Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магнитное поле влияние на действие

    Рассматривая нормальный эффект Зеемана, мы не учитывали спин-орбитального взаимодействия, которое, как показано в 1 гл. X, определяет мультиплетную структуру спектра. Такое упрощение допустимо, если действие внешнего магнитного поля существенно больше спин-орбитального взаимодействия. Под влиянием такого поля связь между моментами М и 8 разрывается и эти векторы проектируются на направление поля Н независимо, а энергия характеризуется квантовыми числами п, / и при снятии вырождения — т. В случае же очень слабого магнитного поля его действие приходится рассматривать как возмущение, накладываемое на сложную мультиплетную структуру энергетических уровней, зависящих от квантовых чисел п, /, / и при снятии вырождения — Ш]. Картина спектра оказывается гораздо сложнее, чем в случае нормального эффекта Зеемана, и поэтому явление носит название сложного эффекта Зеемана. [c.203]


    Магнитная обработка воды и щелочных пульп ускоряет фильтрацию не только потому, что понижает карбонизацию фильтроткани в связи со сдвигом углекислотного равновесия и повышает долю карбонатов, выделяющихся в неустойчивой форме (арагонит), благодаря чему последние не могут выполнять роль цементирующей связки [116], ной по причине изменения состояния поверхностей раздела твердая частица — раствор. В связи с этим определенное влияние на фильтрацию оказывают адсорбированные поверхностью твердых частиц коагулянты и другие вещества. Уменьшая электрокинетический потенциал и вытесняя ионы с поверхности твердых частиц, эти вещества, особенно органические коагулянты, уменьшают количество связанной с частицами воды, вследствие чего сечение капилляров (каналов) между частицами увеличивается. Подобное воздействие оказывает и магнитная обработка, уменьшая количество связанной воды, поэтому воздействие магнитных полей усиливает действие коагулирующих добавок и при совместном воздействии процессы фильтрации протекают значительно быстрее. [c.117]

    Способность к химическим реакциям определяется электронами, находящимися на внешней оболочке атома, поэтому для химика наибольшее значение имеет строение внешних электронных оболочек. Под влиянием электростатических сил ядро и электроны находятся в непрерывном движении. Вращение положительно заряженного ядра приводит к появлению магнитного момента. Именно ядерный магнетизм обусловливает резонансное поглощение электромагнитных волн веществом в постоянном магнитном поле при действии небольшого переменного магнитного поля, направленного перпендикулярно постоянному полю. Явление ядер-ного магнитного резонанса открыто в 1946 г. (Ф. Блох, Е. Переел) и лежит в основе метода ЯМР, одного из важнейших современных методов исследования органических соединений. [c.8]

    На движущийся в магнитном поле заряд действует сила Лоренца. При электрохимической обработке эта сила направлена поперек зазора. Однако раствор электролита в основном состоит из электронейтральных молекул, и поэтому магнитное поле не оказывает заметного влияния на движение жидкости в межэлектродном зазоре. [c.44]

    Существует много различных типов масс-спектрометров. Детали конструкции и относительные достоинства различных типов приборов описаны в литературе [1—7]. Большинство основных принципов масс-спектрометрии можно продемонстрировать, описав принцип действия простого масс-спектрометра, изображенного на рис. 16.1. Образец, находящийся в емкости, вводится через отверстие, входит в ионный источник а и проходит через электронный пучок в точке в, пучок обозначен штриховой линией. При взаимодействии образца с электронами, имеющими достаточную энергию, образуются положительные ионы, движущиеся по направлению к ускоряющим пластинам гид, поскольку между задней стенкой (напускной щелью) и передней стенкой этого устройства существует небольшая разность потенциалов. Отрицательные ионы притягиваются задней стенкой, которая заряжена положительно относительно передней стенки, и разряжаются на ней. Положительные ионы проходят через пластины гид, ускоряются под действием большой разности потенциалов (несколько тысяч вольт) между этими пластинами и покидают ионный источник через отверстие б. Заряженные ионы движутся по круговой орбите под влиянием магнитного поля. Полуокружность, помеченная е, есть траектория движения ускоренного иона в магнитном поле напряженности Н. Радиус полуокружности г зависит от следующих параметров 1) ускоряющего потенциала V(т. е. от разности потенциалов между ускоряющими пластинами г и (3), 2) массы иона т, 3) заряда иона е и 4) напряженности магнитного поля Н. Связь между этими параметрами выражается уравнением  [c.313]


