Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Происхождение ароматических углеводородов нефти

    Происхождение ароматических углеводородов нефти [c.124]

    Алифатические углеводороды, в больших количествах содержащиеся в нефти, не использовались непосредственно для химической переработки, хотя являлись чрезвычайно дешевым сырьем. Это вызывалось двумя причинами. Нефть представляет собой весьма сложную смесь углеводородов, состав которой изменяется в широких пределах в зависимости от происхождения. Высокомолекулярные компоненты или тяжелые фракции нефти сравнительно мало изучены даже в настоящее время. Кроме того, углеводороды нефти лишь с трудом и вместе с тем не однозначно взаимодействуют с реагентами, обычно применявшимися для химической переработки ароматических углеводородов. Поэтому нефть длительное время не привлекала серьезного внимания промышленности органического синтеза. [c.8]


    Сырьем для коксования могут служить также экстракты от селективной очистки масел и тяжелый газойль каталитического крекинга. При очистке смазочных масел фенолом, фурфуролом и другими селективными растворителями в экстракте концентрируются полициклические нафтеновые и ароматические углеводороды — нежелательная часть для товарных масел. Коксуемость этих экстрактов близка к коксуемости крекинг-остатков из дистиллятного сырья и мазутов малосмолистых нефтей. Применение такого сырья, богатого ароматическими конденсированными системами, позволяет получать нефтяной кокс с хорошими механическими свойствами и низким содержанием золы, так как это сырье дистиллятного происхождения. [c.35]

    В табл. 4 приводятся данные, показывающие действие депрессатора АзНИИ на масла различного происхождения и на отдельные группы углеводородов, выделенные из этих масел. Приемистость к депрессатору неодинакова не только у масел и дистиллятов, но и у парафино-нафтеновых углеводородов, выделенных из различных нефтей. Тем не менее четко обозначена хорошая приемистость для парафино-нафтеновых углеводородов и парафинистых масляных дистиллятов присутствие смол и ароматических углеводородов (особенно полициклических) почти полностью подавляет депрессорную способность присадки. Поэтому применение депрессорных присадок необходимо сочетать с исследованием углеводородного состава масляных фракций и с подбором оптимальной степени их очистки. [c.149]

    Исследования твердых углеводородов остаточного происхождения (церезинов) [59, 78, 79] позволили установить, что эти углеводороды являются в основном алканами разветвленного строения. В работе [70] показано, что церезин, выделенный из деасфаль-тированного концентрата туймазинской нефти, состоит преимущественно из нафтенов и ароматических углеводородов с длинными алкильными цепями, образующих комплекс с карбамидом, и с разветвленными цепями, не образующих комплекса. При этом нафтены содержат в среднем два—три кольца в молекуле, а аро- [c.44]

    Исключительно важное значение приобретает химическая переработка нефти и газа в связи с развитием нефтехимических производств, т. е. отраслей химической промышленности, базирующихся на нефтяном сырье. Таковы процессы производства этилового спирта, полиэтилена, синтетического каучука, искусственного волокиа, моющих средств и др. Как правило, все эти продукты производят на основе углеводородов двух классов — непредельных и ароматических. Непредельные углеводороды присутствуют только в нефтепродуктах вторичного происхождения, т. е. крекинга. Ароматические углеводороды содержатся в прямогонных фракциях в ограниченных [c.12]


    В заключение следует отметить, что современное производств ароматических углеводородов и автомобильных бензинов основывается на бензиновых фракциях прямой перегонки и вторичного происхождения. Однако в ближайшем будущем недостатка в ароматических углеводородах для использования их в химической промышленности ощущаться не будет, так как менее 10% бензола, толуола и ксилола в настоящее время выпускают в виде товарной, продукции, а остальные 90% находятся в составе бензинов каталитического риформинга, каталитического крекинга, гидрокрекинга и других процессов переработки нефти. Рациональное распределение бензиновых фракций и развитие на заводах различных процессов производства ароматических углеводородов и автомобильного бензина позволят выпускать требуемое количество ароматических углеводородов, не снижая качества других продуктов нефтепереработки.. [c.299]

