Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородные связи в органических соединениях

    Появление в воде любых других частиц сопряжено с нарушением системы водородных связей между молекулами воды. Поэтому в воде, как правило, растворимы вещества, способные к образованию новых водородных связей взамен разрушенных. К ним относятся вещества, содержащие атомы кислорода, в особенности гидроксильные группы, или атомы азота. Примером органических соединений, хорошо растворимых в воде, могут служить низшие спирты, альдегиды и кетоны, мочевина, формамид. Известно, что метиловый и этиловый спирты, ацетон, формамид смешиваются с [c.135]


    В табл. 4 представлены значения энергии водородных связей для соединений, содержащих в качестве протоно-акцептора атомы О, N. Р. Энергия водородных связей определялась по смещению частот валентных колебаний воды [126] для тройной системы четыреххлористый углерод — органическое вещество — вода Соотношение концентраций для такой системы 90,0 9,95 0,05 об.%. Р1К-спектры воды для некоторых из указанных систем приведены на рис. 10—12. [c.34]

    Водородная связь играет большую роль в химии органических соединений, полимеров, белков. Вследствие их незначительной прочности водородные связи легко возникают и легко разрываются при обычной температуре, что весьма существенно для биологических процессов. Предполагают, что водородная связь играет большую роль в механизме наследственности действие памяти связывают с хранением информации в молекулярных конфигурациях с водородными связями. [c.93]

    Иногда по компонентному составу экстрактивные вещества древесины подразделяют на три группы алифатические соединения терпены и терпеноиды фенольные соединения. Эти группы соединений отличаются своими свойствами и локализацией в древесине. Алифатические соединения, терпены и терпеноиды экстрагируются малополярными растворителями, тогда как для фенольных соединений требуются полярные органические растворители, способные образовывать водородные связи. Алифатические соединения концентрируются главным образом в лучевой и древесной паренхиме, фенольные соединения - в ядровой древесине, а терпены и терпеноиды (в основном монотерпены и смоляные кислоты) - в смоляных ходах. Фактически при такой классификации не учитьшаются соединения, извлекаемые из древесины только водой и не растворимые в органических растворителях. [c.497]

    При образовании оксониевых соединений или молекулярных соединений за счет возникновения водородной связи органическое кислородсодержащее вещество функционирует как основание но, так как основные свойства кислорода значительно слабее, чем азота в аминах, долгое время константы основности органических кислородсодержащих веществ определены не были. Горди, базируясь на установленной им закономерности о линейной зависимости между лога- [c.246]

    Простейшие с точки зрения структурных особенностей органические молекулы — это молекулы, содержащие только простые (а) углерод-углеродные и углерод-водородные связи. Эти соединения называют парафинами или алканами (рис. 21.11). [c.141]


    Свойства органических соединений, способных к образованию межмолекулярных водородных связей. Если соединение содержит группу, проявляющую как донорную, так и акцепторную способность, например гидроксильную группу, то такие соединения, особенно с относительно малыми молекулярными массами, являются ассоциированными жидкостями со значительно более высокой те.мпературой кипения, чем близкие к ним соединения, не способные к образованию Н-связей например, СН ОН (т. кип. 68 "С) СНзОСНз (т. кип. —23,6 °С). Степень ассоциации зависит от температуры и уменьшается по мере ее повышения (вследствие возрастающего значения энтропийного фактора). В парах, за немногими исключениями, соединения не ассоциированы. [c.127]

    Атом водорода, соединенный с атомом сильно электроотрицательного элемента, способен к образованию еще одной химической связи. Эта связь называется водородной. Наличие водородных связей приводит к заметной полимеризации воды, фтороводорода, многих органических соединений. Например, [c.70]

