Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Момент вторичный

    Устройство и принцип действия линии. По принятой в производстве схеме поступивший на предприятие ячмень направляется на хранение в бункер I, оттуда с помощью переключателей потока 2 подается в промежуточный бункер . Из него после взвешивания на весах 4 ячмень первично очищается в воздушно-ситовом сепараторе 5. Предварительно очищенное зерно взвешивается на весах 6 и направляется в силос 7, где сохраняется до момента вторичной переработки. При необходимости проветривания ячмень из силоса 7 направляется снова в бункер 1. [c.77]


    Несмотря на тенденцию к ассоциации, значения дипольных моментов вторичных и третичных Н-алкиламидов в газообразном состоянии [148] и в растворителях, таких как бензол, ССЦ и диок- [c.430]

    ЛИ МОЖНО считать вполне достоверной найденную разницу моментов вторичного и третичного хлористых бутилов. [c.182]

    Как показывает опыт, разрушения резервуаров происходят часто не при первичном гидравлическом испытании, а обычно после нескольких лет эксплуатации. И даже при вторичном испытании резервуары разрушаются не сразу после заполнения их водой, а через некоторое время с момента начала испытания. В этом случае причиной разрушения резервуаров является именно неравномерная осадка. Если бы разрушение было только следствием чрезмерных растягивающих усилий от давления воды, то оно происходило бы сразу же после заполнения резервуара до определенного уровня. Поскольку процесс нарастания осадки продолжается некоторое время, увеличение разрывающих усилий в корпусе резервуара происходит так же медленно, как и нарастание осадки. При равномерной осадке по всей площади днища практически не возникает изменения напряженного состояния самого резервуара. Однако могут быть [c.135]

    В цепи термопары возникал импульс тока. В момент размыкания кон- тактов во вторичной обмотке трансформатора 11 (см. рис. 65) индуктируется напряжение, значительно превосходящее напряжение в первичной обмотке. Со вторичной обмотки трансформатора напряжение подавалось на электронный осциллограф 10 на экране последнего возникал всплеск луча. При помощи переносного потенциометра 12 в цепи данной термопары создавалась э. д. с., компенсирующая э. д. с. термопары. При достижении полной компенсации всплески на экране осциллографа прекращались в этот момент записывались показания потенциометра и при помощи данных тарировки поршневых термопар определялась температура в данной. точке поршня. Девятой термопарой измерялась температура масла в картере компрессора. [c.164]

    Дипольные моменты функциональных групп торфа примерно равны, а в некоторых случаях превышают дипольный момент молекул воды в свободном состоянии [208]. Именно функциональные группы органического вещества торфа, обеспечивающие реализацию водородных связей, являются первичными центрами сорбции молекул воды. В дальнейшем первично сорбированные молекулы воды становятся вторичными центрами сорбции. [c.65]

    В начальный момент фильтрования общая разность давлений АР=ДРф. п максимально сжимает перегородку. По мере образования осадка общая разность давлений АР = АРос + АРф. п непрерывно перераспределяется между перегородкой и осадком, причем АРф. п уменьшается, а АРос возрастает. Сопротивление сжимаемой перегородки остается максимальным, если она не эластична, или уменьшается, если пористость приходит в равновесие с уменьшенным значением АРф. п- Среднее удельное сопротивление осадка возрастает, причем в его тонких локальных слоях пористость увеличивается, а удельное сопротивление уменьшается в направлении от перегородки к свободной поверхности осадка. Пористость каждого тонкого слоя на данном расстоянии от перегородки при возрастании АРос понижается, что сопровождается вытеснением части жидкости из пор, возникновением вторичного потока фильтрата и перемещением твердых частиц к перегородке. Эти процессы влияют на удельное сопротивление осадка (с. 61). [c.72]


    При нормальном падении подобной волны на плоскую преграду конечной толщины б происход ят отражение воЛны от передней поверхности, ее преломление, отражение и преломление на задней поверхности и последующие подобные многократные процессы для вторичных волн (рис. 3.14). Суммирование давлений позволяет найти результирующее давление в данный момент времени перед преградой и за ней [35]. [c.67]