    Введение в неструктурированную систему специальных наполнителей, например асфальтенов, смол, полициклических ароматических углеводородов, мезофазы, парафинов, карбенов, кар-бондов, извлеченных из нефти или из продуктов ее переработки, а также наполнителей не нефтяного происхождения. [c.33]

    Трудно бывает решить, является ли то или другое химическое вещ,ество нефтехимическим продуктом, поскольку, как уже отмечалось выше, любое органическое соединение можно синтезировать, исходя из метана. Кроме того, возможность получения бензола, толуола, нафталина и других соединений из нефти означает, что все синтетические вещества ароматического ряда, в том числе красители, лекарственные и взрывчатые вещества и т. п., можно рассматривать как продукты нефтяного происхождения. К выбору объектов для описания приходилось подходить очень продуманно, чтобы не увеличить чрезмерно объем книги. Из трех основных типов органических соединений — алифатических, ароматических и гетероциклических — в химии производных нефти рассматриваются главным образом алифатические соединения. Производство ароматических углеводородов из нефти обсуждается в книге еще довольно подробно, но вопросы дальнейшей их химической переработки ограничиваются только последними достижениями в этой области. Аналогичным образом описывается производство полупродуктов для получения высокополимеров из сырья нефтяного происхождения, но процессы полимеризации опускаются. Вопросы химии и технологии нефтеперерабатывающей промышленности, которая занимается главным образом производством топлив и смазочных масел из сырой нефти, освещены лишь в той степени, в какой они имеют отношение к химической переработке нефти. В книге не упоминается о производстве сажи, базирующемся почти исключительно на нефтяном сырье, но не приводящем к получению синтетических органических продуктов. [c.12]

    Бензин представляет собой смесь летучих углеводородов. В зависимости от происхождения сырой нефти он может наряду с алканами содержать различные количества циклических алканов и ароматических углеводородов. Продукт прямой перегонки нефти, бензин, состоящий главным образом из неразветвленных углеводородов, вообще говоря, мало пригоден в качестве горючего для автомобилей. В автомобильном двигателе смесь паров бензина и воздуха зажигается искрой от запальной свечи в тот момент, когда смесь газов внутри цилиндра сжата поршнем. При сгорании бензина происходит сильное и плавное расширение газа в цилиндре, заставляющее поршень перемещаться в цилиндре и приводить в движение коленчатый вал двигателя. Если горение газа происходит слишком быстро (горючая смесь детонирует), поршень получает резкий толчок вместо мощного плавного наращивания усилия. В результате в двигателе возникает стук , или гудящий звук, а эффективность получения полезной мощности за счет энергии сгорания бензина снижается. [c.419]

    Нефть — ископаемое, жидкое горючее, сложная смесь органических веществ предельных углеводородов (парафинов), нафтенов (циклопарафинов), ароматических углеводородов и др. В нефти различных месторождений обычно преобладает какой-либо из названных классов углеводородов. В состав Н. обычно входят также кис-лород-, серо- и азотосодержащие вещества. Н.— маслянистая жидкость с характерным запахом, темного цвета, легче воды, в которой не растворяется. Существует несколько теорий происхождения нефти. Н.— важнейший источник топлива, смазочных масел и других нефтепродуктов, а также сырья для химической промышленности. Основным (первичным) процессом переработки И. является ее перегонка, в результате которой получают различные нефтепродукты бензин, лигроин, керосин, соляровые масла, мазут, вазелин, парафин, гудрон. Вторичные процессы переработки нефти (крекинг, пиролиз) позволяют получать дополнительно жидкое топливо, различные углеводороды, главным образо.м ароматические (бензол, толуол и др.). Большое значение имеют как топливо и химическое сырье попутные нефтяные газы и газы крекинга нефти. [c.89]


    Нефть в основном состоит из алифатических углеводородов, в некоторых случаях (в зависимости от ее происхождения) в ней могут содержаться алициклические и ароматические углеводороды. В небольших количествах в состав нефтей входят также кислородсодержащие соединения, как, например, альдегиды, кетоны и карбоновые кислоты, серо- и азотсодержащие. Нефть попадает в природную среду различными путями, например, при бурении скважин на нефтяных месторождениях, авариях танкеров или течи в нефтепроводах, транспортировке и переработке [c.3]

