Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение марганца водах

    Для определения марганца в присутствии железа может быть использован вариант дифференциального спектрофотометрического метода (см. стр. 71). Раствор анализируемого образца, содержащий марганец и железо в количестве 0,5—3 мг, помещают в мерную колбу емкостью 100 мл и доводят объем раствора водой до метки. Готовят три раствора  [c.172]

    Соединения марганца количественно окисляют персульфатом в азотнокислой среде до перманганата. Интенсивность окраски пропорциональна концентрации марганца. Без изменения объема пробы можно определять. марганец при содержании его от 0,05 до 10 мг в 1 л. Для определения меньших концентраций марганца в питьевых и поверхностных водах надо пробу предварительно упарить. [c.267]


    Для определения марганца в воде, золе растений, если присутствует железо в небольших количествах, можно использовать в качестве реагента формальдоксим [28], [29]. Марганец (И) реагирует с фор-мальдоксимом в щелочной среде с образованием окрашенного в красно-бурый цвет соединения, /I 455 нм, е = 1,1 10 (см. рис. 52). В растворе образуется комплексное соединение марганца с соотношением компонентов 1 6 и состава [Мп (СН2М0)д] [29]. [c.171]

    Без изменения объема пробы можно определять марганец при содержании его от 0,05 до 10 лг в 1 л. Для определения меньших концентраций марганца в питьевых и поверхностных водах необходимо увеличить его концентрацию в пробе упариванием. Чувствительность метода — 0,01 мг/л. [c.121]

    Присутствие в анализируемой воде ионов марганца, цинка, меди и железа завышает результаты определения жесткости. Кроме того, марганец, окисляясь в щелочной среде кислородом воздуха, мешает титрованию, создавая при концентрации 0.1 мг в пробе и выше сероватую окраску жидкости. Для устранения этой помехи вводят в титруемую жидкость несколько капель насыщенного раствора сернокислого гидразина или 5%-ного раствора солянокислого гидроксиламина, препятствующих окислению марганца. Влияние меди, цинка и железа устраняют введением нескольких капель 2%-ного раствора сульфида натрия. Растворы всех этих веществ прибавляют к анализируемой воде до аммиачной буферной смеси. [c.394]

    При анализе питьевой воды помехи маловероятны. Магний, цинк, кальций, натрий, калий, фосфаты, сульфаты и нитраты не препятствуют определению. Марганец, цирконий, хром, титан, медь, ванадий, алюминий, бериллий и железо не позволяют провести анализ с высокой точностью. Помехи, вызванные окрашиванием пробы, наличием гуминовых кислот и/или нерастворенными веществами могут быть устранены известными приемами (обесцвечиванием, фильтрованием через фильтр с активированным углем и т.п.). [c.189]

    У d-элементоБ в определении кислотно-основцых свойств первую роль играет форма соединения ЗОН — редкая форма для -элементов она наблюдается только у элементов дополнительной подгруппы I группы. ЭОН, Э(ОН), — этим формам гидроксидов соответствуют основные свойства [исключение Zn(OH)a, u(0H).2 — амфотерны . 3(0H)i, Э(ОН)., — гидроксиды, обладающие амфотерными свойствами. Большого числа гидроксильных групп элемент не удерживает, так как действуют силы отталкивания, поэтому происходит отщепление воды и форма меняется. Образовапшейся форме уже присущи кислотные свойства. Так, марганец образует гидроксиды следующих форм и свойств  [c.110]


    Выполнение определения. Навеску сплава 2 г помещают в стакан вместимостью 250 мл и растворяют при нагревании в 30—50 мл смеси кислот. Раствор выпаривают до сиропообразного состояния, обмывают стенки стакана 15 мл воды и нагревают до полного растворения солей. Раствор нейтрализуют разбавленным аммиаком до выпадения осадка гидроксидов, который растворяют в разбавленной соляной кислоте. К полученному раствору прибавляют 7,5 мл 2 М серной кислоты, 60 мл воды, 3 г фторида аммония, охлаждают до 20—22 °С и титруют марганец [c.75]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]

    Так, например, в работе [1204] после осаждения арсената добавлением определенного количества стандартного раствора нитрата висмута раствор с осадком разбавляют водой до 200— 300 мл и титруют избыток висмута раствором комплексона III в присутствии ксиленолового оранжевого в качестве индикатора. При определении 4—100 мз Аз(У) ошибка < 1 %. Определению арсената этим методом не мешают щелочные и щелочноземельные элементы, цинк, марганец и ряд других элементов. [c.49]