    При растворении компонентов- нефтяного сырья в растворителях могут в той или иной степени проявляться все составляющие сил межмолекулярного взаимодействия. Очевидно, с повыщением температуры роль ориентационного взаимодействия и водородных связей снижается, роль дисперсионных сил возрастает. По способности растворять углеводороды органические и некоторые неорганические растворители можно разделить на две группы. К первой группе относятся растворители, при обычной температуре смешивающиеся с жидкими компонентами сырья практически во всех отношениях растворимость твердых компонентов в них подчиняется общей теории растворимости твердых веществ в жидких. Такими растворителями являются, например, неполярные соединения — низкомолекуляряые жидкие и сжиженные углеводороды парафинового ряда, а также соединения с очень небольшим дипольным моментом — четыреххлористый углерод, этиловый 5фир, хлороформ и т. д. [c.72]

    Как известно, энергию водородных связей в общем случае можно представить как сумму вкладов электростатического, обменного, поляризационного и дисперсионного взаимодействий [206]. Для органического вещества торфа, содержащего большое число дипольных функциональных групп, существование электростатической составляющей водородной связи в формировании взаимодействия вода — торф вполне очевидно. Наличие в органических соединениях торфа структур полисопряжения, а также ароматических структур с ненасыщенными связями предопределяет возможность реализации слабых водородных связей [207]. Однако на фоне преобладания электростатической составляющей другими составляющими, ответственными за формирование водородных связей в торфе, по-видимому, можно пренебречь. [c.65]

    Водородные связи влияют на физические (температуры кипения и плавления, вязкость, спектральные характеристики) и химические (кислотно-основные) свойства соединений. Так, температура кипения этанола С2Н5ОН (78,3 °С) значительно выше, чем у имеющего одинаковую с ним молекулярную массу диме-тилового эфира СН3ОСН3 (—24°С), не ассоциированного за счет водородных связей. Органические соединения могут взаимодействовать с растворителем, т. е. сольватироваться, за счет меж-молекулярных водородных связей. Например, в водном растворе происходит гидратация спиртов. [c.40]

    Коэффициент распределения водорастворимых соединений между органическими растворителями и водой тем выше, чем выше способности молекулы растворптеля к образованию водородных связей. Способность же растворителя образовывать водородные связи в ряде случаев характеризуется взаимной растворимостью данного растворителя с водой, что позволяет иногда приближенно вычислить величину коэффициентов распределения. [c.88]

    Приводимые ниже данные относятся только к растворимости парафина, находящегося в крупнокристаллическом состоянии. Вследствие неоднородности парафина и множества входящих в его состав компонентов понятие о его растворимости является до некоторой степени относительным, поскольку насыщенный раствор наиболее высокоплавких парафинов будет ненасыщенным для находящихся в растворе легкоплавких компонентов.. Кроме того, легкоплавкие компоненты парафина являются растворителем по отношению к высокоплавким компонентам. Растворимость объясняется [41,42] взаимным притяжением молекул растворителя и растворяемого вещества. Современная молекулярная теория растворов базируется на том, что свойства растворов определяются в основном межмолекулярным взаимодействием, относительными размерами, формой молекул компонентов и их стремлением к смешению, которое сопровождается ростом энтропии [43]. Притяжение между молекулами органических соединений создается силами Ван-дер-Ваальса и водородными связями. Силы Ван-дер-Ваальса слагаются из следующих трех составляющих. [c.69]


    Чем симметричнее сами частицы, чем симметричнее они расположены и чем меньше связь между ними в жидком состоянии, тем больше оснований предполагать, что охлаждение жидкости приведет к ее кристаллизации. Действительно, расплавленные металлы, расположение атомов в кристаллической решетке которых близко к плотнейшей упаковке, легко кристаллизуются, а расплавленные силикаты часто переходят в стеклообразное состояние, Органические соединения, содержащие много гидроксильных групп (например, глицерин), в отличие от углеводородов, затвердевая, обычно не кристаллизуются - сказывается влияние водородных связей. [c.171]

    Появление в воде посторонних частиц сопряжено с нарушением системы водородных связей между молекулами воды. Поэтому в воде, как правило, растворимы вещества, способные к образованию новых водородных связей взамен разрушенных. К ним относятся вещества, содержащие атомы кислорода, в особенности гидроксильные группы или атомы азота. Примерами органических соединений, хорошо [c.122]