    Энглер (1888 г.) при перегонке сельдевого жира получил коричневого цвета масла, горючие газы и воду. В легкой фракции масел содержались углеводороды от С5 до Сд, во фракции >300 °С — парафины, нафтены, олефины и ароматические углеводороды. Возникла гипотеза образования нефти из жиров животного происхождения. [c.42]

    Не лишено интереса то обстоятельство, что ни конденсированные, ни связанные через один углеродный атом ароматические сложные углеводороды не способны обособлять бензольную структуру ни при пиролизе, ни при термокатализе, конечно, без предварительного гидрирования, и это делает особенно интересным вопрос о происхождении нафталиновой структуры, рассматриваемый в главе о происхождении ароматических углеводородов. Реакции сопряженного гидрирования, в результате которых одно из ароматических колец превратилось бы в нолиметилено-вое (что могло бы при превращении нефти дать бензол из полициклических ароматических углеводородов), еще слишком мало изучены на примерах сложных углеводородов, и в настоящее время нет возможности привлекать эту реакцию к объяснению некоторых относящихся сюда вопросов. [c.122]

    Ароматические углеводороды нефти могут иметь различное происхождение. Во-нервых, ароматические группировки содержатся уже и самом сапропелитовом материале на более или менее глубоких стадиях его изменения. В керогене эстонских сланцев X. Т. Раудсепн нашел до 26% ароматических систем конечно еще ие углеводородного характера, а так как ароматические кольца не уничтожаются, они переходят из одного класса органических соединений в какой-то другой класс и в конце концов в ароматические углеводороды. Постоянное содержание кислорода (часто и серы) в ароматических углеводородах, выделенных из нефти физическими методами, является возможно признаком, унаследованным от исходного материала. Последний мог содер-н ать ароматические системы лигнина водяных растений. Попадавшие в сапропелевые илы в виде растительного детрита остатки наземной флоры также могли повысить ресурсы ароматических структур. Значительное содержание ароматических углеродных атомов в гумусовых углях, несмотря на то что клетчатка их не содержит, иллюстрирует возможность значительного содержания ароматических систем и в исходном материале нефти. Во всяком случае речь мол ет идти только о полициклических ароматических системах, а, следовательно, и об углеводородах этого ряда. С этой точки зрения содержание кислорода именно в высших членах ароматического ряда, выделенных из нефти, показательно в том отношении, что эти углеводороды ближе к иачальному веществу нефти, чем углеводороды прочих рядов, особенно среднего и низкого молекулярного веса. Вместе с тем подкрепляется положение, что во всех нефтях близость группового состава характерна именно для выспщх фракций высокого молекулярного веса. Различные типы нефти в основном зависят от позднейших ее превращений. Разукрупнение высших гибридных углеводородов [c.124]

    Гилро еароматизапия — каталитический процесс обратного действия по отношению к каталитическому риформингу, предна — значен для получения из керосиновых фракций (преимущественно прямогонных) высококачественных реактивных топлив с ограничен ым содержанием ароматических углеводородов (например, менее 10 % у Т —6). Содержание последних в прямогонных керосиновых фрскциях в зависимости от происхождения нефти составляет 14 — 35 а в легком газойле каталитического крекинга — достигает до 70 . Гидродеароматизация сырья достигается каталитическим гид — рированием ароматических углеводородов в соответствующие на — фтены. При этом у реактивных топлив улучшаются такие показатели, как высота некоптящего пламени, люминометрическое число, склонность к нагарообразованию и др. [c.235]