    Чтобы нагружать двигатель строго постоянным крутящим моментом М1 при всех изменениях нагрузки на вторичном валу, трансмиссия должна располагать любым передаточным отношением, т. е. быть бесступенчатой. Характеристика такой трансмиссии с постоянным к. п. д. (т) < 1) представляется, согласно формуле (7.1), равносторонней гиперболой (рис. 7.1, б). При заданном значении М этот график позволяет определить необходимое передаточное отношение по моменту выходного звена М2. [c.86]

    В 1.1 мы рассмотрели механизм образования вторичных зародышей за счет истирания кристаллов несущей фазой и получили зависимость для движущей силы зародышеобразования. Запишем ее в общем виде с помощью момента функции распределения кристаллов по размерам  [c.336]

    Полагается, что, если скорость вторичного зародышеобразования зависит от частоты столкновений, то можно сказать, что она зависит от общего числа кристаллов в суспензии, т. е. от нулевого момента, и зависимость для скорости вторичного зародышеобразования можно представить соотношением (4.27), что соответствует выводам, сделанным в 1.1. Если разрушение, истирание самих кристаллов играет значительную роль в процессе вторичного зародышеобразования, то зависимость для скорости вторичного зародышеобразования имеет вид (4.26), что совпадает с нашими результатами исследования процесса вторичного зародышеобразования путем истирания несущей фазой. Аналогично, если наличие кристаллической поверхности облегчает зародышеобразование, то зависимость для скорости вторичного зародышеобразования соответствует соотношению (4.25). Соотношение (4.28) определяет скорость зародышеобразования гомогенным путем. Во всех пяти выражениях (4.24) — (4.28) для скорости зародышеобразования параметры k обычно являются функциями температуры, степени перемешивания. [c.337]

    Работа прибора заключается в следующем. Предварительно подготавливают пробу нефтепродукта, затем ее заливают в и-образную кювету и устанавливают в прибор, где она охлаждается полупроводниковым холодильником. Давление, циклически подаваемое на вход и-образной кюветы, передается жидким продуктом на выход кюветы, сообщенной с контактным датчиком давления. При достижении температуры застывания продукт теряет подвижность, и импульс давления не передается на датчик. Этот момент регистрируется с помощью электрической схемы и релейного устройства как температура застывания пробы. Температура продукта в кювете измеряется хромель-копелевой термопарой и фиксируется показывающим прибором. Температура застывания фиксируется вторичным прибором до тех пор, пока не будет снята кювета с пробой. Скорость охлаждения продукта регулируется изменением силы тока через полупроводниковый холодильник. [c.93]

    Отказы объектов как некоторые случайные события классифицируют по изменению основного параметра объекта до момента возникновения отказа (внезапные и постепенные) по причинно-следственным взаимосвязям между отказами (первичные и вторичные) по изменению вероятности появления отказов (независимые и зависимые) по возможности последующего исполь- [c.40]

    Одинарные торцовые уплотнения. Несмотря на многообразие конструктивных схем, любое одинарное торцовое уплотнение состоит из нескольких постоянных конструктивных элементов. Торцовое уплотнение включает пару трения, состоящую из двух уплотнительных колец 4 6, прилегающих друг к другу по плоскому торцу (рис. 1.24). Кольцо 6 фиксируют либо в корпусе, либо на валу и герметизируют уплотнительным элементом 7, а кольцо 4, имеющее свободу угловых и осевых перемещений, устанавливают в поджимающем элементе I. В этот элемент входят пружины 2, прижимающие упруго устанавливаемое уплотнительное кольцо к другому уплотнительному кольцу, вторичный уплотнительный элемент 3, обеспечивающий герметизацию упруго устанавливаемого уплотнительного кольца, и поводковая система 5, передающая момент трения с уплотнительного кольца. Различие в конструкции каждого из этих элементов и особенности их взаимосвязей обеспечивают очень большой набор различных конструкций торцовых уплотнений. [c.43]