    Углубление коагуляции для структурированной промывочной жидкости с неизменным содержанием твердой фазы приводит к разрыву сплошности структуры, в результате чего система теряет кинетическую устойчивость. Углублению коагуляции дисперсных частиц способствуют действия на систему тепла и холода, электрического п магнитного полей, механических сил и химических агентов. Наиболее сильное влияние на коагуляцию дисперсных спстем, в том числе структурированных, оказывают электролиты. [c.73]

    Наиболее часто методом ЯМР исследуются ядра водорода — протоны. Установлено, что положение линий в спектре ЯМР, отвечающих протону, существенно зависит от структуры молекулы. Электроны, находящиеся в ближайшем окружении протона, экранируют его и ослабляют действие магнитного поля. Для протонов, находящихся в разных местах молекулы, влияние соседних атомов неодинаково. Это позволяет установить, в какие группы входит водород, а следовательно, и уточнить строение молекулы. Смещение сигнала спектра ЯМР в зависимости от вида атомов, окружающих данный протон, называется химическим сдвигом. [c.54]

    Ядра и электроны являются заряженными частицами, поэтому они создают вокруг себя электрические поля, а состоящие из них атомы, ионы и многоатомные частицы подвержены действию внешних электрических полей. Кроме того, многие ядра имеют не равный нулю внутренний момент импульса (спин), а электроны к тому же могут иметь отличный от нуля момент импульса, обусловленный их нахождением на соответствующих атомных или молекулярных орбиталях. Наличие у заряженной частицы момента импульса означает, что такая частица является магнитным диполем. Поэтому электроны и многие ядра являются источниками локальных магнитных полей и подвержены действию внешних магнитных полей. Все эти явления оказывают некоторое, иногда существенное влияние на химические свойства атомов и молекул. Вместе с тем они создают интересные возможности для изучения строения атомов и многоатомных систем. [c.87]

    Под влиянием вращающегося магнитного поля в системе ядерных спинов распределение Больцмана нарушается, что приводит к изменению макроскопической ядерной намагниченности. Релаксационные процессы действуют в обратном направлении — они стремятся восстановить равновесное значение Мо. При малых величинах амплитуды поля состояние системы, близкое к равновесному, успевает сохраниться, вследствие чего величина макроскопической ядерной намагничен- [c.26]

    Ядерный магнитный резонанс. Ядра атомов обладают механическим моментом количества движения. Благодаря наличию заряда в ядре это вращение вызывает появление магнитного момента отношение магнитного момента к механическому называется гиромагнитным отношением. Ядра, имеющие магнитный момент, ведут себя в магнитном поле аналогично маленьким магнитам, и, следовательно, при этом должно происходить расщепление энергетических уровней. Магнитные моменты ядер невелики, они гораздо меньше магнитных моментов электронов. У водорода (протона) и фтора магнитные моменты ядер больше, чем у других элементов, и поэтому исследования ЯМР часто проводят, изучая поведение ядер водорода или фтора в различных соединениях. Явление ядерного магнитного резонанса позволило сделать очень важные выводы относительно структуры молекул, взаимного влияния атомов в молекуле, действия растворителя на растворенное вещество и т. д. Этот метод относится к самым тонким средствам исследования структуры молекул. [c.65]