    Содержание иеуглс]юдородных компонентов в ароматикс, выделенной из тяжелых нефтяных продуктов, зависит от двух факторов — пределов выкипания продуктов и происхождения нефти. Для данной нефти содержание неуглеводородных компонентов в ароматике быстро возрастает с увеличением пределов выкипания фракции. За некоторым исключением, ароматические углеводороды, выделенные из бензинов, бывают всегда чистыми, содержащими в среднем около 1 % неуглеводородных (сернистых) соединений. Содержание неуглеводородных компонентов в ароматике из газойля или масляного сырья варьирует в широких пределах — от 3—4 % для пенсильванских нефтей до 2(3—25 % для нефтей, добываемых в Калифорнии, и для нефтей, содержащих значительные количества серы и азота. [c.27]

    Если бы растительные и животные жиры были первичным исходным веществом нефти, то на ранних стадиях олефиновый продукт, имеющийся в изобилии, способствовал бы реакциям иона карбония. Действительно, одна сторона проблемы происхождения заключается в объяснении присутствия насыщенных парафинов в нефтях. Реакции, указанные выше, объясняют образование некоторых парафиновых углеводородов одновременно с ароматическими. Как было показано выше, жиры из животных и растительных морских оргашхзмов обычно содержат около 20 % насыщенных кислот и главным образом пальмитиновую кислоту. Если принять, что при механизме указанного выше водородного перехода три насыщенные молекулы образуют одно бензольное кольцо, то отношения ароматических углеводородов к парафиновым в пяти бензинах, приведенные в табл. 2, являются приблизительно равновесными. Однако эти анализы характеризуют только бензиновые фракции. [c.90]

    Кристаллизация твердых углеводородов при депарафинизации зависит от глубины очистки рафинатов, которая характеризуется степенью извлечения смол и полициклических ароматических углеводородов. Смолы остаточного происхождения в большей степени влияют на кристаллообразование твердых углеводородов, чем дистиллятные, содержащиеся в той же концентрации, причем не наблюдается отличия в воздействии аналогичных по происхождению гр)рп смол, содержащихся в рафинатах из серщ1стых и мало-сернисхых нефтей. Смолы при малой концентрации в растворе тормозят, образование зародышей кристаллов, твердых углеводородов и практически не влияют на рост уже образовавшихся кристаллов правильной орторомбической структуры. В. результате из-за снижения чиела зародышей кристаллов в конейрм итоге получаются более крупные кристаллы, чем в отсутствие емол. [c.138]

    Церезины, выделенные из нефтей и озокеритов различного происхождения, являются сложной смесью преимущественно нафтеновых углеводородов, относящихся к MOHO-, ди- и трициклическим соединениям с прямыми и разветвленными боковыми цепями. Содержание ароматических углеводородов в церезинах, выделенных из озокеритов, невелико (3—5%), так как товарные [c.674]

    Выделенные из ароматического концентрата (фракция 200— 430° С) моноароиатические углеводороды представляли собой гомологические ряды углеводородов различной структуры, являющиеся в большей части гомологами бензола. В целом именно моноарома-тические углеводороды как обычного, так и смешанного типов строения — соединения, наиболее близки к насыщенным циклическим углеводородам нефтей, представляют, на наш взгляд, значительный интерес для химии и особенно для геохимии нефти. Среди них нередко можно встретить реликтовые структуры, происхождение которых не вызывает сомнения (например, моноароматические стераны и т. д.). К тому же моноароматические углеводороды — это группа углеводородов, которая достаточно легко и однозначно может быть выделена из общей смеси ароматических соединений жидкофазной адсорбцией на оксиде алюминия. [c.155]

    Первое сообщение о присутствии в нефтях ароматических углеводородов тритерпеноидного происхождения было сделано Бендорай-тисом [17]. В нефтях Лома-Новиа он обнаружил две серии моноароматических углеводородов, в образовании которых могли участвовать тритерпеноиды. [c.169]

    Ресурсы толуола, добываемого из каменноугольной смолы, недостаточны для удовлетворения нун д производства взрыв--чатых веществ в военное время, то уже задолго до второй мировой войны в различных странах велпсь изыскания каталитических методов превращения в ароматические углеводороды олефиновых, нафтеновых и парафиновых углеводородов, ка1ч природной, так и синтетических нефтей. Если промышленностт, моторных топлив интересовали превращения углеводородов состава Сд—Сц,, то промышленность взрывчатых веществ интересовалась лишь толуолом и, следовательно, в первую очередь дегидрогенизацией чистого метилциклогексана нефтяного происхождения. [c.140]