    Марганец. Ферромарганец растворяют в соляной (1 1) или азотной кислоте (I 1). При определении кремния применяют смесь 30 мл концентрированной серной кислоты, 40 мл концентрированной азотной и 130 мл воды иногда растворяют в азотной или серной (1 4) кислоте с добавкой пероксида водорода. [c.12]

    Выполнение определения. Пипеткой 200 мл фильтрата 2 помещают в стакан емкостью 500 мл. Если в пробе присутствует марганец, то его предварительно отделяют. Для этого раствор в стакане нагревают до 70—80° и приливают бромную воду до интенсивно бурой окраски. Затем при перемешивании стеклянной палочкой приливают раствор аммиака до слабощелочной реакции (легкий запах 474 [c.474]

    Мешающие влияния. Определению хлора в питьевых или поверхностных водах с небольшим содержанием органических веществ не препятствуют нитриты, марганец и железо, если титруют с добавлением разбавленного раствора уксусной кислоты. В присутствии большого количества органических веществ метод не дает правиль- [c.120]

    Определению кадмия не мешают свинец, висмут, мышьяк, сурьма, олово, хром, алюминий, железо, марганец, цианиды, роданиды, фосфаты, сульфиты, тиосульфаты и другие ионы, обычно присутствующие в водах в концентрациях ниже 50 мг/л-. [c.289]

    Определенной зависимости содержания марганца в породах от глубины залегания не наблюдается, что также объясняется его значительной миграционной способностью в водных растворах морских бассейнов. Дополнительным источником марганца в нефтях могут служить осадочные породы, а непосредственным носителем является пластовая вода, которая извлекает марганец из пород и может привносить или вымывать его из нефти в зависимости от pH среды. [c.279]

    БАУМАНА метод - метод определения качества стали (реже чугуна) по характеру распределения на ее макрошлифе серы, к-рая отличается повышенной склонностью к зональной и дендритной ликвации и ухудшает свойства металла. В отличие от хим. анализа, дающего возможность получать только усредненные или локальные (в месте взятия пробы) данные о содержании серы, Б. м. позволяет наглядно и оперативно судить о количестве и размере сернистых включений на всех участках поверхности макрошлифа, а следовательно, полнее и точнее оценивать качество металла. Метод предложил в 1913 нем. инженер А. Бауман. По Б. м. на тщательно отшлифованную и очищенную поверхность макрошлифа накладывают фотографическую (бромосеребряную) бумагу, к-рую предварительно засвечивают, смачивают водой, выдерживают в 5%-ном водном растворе серной к-ты, а затем слегка подсушивают (для удаления излишнего количества раствора) между листами фильтровальной бумаги. Для того, чтобы под фотобумагой не осталось искажающих изображение пузырьков воздуха, ее проглаживают, не допуская смещения, рукой или резиновым валиком. Фотобумагу выдерживают на макрошлифе около 3 мин. За это время находящиеся в поверхностных слоях макрошлифа сернистый марганец и сернистое железо реагируют с серной кислотой, оставшейся на фотобумаге  [c.120]


    При определении металлов рекомендованным методом [59— 61] после введения носителей их отделяют в растворе от матричных элементов, экстрагируя диэтилдитиокарбаминаты в хлороформ. Органическую фазу упаривают, подвергают минерализации, а затем растворяют содержащий металлы концентрат в 0,5 мл воды (pH 6—7). Раствор помещают в верхнюю часть колонки, в которой находится раствор 2п(ДДК)г в хлороформе. Кадмий, медь, серебро и ртуть вытесняют цинк из его карбамината, находящегося в верхней части колонки, а цинк в результате изотопного обмена распределяется вдоль всего объема колонки. Марганец, кобальт и железо проходят через колонку и могут быть определены в элюате. Цинк элюируют субстехиометрическим количеством кадмия (50%). Колонку промывают водой и удаляют из нее весь цинк для этого через колонку пропускают 25%-ный избыток кадмия. Таким же путем замещают кадмий субстехиометрическим количеством меди, медь — субстехиометрическим [c.410]

    Из главной порции не меньше 0,8 г прежде всего определяют гигроскопическую влагу. Остаток употребляют для определения связанной воды и затем для определения обычных окислов основной порции (З Юг, R2O3, СаО, MgO). Пиросульфатным сплавлением осадка R2O3 получают раствор для определения общего железа и титана. ЕсЛи при осаждении аммиаком применялся бром (как указывалось на стр. 62), марганец может быть определен колориметрически из аликвотной части раствора (например, из одной пятой) после пиросульфатного сплавления. [c.201]