    Эффективность пересечения двух электронных состояний может быть настолько низкой, что в этом случае предиссоциация не приводит к уменьшению интенсивности полос испускания. Даже в отсутствие таких процессов, как физическое тушение, излучательные потери приводят к тому, что большинство возбужденных частиц не претерпевает химических превращений. Такая низкая эффективность внутримолекулярного обмена энергией для двух пересекающихся состояний обычно возникает при действии запрещения безызлучательного перехода. Существуют, однако, ситуации, когда эффективность безызлучательного перехода зависит от внешних условий. Столкновения с другими частицами, наличие электрического или магнитного поля могут приводить к снятию запрета на оптические переходы. Подобное явное нарушение правил отбора наблюдается и для безызлучательных переходов — правила действуют лишь для невозмущенных молекул. Увеличение вероятности пересечения соответствующих состояний приводит К увеличению относительного вклада предиссоциации, так как молекула возмущена влиянием внешних воздействий. Предиссоциация, эффективно протекающая лишь при наличии некоторого внешнего возмущения, называется индуцированной. [c.54]


    Далее нада выяснить, какое спин-спиновое взаимодействие приводит к сверхтонкому расщеплению каждого из пиков. Если соседняя группа обладает спином /2 или /2, или 1, то действие локального магнитного поля на резонансный пик приведет к расщеплению его соответственно на дублет, квартет или триплет. Если рядом с протоном или группой протонов находятся другие группы протонов, то спектр будет представлять собой наложение влияния магнитных полей каждой из соседних групп. [c.126]

    Для оценки влияния магнитного поля на коррозионную активность перекачиваемых жидкостей проводились работы по определению скорости коррозии на указанных участках трубопроводов, для чего использовали гравиметрический метод в соответствии с ГОСТ 9.506-87. Образцы-свидетели для определения скорости коррозии и степени защитного действия были установлены в трубопроводы последовательно до и после магнитной установки. Результаты промысловых испытаний показали, что применение физического воздействия магнитного поля значительно снижает коррозионную активность транспортируемых по промысловым трубопроводам жидкостей. [c.107]

    Анализируемые деэмульгаторы наиболее эффективно будут работать совместно с магнитной обработкой. Причем предпочтительно импульсное изменение напряженности магнитного поля. Проанализируем влияние формы изменения напряженности магнитного поля (треугольное, прямоугольное, синусоидальное) на эффективность действия деэмульгаторов. Для этого из матрицы табл. 5.16 исключим столбцы 2 и 6 и получим новую матрицу (табл. 5.17). [c.143]

    Достаточно полное теоретическое обоснование механизма процесса намагничивания в настоящее время отсутствует. Как известно, на остаточную намагниченность ферромагнетиков сильное влияние оказывают тепловые, силовые и магнитные поля, причем наиболее эффективным является их совместное действие. По-видимому, рост параметров и интенсификация теплообмена в современных парогенераторах усложняют процессы в пограничном кипящем слое. [c.54]

    Анализ перечисленных сил с точки зрения их роли в процессе воздушной сепарации показывает следующее. Влияние инерции присоединенной массы мало, если речь, идет о сепарации твердых частиц в газовом потоке (подробнее этот вопрос рассматривается з 3-4). Диффузионная сила непригодна для получения заметно отличающихся траектории частиц в потоке, т. е. для сепарации при очень тонкой пыли она может оказывать определенное побочное влияние. Силы электростатического и магнитного полей пока не удалось использовать для сепарации. Электростатическое поле очень широко применяется для пылеулавливания, однако применение его для воздушной сепарации дает весьма нечеткое и нерегулируемое разделение. Силы сцепления ведут к агломерации, которая для процесса сепарации почти всегда нежелательна силы от взаимных столкновений могут при этом оказывать положительное влияние, способствуя разрушению агломератов с другой стороны, они нарушают траектории движения отдельных частиц, оказывая неблагоприятное Действие на процесс разделения. Силы трения между движущимися в потоке частицами и ограничивающими зшу сепарации стенками тормозят поток й таким образом могут систематически влиять на разделение, как правило, снижая его эффективность. [c.8]

    В сильном магнитном поле циклические делокализованные я-орбитали ведут себя как сверхпроводящее кольцо, и электроны, текущие вдоль кольца, порождают внутри него магнитное поле, направленное противоположно приложенному полю. Это значит, что на протоны во внешней части кольца действует повышенное магнитное поле (индуцированное поле плюс приложенное поле). Этот кольцевой ток оказывает существенное влияние на магнитный резонанс протонов внешние протоны поглощают при более низком приложенном поле, чем протоны в аналогичном в других отношениях окружении (например, в линейном полиене), в то время как протоны в центре кольца погло- [c.337]