    Полученные в лаборатории результаты полностью подтвердились в промышленных условиях. При переработке на одной установке коксования вместо крекинг-остатка прямогониых остатков мангышлакских нефтей пробег установки увеличился с 5 до 30— 45 сут. Аналогичные результаты были получены при добавлении в крекинг-остатки мангышлакской нефти 25—30% экстракта с установки дуосол. При добавлении в крекинг-остаток смеси сернистых нефтей концентрата ароматических углеводородов (крекинг-остаток дистиллятного происхождения) в соотношении 1 1 пробег установки замедленного коксования на другом заводе возрос в 3 раза. Отсюда следует важный практический вывод при подборе новых видов сырья для установок замедленного коксования необходимо обраш,ать внимание не только на выход и качество получаемого кокса, но и на возможность высокотемпературного нагрева остатков в змеевиках трубчатой печи без существенного нарушения структурной стабильности, т. е. до наступления расслоения на фазы и начала интенсивного коксоотлол<ения. С этой целью новые виды сырья, предлагаемые для коксования, должны быть испытаны по предложенной методике на устойчивость против расслоения, и при необходимости следует подобрать количества добавок (экстрактов или других концентратов ароматических углеводородов), обеспечивающих требуемое значение т. [c.62]

    Содержание в маслах нафтено-парафиновых углеводородов (присутствие чисто нафтеновых без боковых цепей крайне незначительно) в зависимости от происхождения нефти состз1Вляет 50— 75%. С повышением температур выкипания нефтяной фракции увеличивается число атомов углерода в боковых цепях молекул нафтеновых углеводородов, повышаются температура их застывания и индекс вязкости. Нафтеновые углеводороды в оптимальных количествах являются желательными компонентами масел. Ароматические углеводороды практически всегда присутствуют в товарных маслах. Их содержание и структура зависят от природы нефти и температур выкипания фракции чем выше эти температуры, тем больше ароматических углеводородов в ней содержится при этом возрастает доля полициклических (производных нафталина и фенантрена). Ароматические углеводороды в большинстве случаев содержат нафтеновые. кольца и боковые парафиновые цепи разной длины. Ароматические углеводороды (в основном полициклические с короткими- боков1 ши цепями) удаляют из масляного сырья в процессах селективной и адсорбционной очистки, а превращают их в нафтеновые и парафиновые углеводороды — при гидрогенизационных процессах. [c.39]

    При добавлении одинакового количества ТЭС к бензинам различного происхождения их антидетонационные свойства улучшаются неодинаково. Это свойство бензинов в различной мере повышать детонационную стойкость при добавлении антидетонаторов называют приемистостью. Приемистость бензинов к ТЭС зависит от углеводородного состава к содержания неуглеводородных примесей, в первую очередь сероорганических соединений. Наибольшей приемистостью к ТЭС обладают парафиновые углеводороды, наименьшей— олефиновые и ароматические, нафтеновые углеводороды занимают промежуточное положение. Бензины прямой перегонки обычно обладают большей приемистостью к ТЭС, чем бензины термического крекинга и.ч той же нефти. При увеличении содержания ароматических углеводородов в бензинах каталитического крекинга и риформинга их приемистость к ТЭС ухудшается. Сер Оорганичеокие соединения способны связывать активные соединения, образующиеся при разложении ТЭС, поэтому с увеличением содержания серы в бензине его приемистость с ТЭС уменьшается. [c.288]

