах. Ход этих реакций сущсственнно влияет на образование продуктов разложения и зависит от температуры и времени реагирования. При быстром высокоскоростном нагреве газо-паровой смеси вредные реакции конденсации и полимеризации не успевают протекать и в продуктах перегонки образуется большое количество ароматических и непредельных соединений, в том число газообразных углеводородов. Ранее предполагалось, что смола получается главным образом за счет физического процесса перегонки битумов, обнаруживаемых в топливе органическими растворителями. Работами ЭНИН АН СССР показано, что битумы и другие составные вещества извлекаются из топлива не вследствие их растворения, как предполагалось ранее, а в результате физико-химического изменения топливных молекул и их разрушений. [c.97]

    Рассмотрение превращений отдельных классов углеводородов и других соединений позволяет сделать вывод, что в свете современных данных деструктивная гидрогенизация должна рассматриваться как совокупность ряда параллельных и параллельно-послс довательных реакЩ1Й расщепления высокомолекулярных соединений, деструктивного гидрирования, гидрирования, изомеризащтп. В неблагоприятных гсловиях процесс может сопровонодаться реакциями, противоположными основному направлению дегидрогенизацией некоторых алициклических соединений, полимеризацией непредельных и конденсацией ароматических углеводородов, приводящими к коксообразованию. [c.38]

    Таким образом, при крекинге, с одной стороны, образуются вещества с меньшей молекулярной массой и более низкими температурами кипения наряду с бензиновой фракцией (выход до 45%) получается газ крекинга (10—15%) с другой стороны, получаются вещества с большей, чем у исходных, молекулярной массой, входящие в состав тяжелой фракции (до 8% ее вводят в котельное топливо) и кокса (4—6%) кроме того, из паров выделяется 25—30% фракции, используемой как дизельное топливо. Бензин каталитического крекинга содержит 20—25% непредельных соединений, главным образом изостроения, до 40—50% изопарафинов, до 20% ароматических углеводородов вне зависимости от состава сырья его октановое число равно 77—80 без добавки этиловой жидкости. Из ненасыщенных углеводородов в результате полимеризации и окисления могут образоваться смолы. Чтобы задержать этот процесс, к бензину добавляют 0,01—0,05% ингибиторов (противо-окислителей) — п-оксидифениламина п-НОСеН4МНСбН5 или дре- [c.194]

    Можно перечислить ряд других реакций, в которых цеолиты проявляют каталитическую активность дегидратация спиртов, миграция двойной связи в олефинах, олигомеризация и полимеризация непредельных соединений, синтез ацеталей и кеталей, диспропорционирование алкилароматических соединений, изомеризация ароматических углеводородов g, алкилирование алкапов олефинами, этерификация и переэтерификация, изотопный обмен протия на дейтерий, перераспределение водорода, превращение ароматических карбоновых кислот в фенолы и др. [c.15]

    Непредельные соединения, образовавшиеся в процессе перегонки нефти, полимеризуЮтся под действием кислоты и удаляются с кислым гудроном. Асфальто-смолистые вещества частично растворяются в кислоте без изменений, частично уплотняются за счет реакций конденсации и полимеризации и осаждаются с кислым гудроном. Азотистые соединения почти полностью переходят в кислый гудрон в виде сульфатов. Сернистые соединения извлекаются в незначительных количествах. Нафтеновые кислоты растворяются и сульфируются. Из углеводородной части дистиллята в большей степени удаляются полициклические ароматические углеводороды с короткими боковыми цепями [2.1, 2.2]. Увеличивая концентрацию и количество кислоты, можно добиться почти полного удаления смолистых веществ и ароматических углеводородов. Однако такое бесцветное и переочищенное масло будет нестабильным [c.36]

    Ниже приведены примеры реакций присоединения алифатических соединений лития, ароматических и гетероциклических литийорганических соединений к непредельным углеводородам для сравнения указаны примеры реакций литийэлементоорганических соединений. Полимеризация, инициируемая литием и литийорганическими соединениями, обсуждается в гл. 42. [c.326]


Смотреть страницы где упоминается термин Ароматические непредельные соединения, полимеризация: [c.164]    [c.137]    [c.313]    [c.224]    [c.82]    [c.166]    [c.285]    [c.144]    [c.131]    [c.318]    [c.382]    [c.150]    [c.204]    [c.26]    [c.326]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.809 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеризация непредельных соединений

Соединения непредельные



© 2025 chem21.info Реклама на сайте