    Все сказанное до сих пор вряд ли характеризует спектроскопию ЯМР как особенно ценный метод исследования. Действительно, если бы все ядра Щ в поле 1,41 Ю Гс поглощали излучение на частоте 60 МГц, а в поле 2,35 10 Гс — на частоте 100 МГц, то из таких данных трудно было бы извлечь пользу. К счастью, магнитное поле, в котором находится данный протон, входящий в состав молекулы, редко точно равно Яц. Вместо него на протон действует эффективное поле Яэфф, несколько отличающееся от Яо, потому что под влиянием Яц в самой молекуле возникают небольшие собственные магнитные поля. Эти небольшие поля в свою очередь могут складываться с Яо и вычитаться из него. [c.541]

    Систематизирован и обобщен достаточно обширный материал, накопленный в области влияния магнитных полей на кристаллизацию веществ. Рассмотрены особенности процесса кристаллизации в магнитных полях, влияние постоянного и переменного магнитных полей и магнитной обработки растворов на процесс образования кристаллических зародышей, исследовар вопрос об ориентирующем действии магнитного поля на рост диа- и парамагнитных кристаллов, а также кратко рассмотрены магнитные свойства фаз. Обсуждается механизм действия магнитных полей на процесс кристаллизации. Библ. — 7 назв., рие. — 2. [c.96]

    Механизм прибора заключен в пластмассовый корпус щитового монтажа, а для уменьшения влияния на работу прибора посторонних магнитных полей внутрь корпуса вставлен стальной экран. Подвижная система прибора вращается на кернах. Прибор снабжен хорошо видимой шкалой. Аналогичный принцип действия положен и в основу указывающих логометров типа ЛМПУ и самопишущих типа С Л М. [c.54]

    Согласно принципу неопределенности Гейзенберга АхАЕ=/г, время жизни в данном энергетическом состоянии влняст па определенность зиачения энергии в этом состоянии. Следовательно, от величины Т должна зависеть ширина резоиаисной линии. Поглощенная энергия может передаваться частицами не только за счет теплового движения, но и за счет так называемого спин-спинового взаимодействия. В ядерном магнитном резо 1аисе такое взаимодействие обычно наблюдается у связанных друг с другом частиц с магнитным енином. На каждый магнитный момент ядра действует не только постоянное магнитное поле Яо, но и слабое локальное ноле Ялок, создаваемое соседними магнитными ядрами. Магнитный диполь на расстоянии г создает поле для протона это поле равно 14 Э на расстоянии 1 А. С ростом г напряженность поля Яло быстро падаст, так как существенное влияние могут оказывать только ближайшие соседние ядра. По величине разброса локального поля Ядок при помощи уравнения резонанса мол<но найти разброс частот ларморовой прецессии  [c.256]

    На равномерность нагрева тела при контактном способе подвода тока влияют два фактора. Во-первых, поскольку при увеличении температуры удельное сопротивление металлов возрастает, а неметаллов уменьшается, то рост температуры при нагреве металлов способствует равномерности нагрева. Для неметаллов тот же фактор действует в обратном направлении. Во-вторых, влияние переменного магнитного поля, создаваемого в проводящем теле проходящим током, вызывает неравномерность нагрева этого тела по сечению. По этой причине активное сопротивление тела при переменном токе i nep будет больше, чем при постоянном Rao i- [c.207]

    Как уже говорилось, ферромагнетик при намагничивании изменяет свои линейные размеры и форму. Изменение формы каждого домена в по-ликристаллическом теле наталкивается на препятствия, которые возникают под влиянием соседних доменов, и возникают упругие напряжения. Энергия тела увеличивается на величину магнитоупругой энергии. Рассмотрим процесс намагничивания в условиях одновременного действия магнитного поля и внешних сил в пределах упругости. Железо, намагничиваясь в сравнительно слабых полях, несколько удлиняется, при этом поперечное сечение образца уменьшается. Отсюда на основе принципа Вант-Гоффа и Ле-Шателье о противодействии системы действующим на нее силам следует, что сжатие железного образца будет препятствовать его намагничиванию, а растяжение — способствовать [10, 84, 96]. Е и растяжении получим более высокую магнитную проницаемость ццо В/Н в начальной части кривой намагничивания, а коэрцитивная сила уменьшится. Для никелевого стержня получается обратная картина, так как при намагничивании его длина сокращается при некотором расширении поперечного сечения. [c.53]