    По мере усовершенствования методики анализа сведения о составе нефти непрерывно уточняются и вносятся значительные поправки в прежние представления. Так например, оказалось, что изометановые углеводороды распространены в нефтях гораздо больше, чем это предполагалось раньше, точно также значительно выросла роль так называемых гибридных углеводородов. Ранее они относились к классу ароматических, теперь же известно, что в ВЫС1ЫИХ фракциях нефти, частично и в средних фракциях, содержатся такие нолициклические углеводороды, в которых одно или два цикла ирогидрированы, т. е. они относятся к классу полиметиленовых углеводородов. Роль настоява их ароматических углеводородов, содержащих боковые метановые цепи, наоборот снижается. Гибридные нафтеново-ароматические углеводороды очень широко представлены во всех нефтях, особенно мало превращенных. Стало известным также, что значительная часть азотистых, сернистых и кислородных соединений в нефтяных дистиллятах имеет вторичное происхождение и образуется во время перегонки нефти из каких-то высокомолекулярных гетерогенных соединений. В связи с этим трудно рассчитывать и на первичный характер тех остатков от перегонки нефти, которые не перегоняются без явного разложения. [c.23]

    Характер связи отдельных ароматических ядер в гибридных углеводородах не решается современными методами исследования. Неизвестно, нанример, имеет ли связь в бициклических ароматических углеводородах из высших гибридных фракций тип нафталина или дифенила, связывает ли оба ароматических цикла пятичленное кольцо и т. п. Нафиалин и ею ближайшие гомологи, а также тетралин с гомологами много раз определялись в нефтях, в их средних фракциях. Есть указания на присутствие феыилцик-логексана, дифенила и 3-метилдифенила. Наличие антрацена и фенантрена в продуктах пиролиза нефти, даже с учетом высокой прочности этих трициклических систем, ничего не доказывает, потому что эти же углеводороды могут быть получены пиролизом даже бензиновых фракций, т. е. они явно имеют вторичное происхождение. [c.119]

    Другим источником ароматических углеводородов могли быть реакции диспропорционирования водорода, а также реакции полимеризации олефинов и, наконец, прямое замыкание цепи метановых углеводородов. Последняя реакция протекает, как известно, минуя стадии полиметиленовых углеводородов, термокаталитическое же превращение этих последних в ароматические углеводороды протекает в такой слабой степени, что едва ли возможно видеть значительный источник ароматических углеводородов в реакциях дегидрогенизации. Этот вопрос еще не может считаться решенным окончательно. Вторичным источником высших ароматических углеводородов являются различные типы конденсации простейших представителей в высшие. Эта реакция обычна в случае термокатализа различных нефтяных фракций. Например из керосина, при температуре 300° был получен с алюмйсилика-том антрацен. Все эти вторичные ресурсы ароматических углеводородов, но-видимому, не являются такими крупными, как происхождение из исходного материала нефти. [c.125]

    Откуда бы ни приходил в нефтяные недра кислород, необходимый для образования смолистых веш,еств нефти, естественно предполагать, что содержание смолистых веществ является мерой этого окислительного действия. Нефти, очень богатые смолами, считаются поэтому более окисленными. Это положение обычно иллюстрируется большим сходством ароматических углеводородов нефтяных фракций со смолистыми веществами. Постоянное присутствие кислорода не только в нейтральных смолах, но и в ароматических углеводородах высших нефтяных фракций, как будто указывает на особую восприимчивость именно этих углеводородов к фиксирован1ГЮ кис-аорода. Практически все гетерогенные соединения нефти сконцентрированы именно в неперегоняюпцгхся остатках, т. е. в ее смолистых веществах. Однако в смол ах присутствует не только кпслород, но и азот и сера, в частности порфириновые комплексы. Поэтому, в случае окисления атмосферным кислородом, присутствие в смолах азота надо объяснить или фиксированием этого азота, что невероятно с химической точки зрения, или допустить, что азот в смолах не связан с атмосферным азотом. В последнем случае азот приходится рассматривать как вещество, унаследованное от исходного материала нефти. Если стать на эту точку зрения, гораздо логичнее допустить такое же происхождение и связанного кислорода в смолах, т. е. придется отказаться от гипотезы внедрения кислорода в смолы уже после формирования [c.156]