    Ограничивающей стадией процесса до момента начала графитации является разложение вторичных сероуглеродных и первичных термостойких соединений серы. Степень и скорость разрушения этих соединений можно увеличить дальнейшим повышением температуры связыванием продуктов распада первичных сернистых соединении углеводородными радикалами и атомарным водородом или металлоорганическими соединениями, не допуская их хемосорбции быстрым иагревом углерода до температуры обессеривания и использованием химической активности и кинетической энергии летучих веществ (в том числе выделяющихся сернистых соединений) для разрушения промежуточных комплексов. [c.195]


    В конструкции компрессора по схеме рис. XI. 13 над вторичным гидравлическим цилиндром расположен золотник системы регулирования. Он сообщает друг с другом полости по обе стороны гидравлических поршней в момент, когда давление масла в них одинаково, и разобщает их в различных положениях первичного поршня. Управляя золотником, можно уменьшить ход вторичного поршня и достигнуть таким путем плавного изменения производительности до нуля при незначительных потерях энергии, возникающих вследствие сопротивления золотника и [c.643]

    Поверочные схемы составляют при наличии не менее двух ступеней передачи размера единицы. В каждой схеме регламентируется порядок передачи размера одной или нескольких взаимосвязанных единиц (например, единицы магнитного момента и магнитной восприимчивости). Оформляются поверочные схемы в виде чертежа. Государственные поверочные схемы также содержат текстовую часть, содержащую пояснения к чертежу. Чертеж Поверочной схемы состоит из нескольких горизонтальных полей, соответствующих ступеням передачи размера единицы. В его левой части указывают наименования полей (государственный эталон, вторичные эталоны, рабочие эталоны соответствующих разрядов, эталоны, заимствованные из других поверочных схем, рабочие средства измерений). В каждом поле схемы размещают прямоугольники с указанием наименований эталонов соответствующей ступени передачи, их диапазонов измерений и характеристик погрешности, между полями - овалы с указанием методов и погрешностей передачи размера единицы. Остальные требования к содержанию и оформлению поверочных схем приведены в ГОСТ 8.061-80. [c.192]

    Ни в одной из рассмотренных ранее молекулярных теорий разрушения (разд. 3.4.1—3.4.5) не предполагалось концентрации напряжений по соседству с разрушенным элементом. Конечно, первые разрывы большого ансамбля первоначально равномерно напряженных молекул будут происходить случайно. Разрушение и восстановление конкретного элемента должно, однако, преимущественно приводить к росту осевых напряжений тех элементов, с которыми он связан непосредственно (с помощью вторичных силовых взаимодействий). Поэтому плотность вероятности разрыва подобных элементов будет несколько выше, чем остальных. Еще более высокая плотность вероятности разрыва присуща небольшому числу элементов, расположенных вблизи уже имеющихся очагов разрушения. Так что (суммарная) вероятность разрыва одного такого элемента, до этого момента не затронутого разорванным элементом, вначале меньше вероятности разрыва одной цепи из большого ансамбля. Поэтому акты разрыва будут происходить некоторое время случайным образом [67]. С ростом их числа возрастает вероятность разрывов в непосредственной близости от уже имеющихся, благодаря чему формируются зародыши трещины и повышается вероятность разрушения соседних элементов. [c.89]

    В соответствии с современными представлениями о растворах в окрестности сольватированного иона, молекулы, ассоциата, комплекса или другой подобной частицы структура растворителя меняется по мере удаления от центра сольватируемой частицы (ядра) [183,184]. Это экспериментально подтвержденное положение находит отражение в том, что различают молекулы растворителя ближнего (первичная сольватация) и частично дальнего (вторичная сольватация) и дальнего (среда) окружения сольватируемой частицы [18,183]. Применительно к растворам электролитов введено понятие о "границе полной сольватации", весьма важное для выяснения строения концентрированных растворов электролитов. При достижении границы полной сольватации все молекулы растворителя распределяются между сольватными оболочками ионов, которые с этого момента "ведут борьбу" за растворитель, молекулы которого перераспределяются в зависимости от сольватационной способности ионов [184]. [c.92]