    Благодаря тому, что макромолекулы имеют значительную длину и гибкость, а также могут входить в состав различных ассоциатов, явление ассоциации в растворах в итоге может привести и к образованию в системе пространственной сетки, что проявляется в застудневании раствора. Наличие таких сеток, обеспечивающих эластические свойства даже у сравнительно разбавленных растворов полимеров, было доказано Фрейндлихом и Зейфрицем уже в начале XX столетия. В результате наблюдений под микроскопом эти исследователи установили, что если на мельчайшую крупинку никеля в даже очень вязкой жидкости действует магнитное поле, то эта крупинка может перемещаться в жидкости на сколь угодно большое расстояние. В растворах же высокомолекулярных веществ крупинка передвигается в магнитном поле на очень небольшое расстояние и затем останавливается, а после прекращения действия поля возвращается в первоначальное положение под влиянием эластических сил, обусловленных существованием в растворе сетки из макромолекул. Застудневший раствор обычно со временем претерпевает синерезис, разделяясь на две фазы, — раствор высокомолекулярного вещества в растворителе и раствор растворителя в высокомолекулярном компоненте. Из сказанного следует, что ассоциаты — это не что иное, как зародыши новой фазы. [c.437]

    На рис, 97, ж я 3 приведены конструкции погружных индуктивных ячеек. Такие ячейки позволяют легко термостатировать исследуемую жидкость, а также применять их для расплавов. Ячейка ж отличается от ячейки з тем, что в первой раствор находится под действием периферийного магнитного поля катушки, а во второй — внутреннего. Условия симметрии для внутренней части катушки лучше вследствие меньшей величины нескомпенсированного электрического поля, которое приводит к уменьшению чувствительности. Кроме того, в ячейке з благодаря применению заземленного экрана влияние нескомпенсированного электрического поля сильно понижено, поэтому почти полностью устранен емкостный эффект. Трубчатая индуктивная ячейка, которую мол<но применять в качестнс проточной или для титрования с засасыванием, изображена на рис 97, и. [c.147]

    От датчика сигнал поступает на регистрирующее устройство. Спектр исследуют как зависимость интенсивности поглощения от напряженности магнитного поля. Для изолированных ядер спектральная кривая представляет собой очень резкий пик полосы по-глош.ения. В твердом теле рассматриваемое ядро жестко закреплено в кристаллической решетке. Оно имеет собственный магнитный момент, что приводит к возникновению слабого локализованного магнитного поля Нь. Поэтому второе, соседнее ядро испытывает влияние поля Н Нь (знак зависит от ориентации первого ядра в магнитном поле). Вследствие этого твердое вещество, содержащее пары ядер, дает резонансный спектр в форме дублета. Его компоненты соответствуют двум эффективным полям Я+Ях,, действующим на каждое ядро при его взаимодействии с соседями. Треугольное расположение ядер дает спектр с тремя пиками, а тетраэдрическое — спектр с плоским пиком, так как ожидаемые четыре максимума обычно сливаются воедино. [c.187]

    Существует и другой механизм влияния магиитного поля на соотношение продуктов превращения свободных радикалов, образовавшихся в клетке,—так называемый СТВ-механизм, В этом случае действие магнитного поля обусловлено его влиянием на взаи.модействие спииов неспаренных электронов с ядерными спинами (сверхтонкое взаимодействие, СТВ). Теория этого взаимодействия, которую можно найти в специальных руководствах по магнитным эффектам в химических реакциях, показывает, что увеличение внешнего поля ослабляет взаимодействие. Поэтому обу-словлё1(иые сверхтонким взаимодействием переходы между синглетным и триплетным состояниями пары свободных радикалов замедляются с увеличением магнитной индукции внешнего магнитного поля. В этом случае увеличение внешнего магнитного поля оказывает на взаимодействие свободных радикалов в клетке влияние, противоположное тому, которое имеет место при Д -механизме. Каждый механизм преобладает в своем диапазоне значений магнитной индукции поля. Поэтому зависимость соотношения продуктов превращения внутри и вне клетки как функция магнитной индукции может проходить через максимум, В качестве примера можно привести реакцию бис-(пентафторфенил)-метилхлорида с бутиллитием  [c.173]

