Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лиганды в координационных комплексах

    Молекула мономера, становящаяся лигандом координационного комплекса, структурно отлична от свободной молекулы длиннее связь С=С, изменены валентные углы у двойной связи, а также ее поляризация. Все эти факты свидетельствуют о том, что в результате координирования с катализатором мономер проходит своего рода подготовку к реакциям присоединения, частным случаем к-рой является полимеризация. Как будет показано ниже, комплексообразование в К.-и. п. вызывает ряд эффектов, сказывающихся как на характере протекания самого полимеризационного процесса, так и на структуре образующейся полимерной цепи. [c.544]


    Химическая связь в координационных комплексах. Электростатическая теория. Теория валентных связей. Гибридные и хр внешнеорбитальные комплексы. Теория кристаллического поля. Энергия расщепления кристаллическим полем. Низкоспиновые комплексы и высокоспиновые комплексы. Сильные и слабые лиганды. Теория молекулярных орбиталей. я-Взаимодействие между лигандами и металлом. Дативное л-взаимо-действие между металлом и лигандами. [c.204]

    Координационный комплекс, который быстро замещает свои лиганды на другие, называется лабильным комплекс, медленно замещающий лиганды, называется инертным. Инертность вовсе не то же самое, что устойчивость в термодинамическом смысле. Комплекс может быть неустойчивым в том смысле, что, согласно законам термодинамики, обсуждавшимся в гл. 16, он представляет собой не максимально благоприятное образование. За достаточно большое время такой комплекс перейдет в какое-то другое состояние. Однако если переход в наиболее благоприятное состояние происходит чрезвычайно медленно, неустойчивый комплекс является инертным. В качестве примера инертной, но неустойчивой системы укажем, что Нз и О2 могут просуществовать в виде смеси целые годы без заметного самопроизвольного образования воды. Однако если в эту смесь внести небольшое количество платиновой черни (тонко измельченной платины), играющей роль катализатора, либо поднести к ней пла- [c.212]

    Общий механизм каталитического действия координационных комплексов сводится к облегчению электронных переходов в общей системе электронов и ядер внутри комплекса по сравнению с переходами между отдельными молекулами. С этих позиций естественно считать, что стадия образования координационных комплексов может ускорять как реакции окисления—восстановления, так и реакции перераспределения валентных связей (ин-тра- и интермолекулярные), поскольку между различными молекулами, входящими в координационную сферу комплекса в качестве лигандов, взаимодействие облегчается 5, 61. В случае гетерогенного катализа через координационные комплексы можно рассматривать активный центр как металл (его ион) с незаполненной сферой лигандов и применять к нему уже известные общие и частные принципы связи между строением комплексообразующего иона или ненасыщенного комплекса с его каталитической активностью. Существенную роль в определении активности катализатора в координационном катализе играют стабильность первоначально образующегося комплекса в реакциях, протекающих по механизму замещения лигандов. В этом случае, как следует из общей теории катализа и принципа энергетического соответствия Баландина, должна наблюдаться экстремальная зависимость между активностью катализатора и стабильностью комплекса. [c.59]


    Гомогенными катализаторами чаще всего являются растворимые в реакционной среде комплексы металлов. Преимущества гомогенных катализаторов состоят в специфичности их действия и активности при низких давлениях и температурах. Специфичность обусловлена тем, что каталитическое действие данного комплекса металла может тонко изменяться при варьировании лигандов, координационного числа комплекса или степени окисления центрального атома металла. Недостатки гомогенных катализаторов связаны со сложностью их отделения от продуктов, с разложением катализатора и его высокой стоимостью, особенно если используются металлы платиновой группы. Несмотря на экономические преимущества гетерогенных ката- [c.35]

    Прн этом первоначально фиолетовый цвет раствора меняется сначала на голубовато-зеленый, а затем на темно-зеленый. Хлорид-ионы проникают во внутреннюю сферу комплекса и соединяются с атомом хрома координативной связью. Но так как координационное число хрома остается равным шести, хлорид-ионы вытесняют нз внутренней сферы молекулы воды, сами занимая их места, и общее число лигандов в комплексе не может быть больше шести. [c.134]