    По формуле Сыркина [8] с использованием экспериментальных значений плотностей, рефракций и диэлектрический проницаемостей были оценены днпольные моменты соединений /л= 1,07 0,02 и ци = = 1,56 0,03 ). Используя приведенные в работе [3] значения диаоль-ных моментов вторичных аминов и родственных им карбодиимидов, а также полученные для соединений I и II данные, можно вывести соотношения между дипольными моментами этих двух классов соединений  [c.66]

    Изучение физико-химических свойств соединений I и II позволило оценить вклады карбодиимидного фрагмента в рефракцию, электронную поляризуемость и ортохор бис[ (2-фенилпропил)диметилсилил]карбодиимида, а также установить соотношение между дипольными моментами вторичных аминов и родственных им карбодиимидов. [c.66]

    На послед)пощих стадиях, когда выработаны физико-химический (особенности взаимодействия внутренней и внешней фаз конкретной дисперсии) и энергетический (количество подводимой для диспергирования энергии, обеспечивающей такое взаимодействие) ресурсы применительно к конкретной системе, что в эксперименте наблюдается как момент выхода на плато кинетической кривой, в объеме дисперсии, во-первых, сохраняется количество передаваемой энергии и, во-вторых, большая часть внутренней фазы уже имеет размер осколков , поэтому интегральное увеличение степени дисперсности невозможно при одновременно созданных условиях активного агрегирования этих осколков . Далее, при накоплении достаточного количества вторичных агрегатов вновь начинается процесс диспергирования далее совокупность этих процессов повторяется — из-за чего и наблюдаются осцилляции дисперсности. Здесь важно отметить тот факт, что часть привносимой энергии расходуется не только на достижение конечной цели, но и на возбуждение и поддержание паразитных осцилляций — это практическое замечание. Не менее важен и научно-познавательный аспект мы наблюдаем ранее не отмечавшееся явление кооперативного поведения многочастичных дисперсных систем в распределенных силовых полях. Подобные факты отмечались лишь в биологических, химических, экологических системах. Необходимо отметить, что в определенных условиях такое поведение свойственно и дисперсным системам, что отражает общенаучный характер этого явления. [c.128]

    Если бы в другой момент времени 2 > /1 дебит скважины был бы вторично снижен и установлен равным бг то основываясь на методе суперпозиции, следовало бы принять, что с момента /2 продолжают работать реальная скважина с дебитом Q, воображаемая нагнетательная скважина с дебитом — (б — 61) и, кроме того, начала работать в том же месте вторая воображаемая нагнетательная скважина с дебито -(61-62)-154 [c.154]

    Гидрогенолиз циклопентана исследован [243] в интервале температур 125—330 °С на серии металлических катализаторов VIII группы, а также на Ре/АЬОз и Си/МгОа. Исследование проводилось на образцах катализаторов, содержащих 0,05, 0,2, 1,0 и 5,0% Р1, 1% Рс1, 0,075% №, 1 и 10% №, 5, 10 и 20% Со, 10% Си, 1% Ре, а также по 0,1% Ки, Оз и 1г. В присутствии Р1- и Рс1-ка-тализаторов гидрогенолиз циклопентана протекает селективно с образованием только к-пентана Рс1 малоактивен и быстро отравляется, Ре- и Си-катализаторы неактивны даже при 450 °С. В присутствии КЬ- и 1г-катализаторов при температурах ниже 200 °С также образуется только м-пентан при повыщении температуры увеличивался выход алканов состава 1—С4. На Со-, N1-, Ни- и Оз-катали-заторах гидрогенолиз циклопентана протекает во всем исследуемом интервале температур с высоким выходом низкомолекулярных углеводородов. При повышении температуры выход низших углеводородов на N1 и Со уменьшается, а на Ни, Оз, КЬ и 1г —возрастает. Отмечают, что на КЬ и 1г энергия активации образования вторичных продуктов гидрогенолиза несколько выше энергии активации реакции образования я-пентана из циклопентана. С целью выяснения пути образования низкомолекулярных углеводородов — непосредственно из циклопентана или в результате вторичных реакций -пентана — исследован гидрогенолиз циклопентана в присутствии (1% Ы1)/Л120а при различных временах контакта. Установлено, что в начальный момент образуется только н-пентан, а по мере увеличения времени контакта накапливаются низшие углеводороды. Анализ кинетических кривых привел к выводу [243], что на указанном катализаторе при малых временах контакта углеводороды состава С1—С4 образуются вместе с н-пентаном непосредственно из циклопентана. При увеличении времени контакта первичные продукты реакции подвергаются дальнейшему гидрогенолизу. [c.167]