    Действие локального магнитного поля, создаваемого соседними ядрами, проявляется в существовании так называемого магнитного изотопного эффекта — влияние спина ядра на изотопный состав продуктов внутриклеточной рекомбинации и внеклеточных превращении. Например, при фотохимическом разложении дибензилкето 1а [c.174]

    Рассмотрим влияние магнитного поля на движение электронов в атомах вещества. В большинстве случаев ввиду малых размеров атомов можно считать, что в пределах каждого из них магнитное поле однородно. Предположим для простоты, что электрон в атоме движется по круговой орбите, плоскость которой перпендикулярна к вектору напряжённости магнитного поля (рис. 126, а). Когда магнитное поле отсутствует, на электрон действует элек- [c.294]

    Вторым эффектом, наблюдаемым в ваннах для электролиза алюминия, является искривление поверхности жидкого металла под действием магнитных полей, образуемых протекающим через электролизер током. В результате этого явления в металле возникают циркуляционные потоки, размывающие гарнисаж и снижающие срок службы электролизера. Для того чтобы снизить влияние этого явления, желательно осуществлять двусторонний подвод тока к аноду, как это показано на рись 7.3. В ЭТОМ случае на поверхности алюминия В ЦСНТре СеЧб НИЯ электролизера появляется симметричный выпуклый мениск, вредное влияние которого меньше. Обслуживание электролизеров для получения алюминия обычно механизировано наиболее тяжелые операции — пробивка корки электролита, загрузка глинозема, наращивание самоспекающегося анода, забивка и вытаскивание токоподводящих штырей — осуществляются специальными механизмами. В последние годы управление этими механизмами, а также самим процессом электролиза автоматизируется. [c.335]

    Явление двулучепреломления может иметь место в естественных анизотропных телах, а также в изотропных телах под влиянием внешнего воздействия под действием электрического (эффект Керра) и магнитного поля (эффект Коттона—Мутона), механической деформации в твердых телах, в ультразвуковом поле, двулуче-преломление в потоке (эффект Максвелла) и т. д. Явление двулучепреломления в твердых телах под влиянием механического воздействия впервые было открыто Брюстером в 1816 г. Одной из первых теоретических работ, посвященных анизотропии в твердых телах, была работа Шмидта. В дальнейшем работами Куна и Грю-на, Кубо, Исихары, Трелоара и другими была разработана статистическая теория фотоупругости материалов, подтвержденная многочисленными экспериментальными данными. В некоторых работах отмечается важная роль химических и ван-дер-ваальсовых связей в проявлении [c.80]

    Таким образом, электронное экранирование не одинаково вдоль различных направлений в молекуле, т, е. анизотропно. Оно может приводить либо к экранированию, либо к дезэкранированию ядер, поэтому такие межатомные токи называются парамагнитными или диамагнитными. Диамагнитные токи уменьшают локальное поле, сдвигая сигналы протонов в область слабых полей, парамагнитные, наоборот, увеличивают его, сдвигая сигналы в область сильных полей. Так, сдвиг сигнала протонов ацетилена на 2,96 м.д. в более сильное поле по сравнению с сигналом этилена (6 = 5,84 м.д.) объясняется экранирующим влиянием парамагнитных токов тройной связи. В ароматических молекулах под действием поля возникают диамагнитные кольцевые токн, которые создают в направлении, перпендикулярном плоскости кольца, ослабляющее магнитное поле. В местах расположения ароматических протонов это поле усиливает основное, оказывая значительное дезэкранирующее влияние. Эффект кольцевых токов объясняет смещение сигнала протонов бензола (6 = 7,27 м.д.) на 1,43 м.д. в более слабое поле по срав-. нению с сигналом протонов этилена. [c.89]