    Многие органические соединения также образуют водородные связи, важную роль водородная связь играет в биологических процессах. [c.53]

    Атом водорода в полученном димере связан с двумя атомами фтора одной ковалентной связью и одной водородной связью. Энергия водородной связи составляет 8—40 кДж/моль, т. е. обычно больше энергии межмолекулярного взаимодействия, но значительно меньше энергии ковалентной связи. Водородная связь имеет весьма широкое распространение. Она встречается в неорганических и органических соединениях. Водородная связь иногда определяет структуру вещества и заметно влияет на физико-химические свойства. Важную роль играет водородная связь в процессах кристаллизации и растворения веществ, образования кристаллогидратов, ассоциации молекул и др. Водородная связь обусловливает отклонение свойств некоторых соединений от свойств их атомов. Примером полимерных ассоциатов может служить фторид водорода  [c.68]

    Органические стекла образуются в большинстве случаев высокомолекулярными соединениями, содержащими гидроксильные или другие группы, способные к образованию водородной связи. Большие молекулы таких веществ под влиянием сил химической связи утрачивают способность к переориентировке при охлаждении жидкости и сохраняют неупорядоченное состояние при отвердевании. [c.65]

    Что такое водородная связь Для каких органических соединений она характерна  [c.45]

    Брендстрём [46, 112] определил большое число кажущихся констант экстракции между водой и различными растворителями для стандартной четвертичной аммониевой соли — бромида тетра -н-бутиламмония (табл. 1.1). Растворитель, используемый в работе по МФК, должен быть не смешивающимся с водой так как в противном случае будут образовываться сильно гидратированные экранированные ионные пары с низкой реакционной способностью. Чтобы избежать образования водородных связей с анионами ионных пар, растворитель, кроме того, должен быть апротонным. Приведенные в табл. 1.1 данные показывают, что величины констант экстракции очень сильно изменяются. Растворители из последней колонки таблицы в целом не подходят для МФК некоторые из них частично смешиваются с водой, другие слишком активны и могут мешать многим процессам. Однако для рассматриваемой стандартной соли, которая обладает средней липофильностью, все эти растворители являются хорошими или отличными экстрагентами. Родственные по структуре, несколько более полярные соединения (например, гомологи) должны иметь сходную способность к экстрагированию ионных пар. Это позволяет сделать важный вывод если в качестве реагентов в реакциях в условиях МФК, например в алкилировании, используются соединения типа приведенных в последней колонке табл. 1.1, то органический растворитель не требуется, так как экстракция ионных пар в чистую органическую фазу будет вполне удовлетворительной. [c.24]

    Обозначения групп органических соединений В —борсодержащие соединения N—азотсодержащие соединения Р —фосфорсодержащие соединения S—серусодержащие соединения Si — кремнийсодержащие соединения I—соединения, способные к образованию сильных водородных связей (гликоли, аминоспирты. многоосновные кислоты и т. п.) II —полярные соединения, способные к образованию водородных связей, и соединения с активным водородом [спирты, фенолы, первичные и вторичные амииы, нитрилы (а-Н), нитросоединення (a-H)j III —полярные соединения, способные к образованию водородных связей, но не имеющие активных атомов водорода, в том числе и а-Н IV — соединения, обладающие умеренной способностью к обмену атомов водорода V--неполярные соединения, углеводороды, сульфиды и др. VI —различные неорганические и органические соединения. [c.85]

    В 1949 г. А. И. Бродским [33] было сделано важное обобщение относительно водородного обмена в растворах. Требовалось объяснить, почему в СН-связях органических соединений скорость водородного обмена с тяжелой водой так резко отличается от скорости обмена водорода в связях ОН, КН, ЗН и НаШ (см. стр. 8, 36, 92). Анализируя причину этой закономерности, А. И. Бродский пришел к выводу, что она не может быть следствием отличий в каких-либо физических параметрах СН-связи (энергия, длина, силовая постоянная, поляризуемость). По его мнению, решающее значение имеет строение электронной оболочки атома, связанного с водородом. У атомов кислорода, азота, серы или галоидов в электронейтральных молекулах имеется свободная пара электронов. К ней может присоединиться дейтрон в едином акте с отщеплением протона (I). Такой синхронный процесс осуществляется при надлежащем взаимоположении реагирующих молекул. Энергия активации, необходимая для их ориентации, невелика поэтому водород обменивается с большой скоростью  [c.357]