    Пo лeдyющиe реакции этого радикала точно еще не установлены. Принимая во внимание в данный момент только радикалы, образующиеся в результате вторичной атаки, согласно гидроперекисному механизму, предложенному Уббелоде и развитому Уолшем [66], перекисный радикал отнимает атом водорода, образуя молекулу гидроперекиси, которая затем может подвергнуться разложению  [c.333]

    Однако энергия активации этой реакции достигает 109 кДж/моль (табл. 2.2), что указывает на сильное отталкивание между реагентами в момент образования активированного комплекса. Можно предположить, что в парафиновых и нафтеновых углеводородах эта реакция — основная. При таком предположении из экспериментальных данных рассчитаны константы скорости взаимодействия ROOH с третичной и вторичной связью насыщенных углеводородов (см. табл. 2.2). [c.40]

    После проведения экспериментального исследования кинетики кристаллизации аллюмоаммонийных квасцов можно было сделать выводы 1) с увеличением времени пребывания кристалла в аппарате размер его увеличивается 2) во всех экспериментах с увеличением числа оборотов средний размер кристаллов увеличивается, что свидетельствует о росте кристалла, происходящем в диффузионной области 3) во всех экспериментах с меньшей скоростью охлаждения (расходом охлаждающей воды) функция распределения кристаллов по размерам двугорбая, что свидетельствует о наличии вторичного зародышеобразования. Из рассмотрения кристаллов квасцов под микроскопом МБИ следовало, что они не дробятся и не агрегируют. Наличие не очень сильного второго горба в функции распределения и отсутствие явлений явного дробления свидетельствует в пользу гипотезы вторичного зародышеобразования путем истирания кристаллов несущей фазы 4) почти во всех экспериментах с большей скоростью охлаждения функция распределения с одним горбом . Причина отсутствия второго горба в следующем а) мелкие кристаллы более устойчивы к истиранию (критерий Вебера мал), б) быстрое снятие пересыщения в начальные моменты свидетельствует о том, что пересыщения недостаточно для роста вторичных центров (частицы не растут). Увеличение данного микроскопа недостаточно для фиксирования этих вторичных центров. [c.313]

    В литературе известны попытки связать механизм вторичного зародышеобразования с моментами плотности функции распред1 -ления кристаллов по размерам. Рассматриваются четыре механизма вторичного зародышеобразования, описываемые соотношениями [18, 19, 20] [c.336]

    Здесь Дс —пересыщение сплошной фазы переменные /г, g, и, ш, I— гомогенные кинетические параметры М.,— масса твердой фазы в объеме кристаллизатора (третий момент плотности функции распределения) —поверхность твердой фазы (второй момент) — линейный размер твердой фазы (первый момент) —число кристаллов в аппарате (нулевой момент) /, к, I, р — параметры, характеризующие порядки соответственно третьего, второго, первого, нулевого моментов плотности функции распределения кристаллов по размерам км, к а, кг, —константы скорости вторичного зародышеобразования ки—константа скорости зародышеобразовання, происхоля1цс о гомогенным или гетерогенным путем буквы М, 5, [c.336]

    При проведении реакции внутри области холодного пламени на главный рост давления в определенные моменты времени накладываются резкие пики, обусловленные попыптением температуры в момент вспышки холодного пламени. Три таких пика (отвечающих трем последовательным холодным пламенам пропилена) видны на кривой роста давления, показанной на рис. 64. Как видно из рисуика, холоднопламенные процессы, накладываясь на реакцию медленного окисления, на короткий промежуток времени нарушают плавный ход этой реакции. Отсюда можно сделать вывод, что холодное пламя представляет собой некоторое вторичное явление, возникающее в процессе развития реакции медленного окисления. [c.235]