    А как же ведут себя в магнитном поле аннулены с числом я-электронов 4/г Квантовохимические расчеты предсказывают, для них парамагнитный эффект кольцевого тока, который оказывает на резонансные частоты протонов действие, прямо противоположное обсуждавшемуся выше влиянию диамагнитного кольцевого тока. В этом случае протоны, находящиеся внутри периметра кольца, деэкранируются, а лежащие в плоскости кольца и вне его — экранируются. [c.96]

    Применение полного уравнения экранирования Рамзея [2] в случае органических молекул сопряжено с непреодолимыми трудностями, но это уравнение имеет такой вид, что его с большим успехом можно применять для решения конкретных задач и для более простой, хотя и менее строгой, трактовки зависимости химического сдвига от электроотрицательност . С качественной точки зрения представляется очевидным, что внешнее магнитное поле взаимодействует с движущимися электронами в исследуемой системе, которые таким образом участвуют в создании общего магнитного поля у ядра. Обусловленная электронами составляющая пропорциональна внешнему магнитному полю, но обычно направлена в противоположную сторону. Оказываемое электронной оболочкой действие можно рассматривать как внутренний диамагнетизм или магнитное экранирование ядра [15]. Сейка и Слихтер [8] различают три фактора, участвующих в магнитном экранировании ядра 1) поправка на диамагнетизм исследуемого атома, в значительной степени обусловленная электроном связи в то время, когда он занимает 5-орбиту, в центре которой находится ядро 2) парамагнитный член и 3) влияние других атомов. Величина экранирующего действия должна быть непосредственно связана с электронной плотностью у ядра. Чем прочнее электроны удерживаются другим атомом, связанным химически с исследуемым ядром, тем слабее они экранируют ядро, и, следовательно, экранирование зависит от степени ионизации связи, а также индуктивных и резонансных переходов электронов от соседних групп и к ним  [c.268]

    Теперь рассмотрим влияние небольшого магнитного поля Яь перпендикулярного к Яо- Я1 стремится отклонить диполь в плоскость ху (рис. 2.1), но это действие сравнительно малоэффективно до тех пор, пока Я1 не врап ается вокруг оси Яо с той же угловой частотой О), что и частота прецессии. Если враш,ение Hi медленно изменять, проходя частоту прецессии, то при достижении частоты прецессии угол 0 будет сильно изменяться, что соответствует обмену энергией между прецессируюш им ядром и враш,аюш,имся полем Я1. Это явление есть не что иное, как вид резонанса, так что теперь становится понятным термин ядерный магнитный резонанс (ЯМР). Обмен энергии соответствует поглон ению или испусканию излучения, и его можно регистрировать методами, которые будут описаны ниже (разд. 3.1). Элементы экспериментального устройства, необходимого для регистрации сигналов ЯМР, вытекают из приведенных выше рассуждений ядро нужно поместить в постоянное магнитное поле Яо и затем подвергнуть действию электромагнитного излучения таким образом, чтобы магнитное поле Я1 последнего вращалось вокруг оси Яо с необходимой угловой частотой. [c.23]

    Для определения начальной проницаемости магнитодиэлектрика аналитическим методом наиболее распространены формулы Оллендорфа, Лихтенеккера и Коидор-ского [124, 1331. Вывод этих формул основывается на установлении зависимости между магнитной восприимчивостью ферромагнитной основы и магнитной восприимчивостью магнитодиэлектрика Необходимо учесть также не только размагничивающее поле формы, но и все другие составляющие поля H , действующие на частицу. Общее выражение напряженности действующего поля с учетом влияния ближних и дальних частиц дается в следующем виде [1341  [c.174]


Смотреть страницы где упоминается термин Магнитное поле влияние на действие: [c.710]    [c.166]    [c.127]    [c.213]    [c.678]    [c.127]    [c.105]    [c.33]    [c.59]    [c.608]   
Фармацевтические и медико-биологические аспекты лекарств Т.2 (1999) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние магнитного поля

Поле магнитное



© 2024 chem21.info Реклама на сайте