    При образовании оксониевых соединений или молекулярных соединений за счет возникновения водородной связи органическое кислородсодержащее вещество функционирует как основание, но тар как основные свойства кислорода значительно слабее, чем азота е аминах, долгое время константы основности органических кислород содержащих веществ определены не были. Горди, базируясь на уста новленной им закономерности о линейной зависимости между ло гарифмом константы ионизации органического соединения как осно вания и величиной смещения частоты, характеристической для О—D связи при взаимодействии H OD с органическим основанием (см стр. 163), определил (экстраполяцией) константы основности ряд кислородсодержащих веществ [55]. Получены следующие данные [c.226]

    Как и другие органические соединения, имеющие в составе люлекулы гидроксильную группу (спирты, фенолы, кислоты), гидроперекиси склонны к межмолекулярной ассоциации посредством водородных связей 1—4]. Однако в отличие от указанных соединений, для которых образование водородных связей достаточно хо рощо изучено (см., например, (5]), водородные связи гидроперекисных соединений изучены мало. В литературе имеется лишь несколько работ, специально посвященных этому вопросу [6-8]. [c.105]

    Следующий раздел содержит в основном исследования электронных спектров водородных связей в соединениях с л-сопря-жением. Эти соединения обладают рядом интересных особенностей, которые проявляются не только в оптических спектрах, но и в спектрах ЯМР. Исследованию водородных связей в органических соединениях с помощью этого метода посвящено две статьи. [c.6]

    Влияние материала электрода иногда приписывают только величине перенапряжения водорода на нем. Действительно, на металлах с высоким водородным перенапряжением реакции восстановления часто идут полнее. Кроме того, на таких электродах легче могут быть достигнуты потенциалы, при которых происходит носстановление трудно восстанавливаемых соединений. Однако в общем случае прямого параллелизма между водородным перенапряжением на электродном материале (его катодным потенциалом) и его активностью по отношению к реакциям электровосстановления не существует. Более того, оказывается, что некоторые соединения лучше восстанавливаются на катодах с низким перенапряжением и хуже или даже вообще не восстанавливаются на металлах с высоким водородным перенапряжением. Такое избирательное электровосстановление органических соединений представляет собой распространенное явление (Л. И. Антропов, 1951). Примеры избирательного восстановления приведены в табл. 21.1. На катодах с низким перенапряжением — платине и никеле (особенно в форме черни или губки) —преимущественно восстанавливаются изолированные ненасыщенные связи в органических соединениях жирного ряда и двойные связи в бензольном кольце. В то же время эти связи практически ке гидрируются на катодах, обладающих высоким водородным перенапряжением, таких, например, как ртуть или свинец. Напротив, полярные группы — карбонильная и карбоксильная — восстанавливаются на катодах с высоким перенапрям ением водорода и не затрагиваются на катодах с низким перенапряжением. Исключение составляют нитро- и нитрозо- [c.432]

    Растворимость объясняется взаимным притяжением молекул растворителя и растворяемого вещества [2, з]. (Свойства растворов определяются в основном их межмо-лекулярным взаимодействием, относите.гьными размерами, формой молекул компонентов и их стремлением к смешению, что сопровождается ростом энтропии. Притяжение между молекулами органических соединений создается силами Ван-дер-Ваальса и водородными связями. [c.164]

    Соединения типа МСДА-1 резко уменьшают межфазное натяжение на границе нефтепродукт — вода, обладают удовлетворительной водовытесняющей способностью, легко взаимодействуют с водой. Следует отметить, что соли органических кислот и аминов, катионная и анионная части каторых соединены слабой водородной связью, увеличивают смачивающую способность нефтепродукта сразу же после введения присадки в среду. [c.294]