    Несколько иначе протекает реакция алкилирования бензола бутеном-1. Образующийся промежуточный втор-бутил-катион до момента присоединения к ароматическому кольцу успевает частично претерпевать 1,2-миграцию гидрид-иона между вторичными углеродными атомами алкильной группы. При низкой температуре скорость первой реакции несколько превышает скорость второй реакции, о чем свидетельствует соотношение дейтерия в р- и 7-метильных группах. Повышение температуры реакции приводит к выравниванию этих скоростей. Превращение вгор-бутил-катиона в указанных условиях протекает, по-видимому, по следующей схеме  [c.92]

    Как было отмечено в предыдущей главе, давление внутри самих пластических слоев, параллельных простенкам, очень высоко и в каждый данный момент всегда превышает давление распирания. Следовательно, эго давление передается на простенки через полукокс и уже образовави1ИЙся кокс и является причиной возникновения дапления распирания. По мере развития процесса коксования обе вторичных пластических зоны (движущихся от пода и свода) приближаются к центру, причем поверхность двух основных пластических зон (параллельных простенкам) уменьшается. Таким образом, становится понятным, почему отношение давления распирания к максимальному внутреннему давлению в этих последних пластических зонах в каждый данный момент постепенно уменьшается. Вначале, когда поверхность пластической зоны очень близка к поверхности простенка, оно равно 1 когда же пластическая зона достигает средней плоскости камеры, оно уменьшается примерно до 0,5. [c.371]

    В результате антиподального расположения застойных зон первичных блоков и более интенсивного действия системы вторич--ных полостей в области возникает несимметричное результирующее магнитное поле, магнитный момент которого уменьшается в период активного функциониров ия центральной вторичной полости пониженного давления. Сила термоэлектрических токов возрастает при переходе от внешней границы J зоны погружения веществ повышенной плотности к оси первичного блока. Если вокруг оси N8 формируются только две застойные зоны первичных блоков, отделенные одна от другой их периферийными зонами, то в области образуются два полюса и Ма наивысшей напряженности магнитного поля (рис. 85, а) и четыре зоны С , Са, Сз, С4, ограниченные линиями одинаковых склонений (рис. 85, б). При этом вокруг оси N8 в области Пх возникает несимметричная система вторичных полостей пониженного давления с преимущественным развитием группы полостей с одной стороны от центральной зоны первичного блока. Ниже приведены количественные данные, характеризующие процесс образования первичных блоков и конвекции веществ в них. [c.149]

    Необходимо отметить совпадение числа первичных блоков N = 10) с числом радиальных диполей магнитного поля, при котором достигается хорошее согласование характеристик наблюдаемого и вычисленного полей (по данным Ф. Стейси). Схема конвекции веществ, приведенная на рис. 82, согласуется с выводом, что радиальные диполи нельзя рассматривать независимо от центрального диполч, имеющего значительно больший магнитный момент. С учетом сказанного о преимущественном развитии системы полостей пониженного давления Пэта схема объясняет ассиметрию центрального диполя, возможность изменения магнитного момента общего поля и его инверсию. Схема показывает, что источник самовозбуждения поля находится не в центре реактора, а выше поверхности СоСб, где образуются вторичные полости пониженного давления.  [c.154]

    Значительная разница в составе предполагает и разницу в режимах переработки. Неполная и неоперативная наблюдаемость возмущений по качеству сырья и отсутствие четких инженерных указаний по технологии разделения в данный момент приводит к ухудшению качества нефтепродуктов, уменьшению процента отбора светлых нефтепродуктов от потенци ального содержания, увеличению энергозатрат и другим нежелательным последствиям. Мощные установки АВТ в случае плохой наблюдаемости и управляемости процесса могут ифать роль усилигелей внешних возмущений для вторичных процессов. [c.225]