    Нефть и нефтепродукты состоят из низкомолекулярных и высокомолекулярных соединений. Низкомолекулярные соединения представляют собой в основном парафиновые, нафтено-парафиновые и ароматические углеводороды. Высокомолекулярная часть нефти состоит главным образом из углеводородов смешанного строения— парафинов, моно- и конденсированных нафтено-парафпно-вых, а также моно- и бициклических ароматических углеводородов ряда бензола и нафталина. В процессе термодеструктивных пре-вращ,ений эти углеводороды при определенных условиях могут образовывать конденсированные иолициклические структуры — основу для получения различных видов нефтяного углерода. В наиболее тяжелую часть высокомолекулярных компонентов входят смолы и асфальтены, а в состав продуктов вторичного происхождения— еще карбены и карбоиды. [c.11]

    Каталитическому крекингу можно также подвергать сырье вторичного происхождения — газойли коксования и термического крекинга под давлением, газойли гидрокрекинга. Газойли коксования отличаются от прямогонных газойлей наличием непредельных, повышенным содержанием ароматических углеводородов, серы и азота. Ниже представлены эти показатели для прямогонного вакуумного газойля туймазинской нефти и для выкипающего в одинаковых с ним пределах (320—460 °С) дистиллята, получаемого коксованием гудро на той же нефти , - [c.142]

    Зависимость между географическим местонахождением и составом нефти проявляется настолько сильно, что во многих случаях для сравнительно полной характеристики нефти достаточно знать ее происхождение. Пенсильванские нефти являются типичными парафипистыми нефтями, дающими низкооктановый бензин и высококачественные смазочные масла, отличающиеся чрезвычайно пологой вязкостно-температурной характеристикой (высокий индекс вязкости) оба эти показателя свидетельствуют о высоком содержании парафиновых углеводородов нормального строения. Нефти бассейна Лос-Анжелоса являются полной противоположностью пенсильванским нефтям они отличаются весьма низким содержанием парафиновых, но высоким содержанием нафтеновых и ароматических углеводородов,, и дают высокооктановый бензин и смазочные масла с низким индексом вязкости. [c.33]

    В табл. 4 приведены данные о количествах бензола, толуола п ксилолов, образующихся при переработке 1000 нефти. Следует отметить, что объемное количество различных углеводородов изменяется в зависимости от происхождения нефтп. На основании данных табл. 3 мон но принять, что среднее содержание цикланов в перерабатываемых в США нефтях равно 30% об., а ароматических углеводородов 9,7%. Если исходить из этих допущений, то при объеме переработки нефти в США 1270 тыс. м 1сутки легко можно подсчитать нотенциальные ресурсы ароматических углеводородов из нефти. На основании таких расчетов и определили потенциальные выходы бензола, толуола и изомерных ксилолов, приведенные в табл. 5. Для предварительных подсчетов принято, что ксплольная фракция содержит по 20% этилбензола, о-ксилола п /г-ксило-ча и 40% ж-ксплола. [c.244]

    Горючая масса нефтей, представляющая собой смесь жидких и растворенных в них твердых углеводородов, несмотря на сравнительно узкие колебания в элементарном составе, может существенно отличаться для различных месторождений по ряду свойств (удельному весу, количественному и качественному выходу погонов при фракционной разгонке и т. п.). Различают нефти по содержанию в них метановых, нафтеновых и ароматических углеводородов.. Предполагается, что нефти некоторых месторождений, равно как и горючие сланцы, имеют растительное, планктоновое происхождение. [c.29]

    Азотистые соединения встречаются во многих нефтяных маслах обычно в очень малых концентрациях и являются, вероятно, производными пиридина и хиполина, поэтому они напоминают. ароматические углеводороды как ио структуре, так, вероятно, и по общим физическим свойствам. Присутствие азотистых соединений в нефтяных маслах часто используется как аргумент в пользу теории животного происхождения нефти, поскольку разложение протеинов в животных тканях рассматривается как вероятный источник азота. [c.106]


Смотреть страницы где упоминается термин Происхождение ароматических углеводородов нефти: [c.126]    [c.9]    [c.93]    [c.16]    [c.518]    [c.11]    [c.196]    [c.266]    [c.67]    [c.132]   
Смотреть главы в:

Химия нефти -> Происхождение ароматических углеводородов нефти




ПОИСК





Смотрите так же термины и статьи:

Ароматические углеводороды в нефт



© 2024 chem21.info Реклама на сайте