    Каталитическая полимеризация, в которой мономер присоединяется к растущей макромолекуле через предварительное образование координационного комплекса, называется координационно-ионной полимеризацией. В эту полимеризацию вступают почти все мономеры, способные к ионной полимеризации. Мономер образует комплекс с металлом за счет своей двойной связи, затем мономер-лиганд вступает в реакцию полимеризации. [c.234]

    В электростатической (ионной) теории первоначальные идеи В. Косселя получили дальнейшее развитие. Было показано важное значение зарядов, объемов и поляризационного взаимодействия ионов при образовании комплексов. Оказалось, что при одних и тех же лигандах координационное число комплексообразователя увеличивается с ростом его заряда. Так  [c.227]

    Наиболее характерными лигандами в комплексах являются га-лид-ионы (в особенности, фторид-ионы), карбонат-, оксалат- и сульфат-ионы. Координационные числа положительных ионов скандия, иттрия и лантана могут иметь значения от 3 до 6. [c.68]

    Для хрома (III) характерно образование комплексных соединений с координационным числом 6. В качестве лигандов в комплексах хрома могут быть СГ, Н2О, NH3, ОН и др. В водных растворах хром(111)-ион имеет неопределенную окраску, так как чаще всего он образует комплекс, состав которого зависит от соотношения концентраций других ионов в растворе. [c.105]

    Центральный атом внутренней сферы комплексного соединения, вокруг которого группируются ионы или молекулы, называется комплексообразователем. В приведенном примере это ион кадмия d . Частицы, непосредственно связанные с комплексообразователем, называются лигандами. В данном случае это ионы СЫ . Число лигандов в комплексе называется координационным числом комплексообразователя. Координационное число показывает число мест во внутренней сфере комплексного соединения или число мест вокруг комплексообразователя, на которых могут разместиться лиганды. Координационные числа разных комплексообразователей имеют значения от 2 до 12. Чаще других встречаются комплексные соединения с координационным числом, равным 4 или 6, затем 8 или 2. [c.287]

    Координационная емкость лиганда. Этот термин используют для обозначения числа мест, занимаемых каждым лигандом во внутренней сфере комплекса. Для большинства лигандов координационная емкость равна 1, реже 2 (например, для СО , и др.) и еще реже 3 (для [c.121]

    Может ли число лигандов в комплексе быть меньше координационного числа комплексообразователя и почему  [c.110]

    Координационное число, или координационная валентность, — число мест во внутренней сфере комплекса, которые могут быть заняты лигандами. Координационное число обычно больше степени окисления комплексообразователя. Известны координационные числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 12. Чаще встречаются комплексные соединения с координационной валентностью 4, 6 и [c.143]

    Так как силы отталкивания между ионами больше, чем между нейтральными лигандами, координационное число в комплексе с ионными лигандами оказывается меньше, чем в комплексе с ди-польными молекулами. С ионными лигандами Со + дает комплексы с КВ=4, тогда как с дипольными молекулами координационное число возрастает до 6  [c.161]

    Число, показывающее, сколько лигандов удерживает комплексо-образователь, называют координационным числом. В приведенном примере оно равно 6. [c.195]

    Существование координационных комплексных соединений основано на образовании координационной химической связи, для которой требуется наличие акцептора электронной пары и донора электронной пары. Таким образом, координационные реакции—частный случай нейтрализации льюисовых кислот льюисовыми основаниями. Центральный ион комплексного соединения представляет собой льюисову кислоту, т.е. акцептор электронной пары, а окружающие группы атомов, называемые лигандами, являются льюисовыми основаниями или донорами электронных пар. В общем виде реакцию образования координационного комплекса можно описать уравнением [c.403]


    Большее притяжение высокого положительного заряда центрального иона к отрицательному заряду лигандов проявляется в уменьшении способности лигандов координационного комплекса связываться с другими катионами. В ряду VO , Ст01 и МпО ванадат-ион представляет собой очень сильное основание и способен связываться с протоном Н + или другими катионами. Хромат-ион также является довольно сильным основанием. Однако перманганат-ион-слабое основание соединение НМпО полностью ионизуется в воде, и поэтому кислота НМпО представляет собой одну из наиболее сильных известных кислот (см. табл. 11-2). Ванадат-ион легко вступает в реакции типа [c.216]