    Среди органических анионов наиболее гидрофильными являются ацетат и формиат. При сравнении констант экстракции салицилата (внутренняя водородная связь ) и 3-гидроксибензо-ата необходимо учитывать сильные структурные отличия этих соединений. В принципе влияние структуры установлено и для гомологических рядов анионов. Каждая дополнительная СНа-группа делает анион более липофильным. Кроме алкильных групп сильно увеличивают константы экстракции другие липо-фильные заместители, такие, как нитрогруппа, хлор, бром и т. д. [c.33]

    Молекулярная кристаллическая решетка содержит в своих узлах молекулы веществ ковалентной природы, т. е. состоящих из атомов, соединенных друге другом ковалентными связями. Эти узловые молекулы связаны друг с другом слабыми ван-дер-ваальсовымн силами. Молекулярная кристаллическая решетма присуща самым разнообразным веществам элементарным окислителям, благородным газам, водородным, галогенным, кислородным соединениям неметаллов, всевозможным кислотам и. наконец, многочисленным органическим веществам. Молекулярным кристаллам свойственны малая механическая прочность, сравнительно большая летучесть и низкие температуры плавления. [c.70]

    За последнее время появились обзоры и монографии [77, 78], в которых с достаточной полнотой освещены теоретические основы метода комплексообразования парафинов с карбамидом. Поэтому здесь рассматриваются лишь некоторые из основных положений о природе кристаллических комплексов углеводородов с карбамидом и тиокарбамидом и методах их получения. Рентгеновские исследования кристаллических комплексов парафиновых углеводородов с карбамидом позволили в известной степени пролить свет на строение этих весьма интересных соединений. В присутствии парафиновых углеводородов нормального строения или других органических соединений, имеющих неразветвленную углеродную цепь из восьми и более атомов углерода, молекулы карбамида складываются в спираль за счет водородных связей между кислородом карбонильной гдалпы и аминогруппой соседних молекул. В результате из молекул карбамида образуется сплошная спираль, внутри которой находится [c.61]

    В конце 1970-х годов А. А. Кричко были обобщены представления о строении органического вещества угля как о самоассоциированном мультимере с трехмерной пространственной структурой [67[. В соответствии с этой концепцией органическая масса угля представляет собой набор макромолекул и олигомеров различного состава, соединенных между собой связями невалентного характера, среди которых основную роль играют алектронодонорно-акцепторные взаимодействия, включая водородные связи. Отдельные структурные блоки могут обладать разным набором участков, проявляющих электронодонорные и электроноакцепторные свойства. Относительно непрочные валентно-химические связи типа связей в эфирных и метиленовых мостиках также характерны для углей, но они находятся внутри объединенных в мультимер структурных единиц. [c.65]

    Поливиниловый спирт относится к сравнительно небольшой группе синтетических полимерных соединений, хорошо растворимых в воде, гликолях, глицерине и в то же время обладаюш,их высокой стойкостью к действию большинства универсальных органических растворителей. Особенно ценна высокая масло-, бензо- и керосиностойкость поливинилового спирта, удачно сочетающаяся с высокой упругостью пластифицированного поли-.мера (пластификаторы—глицерин или гликоли) и со способностью его образовывать бесцветные прозрачные, светостойкие пленки и нити, легко формоваться в изделия методом литья под давлением. Пленки и изделия из поливинилового спирта отличаются высокой поверхностной твердостью и низкой хладотекучестью в нагруженном состоянии. Несмотря на присутствие пластификатора в эластичных пленках, они обладают хорошей прочностью, особенно при растяжении ( 600 кг1смР ) и истирании, превышающей прочность резин. Газонепроницаемость пленок из поливинилового спирта в 15—20 раз (в зависимости от степени пластифицирования) превышает газонепроницаемость вулканизованной пленки натурального каучука. Такая прекрасная газонепроницаемость и высокая температура стеклования поливинилового спирта обусловлены возникновением водородных связей между звеньями соседних макромолекул  [c.284]