    Ограничивающей стадией процесса до момента начала графитации является разложение вторичных сероуглеродных и нервич- [c.201]

    Рассмотрим молекулу дициклогексилметана в стандартной конфигурации (см. рис. УП.8.6). Согласно классификации связей, учитывающей первое химическое окружение атомов углерода, в молекуле дициклогексилметана присутствуют С-С-связи двух видов С2-С2 и С2-Сд. Дипольный момент связи С2-С3 отличен от нуля вследствие различного химического окружения вторичных и третичных атомов углерода. Всего в молекуле шесть таких связей 1-2, 1-6, 1-7, 1-2( 1-6 и [c.179]

    При эволюции ПС могут образоваться, как минимум, два вида карбенов, если последние рассматривать как ПС с выродившимися сольватными оболочками за счет полимеризационного перехода из нее в ядро молекул асфальтенов. Первый вид - это анизотропный карбен (рис. 1.16), который получается, когда ПС образована голоядерными структурами. В отсутствие длинных алкильных заместителей асфальтены в ядре будут связываться за счет спин-спинового и я-взаимодействия, что способствует росту ядра в направлении оси "С" графитовой структуры. Утонение сольватной оболочки до слоя диамагнитных молекул соответствует моменту образования карбенов, коллективное состояние которых может быть отнесено к так называемым полимерным жидким кристаллам, которые в последнее время обнаружены и интенсивно исследуются [51,52]. Различие в размерах карбенов и их молекулярном весе не может препятствовать образованию мезофазы. Такая возможность показана в работе [53]. Образование вторичной мезофазы в нефтяных дисперсных системах обнаружено в работе [54] при термолизе. Такие карбены приводят к образованию волокнистого нефтяного углерода, как это, например, показано в работе [c.45]

    Охлаждение расплава начинается уже в начале цикча литья (за исключением случая с обогреваемым распределителем), поскольку форма имеет примерно комнатную температуру. При заполнении формы температура расплава снижается как в направлении течения расплава, так и в поперечном направлении. Образуется пристенный слой затвердевшего полимера, средняя толщина которого уменьшается при повышении температуры поступающего в форму расплава и при увеличении скорости впрыска. В конце стадии заполнения формы охлаждение становится доминирующим процессом. Для компенсации уменьшения удельного объема полимера, вызванного охлаждением, приходится слегка подпитывать форму. Если снять давление до момента застывания расплава во впуске (или при отсутствии обратного клапана), то вследствие высокого давления внутри полости формы может начаться обратное течение расплава. И, наконец, в процессе охлаждения происходит слабое вторичное течение, приводящее к заметной молекулярной ориентации. Это течение вызвано наличием градиента температуры и перетеканием расплава из горячих зон в холодные, компенсирующим объемную усадку при охлаждении. Такие вторичные потоки следует ожидать в местах резкого уменьшения поперечного сечения полости формы. Если вторичное течение невозможно (обычно из-за нехватки материала), то в блоке литьевого изделия образуются пустоты. Во избежание образования пустот необходимо, чтобы масса вводимого в форму полимера превышала или была равна произведению объема внутренней полости формы на плотность полимера при комнатной температуре. [c.537]

    Оригинальным моментом выдвинутой радикалыю-цепиой схем), окисления пропана является предложенная автором изомеризация перекисного радикала КОа, протекающая с разрывом С—С-связи. В результате последующего распада (по О—О-связи) изомеризованного радикала образуются из первичного КОз молекула НСНО п алкоксильный радикал К СНзО, а из вторичного ВОз молекула К СНО и метоксильный радикал СН3О. [c.254]


Смотреть страницы где упоминается термин Момент вторичный: [c.292]    [c.89]    [c.168]    [c.126]    [c.43]    [c.25]    [c.25]    [c.397]    [c.540]    [c.154]    [c.197]   
Перемешивание и аппараты с мешалками (1975) -- [ c.221 , c.222 ]

Перемешивание и аппараты с мешалками (1975) -- [ c.221 , c.222 ]




ПОИСК







© 2025 chem21.info Реклама на сайте