    Впервые правильные представления о пространственном строении комплексных соединений были сформулированы А. Вернером. При этом он исходил из найденного опытным путем числа изоме< ров при наличии двух или более различных лигандов в комплекс н сравнивал его с возможным числом для той или иной предполагаемой конфигурации. Так, для координационного числа 4 и тетраэдрической конфигурации все положения лигапдов относительно [c.591]

    Обычно в комплексах с нейт1ральнЫ1М и лигандами координационное число выше, чем с заряженными. Например [Ni(NH3)e] + и [Ni U] -. Почему  [c.40]

    Для обозначения геометрического расположения лигандов в комплексах используют специальные приставки. Приставки цис- и транс- указывают расположение лигандов в комплексах с координационным числом 4 (квадратно-плоскостная конфигурация) и 6 (октаэдрическая конфигурация) для этих же комплексов (координационное число 6) используют также приставки гран- ifa -) — граневон и ос- (тег-) — осевой  [c.54]

    Синтез акрилонитрила и винилацетилена. Способ их получения из ацетилена основан на использовании каталитической системы Ньюленда, являвшейся одним из первых металлокомплексных катализаторов. Она представляет собой концентрированный (35— 40%-ный) водный раствор uj b и NH4 I с добавками Na l или КС1, подкисленный до pH 1- 1,5. В этой системе образуются ассоциированные медноаммиачные комплексы, способные к образованию координационных комплексов с ацетиленом и к обмену лигандами. Считается, что синтезы с этим катализатором происходят по механизму внедрения  [c.300]

    Лекция 16. Общие сведения о конплексних соединениях. Комплексообразо-ватель, лиганды, координационное число. Способность лементов периодической системы к комплексообрглзовянию. Теория образования комплексных соединений. Классификация комплексов. Номенклатура. Диссоциация комплексных соединений в растворе. Применение комплексных соединение в технологических процессах. [c.180]

    Здесь М и L — катионы металла и лиганды (заряды для простоты опущены). Равновесный состав комплексов зависит от природы ионов и концентраций. Константа равновесия каждой из стадий называется ступенчатой константой устойчивости Произведения сту1генчатых констант, например = Рг, Х1Х2>Сз = Рз называют общими константами устойчивости. Если наибольшее число лигандов (координационное число) равно п, то полная константа устойчивости Х,Х2. .. х = Р . [c.167]

    Координационные, или комплексные, соединения содержат ионы металлов, связанные с несколькими окружающими их анионами или молекулами, которые называют лигандами. Ион металла и его лиганды образуют координационную сферу комплекса. Атом лиганда, присоединенный к иону металла, называется донорным атомом. Число донорных атомов, присоединенных к иону металла, называется координационным числом иона металла. Наиболее распространены координационные числа четыре и шесть наиболее распространенные типы структуры координационных комплексов - тетраэдрическая, плоско-ква-дратная и октаэдрическая. [c.400]

    Комплексообразователь и лиганды рассматриваются как заряженные неде-формируемые шары определенных размеров. Их взаимодействие учитывается по закону Кулона. Таким образом, химическая связь считается ионной. Если лиганды являются нейтральными молекулами, то в этой модели следует учитывать ион-дипольное взаимодействие центрального нона с полярной молекулой лиганда. Результаты этих расчетов удовлетворительно передают зависимость координационного числа от заряда центрального иона. В некоторых случаях правильно передается геометрия комплексов при координационном числе, равном двум, комплексы должны быть линейными при равном трем лиганды располагаются по вершинам равностороннего тpeyгoJп.никa и т. д. С увеличением заряда центрального иона прочность комплексных соединений увеличивается, увеличение его радиуса вызывает уменьшение прочности комплекса, но приводит к увеличению координационного числа. С увеличением размеров и заряда лигандов координационное число и устойчивость комплекса уменьшаются. [c.356]

    В комплексных частицах, образованных полидентатными лигандами, координационное число комплексообразователя определяется не числом лигандов, а числом образуемых ими о-связей с центральным ионом. Так, координационное число кобальта (III) в октаэдрических комплексах [Со(ЫНз)4С204][Со(ЫНз)2(С204)2] и [Со(С204)з] сохраняет свое значение и равно шести. [c.94]