    В ТСХ применяются, как правило, крупнопористые марки силикагеля с размером пор 10—20 нм и удельной поверхностью 50—500 м /г. На относительно однородной поверхности такого силикагеля гидроксильные группы находятся друг от друга на расстоянии примерно в 2—2,5 нм. Они могут образовывать водородные связи с сорбируемыми молекулами. Силикагель химически инертен к большинству активных органических соединений, однако благодаря кислым свойствам (pH 3—5) достаточно прочно сорбирует основания с р/Сд>9. Поэтому на силикагеле такие основания, как правило, не хроматографируют. Активность силикагеля, так же как и оксида алюминия, уменьшается при увлажнении. Активирование такого слоя следует проводить при температуре не выше 120 °С. В более жестких условиях происходят необратимые структурные изменения поверхности, приводящие к хроматографической инертности сорбента. [c.58]

    Основным объектом изучения в химии координационных соединений являются ионы и молекулы, состоящие из центральной частицы и координированных вокруг нее лигандов (аддендов). Строго говоря, понятие комплексные соединения шире, чем понятие координационные соединения . Оно включает в себя также молекулярные комплексы, в которых невозможно указать центр координации, а также соединения включения. Тем не менее, координационные соединения часто называют просто комплексами, и мы тоже будем следовать этой традиции. Как правило, центральной частицей ( ядром координации) является катион металла или оксокатион типа 1)022+, д лигандами могут быть ионы либо молекулы неорганической, органической или элементоргани-ческой природы. Друг с другом лиганды либо не связаны и взаимно отталкиваются, либо соединены силами межмолекулярного притяжения типа водородной связи. Совокупность непосредственно связанных с ядром лигандов называют внутренней координационной сферой. [c.11]

    Уже в теории химического строения Бутлерова постулировалось (и было доказано) существование определенной последовательности химической связи атомов, которая была названа им химическим строением. Бутлеров в 1863 г. весьма определенно высказывался в пользу того, что развитие методов исследования в будущем позволит определить пространственное распЬложение атомов в молекуле, т. е. геометрическую структуру или ее строение (не путать с химическим строением ). В 1874 г. Вант-Гоффом была выдвинута стереохимическая гипотеза, согласно которой четыре водородных атома в метане (или их заместители) расположены в вершиназс тетраэдра, в центре которого находится атом углерода. Эта гипотеза позволила объяснить особый вид изомерии, названный оптической изомерией. Гипотеза Вант-Гоффа была подтверждена структурными исследованиями молекул и лежит в основе стереохимической теории (теории пространственного расположения атомов в молекулах) органических соединений [к-9]. [c.172]

    Межмолекулярная водородная связь существует в воде, спиртах, карбоновых кислотах и т. п., внутримолекулярная йодородная связь — в сложных органических соединениях (рис. 37). [c.127]

    Вещества с молекулярной структурой характеризуются тем, что они образованы из молекул, связанных друг с другом силами Ван-дер-Ваальса или водородной связью. К таким веществам, например, относятся простые вещества (Н2, N2, О2, галогены, 8в), неорганические (Н2О, ЫНз, НР, СО2, N204) и органические соединения (спирты, кислоты), а также кристаллы некоторых координационных металлорганических и органических соединений (типичный представитель нафталин), в том числе полимеров, белков, нуклеиновых кислот. [c.132]

    Большинство органических соединений в твер дом состоянии образуют молекулярные решетки. При этом между молекулами часто возн-икает водородная связь, которая упрочняет кристалл. Например, частицы органических кислот в кристаллах обычно располагаются следующим образом  [c.117]


Смотреть страницы где упоминается термин Водородные связи в органических соединениях: [c.230]    [c.53]    [c.124]    [c.208]    [c.37]    [c.181]    [c.60]   
Смотреть главы в:

Основы неорганической химии для студентов нехимических специальностей -> Водородные связи в органических соединениях




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Связь в органических соединения

Связь водородная, Водородная связь

Соединения водородные



© 2024 chem21.info Реклама на сайте