    Комплексные соединения содержат в своем составе комплексные группы, или комплексы, отличительные признаки которых указаны выше. Комплексные группы состоят из центрального атома, или ком-плексообразователя, около которого координируются лиганды. Структура комплексов характеризуется координационным числом комплек-сообразователей, значение которого зависит от природы, радиуса и окислительного числа центрального атома. У большинства комплексо-образователей координационное число четыре (тетраэдрическая или квадратная форма) или шесть (октаэдрическая форма), хотя встречаются координационные числа и меньше (три и два) и больше (восемь). У одного и того же комплексообразователя с повышением окислительного числа увеличивается и координационное число. [c.65]

    Координационная изомерия присуща тем соединениям, в которых как катион, так и анион являются комплексными она проявляется во взаимном обмене лигандов между комплексо-образователями. Примеры таких изомеров ( u(NHэ)4ИPt i4l и 1Р((МН1)4ЦСиСи1 1Со(МНз)б (Сг(С б1 и r(NH,)6l l o( N)6J. [c.126]

    Комплексные соединения в этой главе классифицированы по структурному принципу. Выделены группы одноядерных комплексов с монодентатными лигандами, комплексов с полидентат-ными лигандами и многоядерных комплексов и, наконец, группа координационных соединений, при образовании которых значительную роль играют я -орбитали лигандов (алкеновые комплексы, сэндвичевые соединения, карбонилы, цианиды и нитрозилы). [c.80]

    Дальнейшее развитие теории катализа тесно связано с исследованием состояния катализатора во время реакции. Принципы структурного и энергетического соответствия, оставаясь решающими, должны относиться к системе катализатор — реагирующее вещество, сложившейся ко времени достижения стационарного состояния катализатора. Степень окисления поверхностных атомов катализатора, природа лигандов и состав промежуточного координационного комплекса определяют направление реакции и лимитирующие стадии. Решающую роль играют методы определения состояния катализатора и всей системы во время реакции. Одним из таких методов является измерение потенциала (или электропроводности) катализатора во время реакции. Легче всего это сделать в проводящих средах как в жидкой, так и в газовой фазе для гетерогенных и гомогенных катализаторов. В окислительно-восстановительных процессах структурным фактором являются не только размеры кристаллов и параметры решеток, но и кислотно-основные характеристики процессов. Всякая поверхность или комплексное соединение представляют собой кислоту или основание по отношению к реагирующему веществу, а это определяет направленность (ориентацию) и энергию взаимодействия вещества с катализатором. Для реакции каталитической гидрогенизации предложена классификация основных механизмов, основанная на степени воздействия реагирующего вещества на поверхность катализатора, заполненную водородом. В зависимости от природы гидрируемого вещества в реакции участвуют различные формы водорода. При этом поверхность во время реакции псевдооднородна, а энергия активации— величина постоянная и зависящая от потенциала поверхности (или раствора). Несмотря на локальный характер взаимодействия, поверхность в реакционном отношении однородна и скорость реакции подчиняется уравнению Лэнгмюра — Хиншельвуда, причем возможно как взаимное вытеснение адсорбирующихся веществ, так и синергизм, т. е. увеличение адсорбции БОДОрОДЗ ПрИ адсорбции непредельного вещества. Таким образом, созданы основы теории каталитической гидрогенизации и возможность оптимизации катализаторов по объективным признакам. Эта теория является продолжением и развитием теории Баландина. [c.144]

    Координационная емкость лиганда — число мест, занимаемых каждым лигандом во внутренней сфере комплекса. Для большинства лигандов координационная емкость равна единице, реже двум. Анионы галогенов, СМ , МНз занимают в комплексах одно координационное место и называются монодентатными лигандами. Гидразин, амино ксусная кислота, этилендиамин, а также ионы Сг04 , 304 , СОз занимают по два координационных места и являются бидентатными. Существуют лиганды с большей емкостью—3, 4, 6. Их называют полидентатными. Они способны осуществлять одновременно несколько связей с комплексообразова-телем. Одним из наиболее важных полидентатных лигандов (шес-тидентатным) является анион этилендиаминтетрауксусной кислоты (ЭДТА)  [c.144]

    Положительные ионы скандия, иттрия и лантана имеют координационные числа от 3 до 6. Важнейшие лиганды в комплексах этих металлов — это фторид-, карбонат-, сульфат- и оксалат-ионы. Например, ион скандия S + образует с фторид-ионами комплексные соединения KF + 5сРз = K[S FJ 3KF + S F = Кз[5сРе] [c.407]

    Если максимальное координационное число ионов металла М"+ по отношению к лиганду К равно N. таких уравнений будет также Л . В зависимости от характера лиганда координационное число может меняться. Так, известен хлоридный комплекс кобальта СоС1 в котором координационное число кобальта равно 4. При взаимодействии Со2+ с молекулами аммиака возможно образование Со(ЫНз)б , в котором координационное число кобальта равно 6. Аналогично при взаимодействии А1 + с ионами С1- возможно образование А1СЦ, т. е. максимальное координационное число для ионов АР+ равно 4. При взаимодействии же ионов алюминия с ионами Р- образуется ряд комплексов с координационным числом от I до 6 А1Р ,. .... ... А1Рб, т. е. максимальное координационное число ионов алюминия равно 6. Таким образом, координационное число является не только свойством металла, но также зависит от свойств лиганда. Между константами устойчивости, или константами образования К1 [c.240]

    Координационное число, или координационная валентность (КВ), — число мест во внутренней сфере комплекса, которые могут быть заняты лигандами. Координационное число обычно больше степени окисления комплексообразователя. Известны координационные числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 12. Чаще встречаются комплексные соединения с координационной валентностью 4, 6 и 2. Эти числа соответствуют наиболее симметричной геометрической конфигурации комплекса — октаэдрической (6), тетраэдрической или квадратной (4) и линейной (2). Координационная валентность зависит от природы комплексообразователя и лигандов. Незаряженные лиганды обычно могут присоединяться к комплексооб-разователю в большем числе, чем заряженньле [Со(Н20)б]2 и [СоСи] ". Координационная валентность зависит также от размеров комплексообразователя и лигандов. Например, с ионами С1, Вг , Г алюминий проявляет координационное число 4, а с меньшим ионом Р — число 6 К[А1С14] и Кз[.А.1Рб]. [c.104]

    Координа71,ионная емкость лиганда — число мест во внутренней сфере комплекса, занимаемых каждым лигандом. Для большинства лигандов координационная емкость равна единице, реже двум. Анионы галогенов, N , NHз занимают в комплексах одно координационное место и называются монодентатными лигандами. Гидразин, аминоуксусная кислота, этилендиамин, а также ионы С202 , [c.104]

    Взаимодействие фенилмагнийбромида с треххлористым хромом в тетрагидрофуране приводит к образованию устойчивого красного комплекса I (т. пл. 85°С), в котором 3 молекулы тетрагидрофурана ТГФ) являются координационно-связанными лигандами. Полученный комплекс устойчив в тетрагидрофуране (в атмосфере азота), но неустойчив в менее основном диэтиловом эфире. Добавление избытка диметилацетилена к раствору комплекса ( в ТГФ вызывает замещение двух лиганд ТГФ с образованием комплекса II. Этот комплекс неустойчив, его внутримолекулярная конденсация приводит к 1,2,3,4-тетраметилнафталину III и гексаметилбензолу IV. Выход соединения П1, считая на трифенилхром, составляет 38%, а соединения IV—55%. Ароматические углеводороды выделяются как таковые или в виде хромовых я-комплексов. [c.164]


Смотреть страницы где упоминается термин Лиганды в координационных комплексах: [c.569]    [c.541]    [c.2]    [c.114]    [c.166]    [c.268]    [c.53]    [c.139]   
Смотреть главы в:

Общая химия -> Лиганды в координационных комплексах




ПОИСК





Смотрите так же термины и статьи:

Активатор способствует вхождению субстрата в координационную сферу катализатора путем образования промежуточного комплекса с центральным ионом или входящим лигандом

Григорьев. Частоты валентных колебаний связей СН как критерий образования и прочности координационных связей в комплексах с некоторыми азот- и кислородсодержащими лигандами

Комплексы координационные

Комплексы лигандом

Комплексы поля лигандов с координационным числом



© 2025 chem21.info Реклама на сайте