    Некоторые элементы в определенных степенях окисления образуют ярко окрашенные соединения. Например, марганец (И) может быть окислен до марганцовой кислоты, растворы которой обладают интенсивным поглощением при X 525 нм. Ванадий в различных его степенях окисления образует ряд соединений, растворы которых обладают интенсивным поглощением в различных участках видимого спектра. Ион СгО (СгаО ) в воде или 0з04 и 2 в органическом растворителе обладают также значительным поглощением. [c.36]

    Отличительным свойством марганцевых катализаторов является способность их основного активного компонента — марганца легко окисляться и восстанавливаться. Для обеспечения высокой каталитической активности необходимо, чтобы марганец имел строго определенную степень окисления, а такая особенность нередко связана со значительными трудностями. Кроме того, марганцевые катализаторы отравляются водяными нарами, так как вследствие капиллярной конденсации воды на активной поверхности MnOj образуется водяная пленка. [c.411]

    В качестве окислителя Мп(11) до Mn(VIl) используют висмутат натрия при определении содержания марганца в воде [9021. Нитрит калия применяют ири определении марганца в алюминии. Марганец предварительно выделяют в виде MnOj [330[. [c.57]

    В платиновой чашке выпаривают 500 мл воды в присутствии капли H SOi и 50 мг угольного порошка. После пспарения воды удаляют пары серной кислоты осторожным нагреванием на электрической плитке. К сухому остатку прибавляют 2,5 мг Na l и тщательно перемешивают. Пробу помещают в кратер нижнего электрода (анода) и зажигают дугу постоянного тока (F = 220 в, 1=12 а), ширина щели 0,015 мм, экспозиция 1,5 мин. марганец определяют по линии 2801,06 А. Содержание его находят по калибровочной кривой. Чувствительность определения марганца 3.10 %. [c.111]

    По методу У. Шиффелина и Т. Каппона [28], который использовался в США [13, 15, 30], тонкоизмельченный (- 0,09 мм) лепидолит смешивали в стальном реакторе с концентрированной серной кислотой, взятой в количестве 110% (от массы минерала). Смесь выдерживали в течение 30 мин, а затем медленно, в течение более 8 ч, нагревали от 110 до 340° С по специальной прописи с фиксированной по времени выдержкой при определенных значе-ниях температур (степень разложения минерала достигала 94%). Скомковавшуюся массу еще в теплом состоянии обрабатывали водой, и, если из раствора выделялась двуокись кремния, ее отфильтровывали. В раствор переходили соли всех щелочных металлов, алюминия, марганца и железа. Для удаления алюминия в раствор вносили сульфат калия в количестве, рассчитанном на образование калиевых квасцов, первые порции которых особенно богаты рубидием и цезием, так что, проводя дробное выделение квасцов, можно было получать концентрат соединений рубидия и цезия. После отделения квасцов маточный раствор нейтрализовали карбонатом кальция. При этом отделяли остаток алюминия в виде гидроокиси. Далее осаждали кальций, магний, железо и марганец (щавелевой кислотой и раствором аммиака). Это обеспечивало получение чистого раствора сульфата лития. Из него с помощью карбоната калия осаждали технический карбонат лития, который промывали и высушивали при 60° С. [c.231]

    Метод предварительного испарения использован для определения микропримесей металлов в оргапохлорсиланах (ОХС) [271]. Для очистки графитовых электродов их обычно обжигают в дуге и пропитывают раствором полистирола. Но при анализе ОХС полистирольное покрытие разрушается в процессе концентрирования из-за высокой химической активности ОХС. Авторы применили полиорганосилоксановый лак (ПЛ), обладающий более высокими химической и термической стабильностью. При использовании электродов без покрытия, покрытых полистиролом и ПЛ, соотношение сигналов равно примерно 1 2 3. Электроды с шейкой (диаметр канала 5 мм, глубина 4 мм) обжигают 10 с в дуге переменного тока силой 10 А, заполняют 1%-ным толуольным раствором ПЛ и сушат под ИК-лампой. Затем в канал электрода вводят 0,05 мл 2%-ного водного раствора хлорида натрия (буфер) и сушат под ИК-лампой. Подготовленные электроды на подставке помещают в бокс из органического стекла. Бокс продувают азотом 20—30 мии, затем электроды устанавливают в нагревателе и греют до заданной температуры (на 20—30 °С ниже, чем температура кипения основы, но не выше 150 °С). Для нагрева электродов использована нихромовая спираль в защитном (от коррозии) кожухе. В каждый электрод пипеткой постепенно вводят 1 мл образца. Эталоны готовят растворением хлоридов определяемых элементов в смеси (9 1) деионизированной воды и хлороводородной кислоты. В электроды вводят по 0,1 мл приготовленных эталонов и испаряют их при 70—80 °С. Для возбуждения спектров используют дугу переменного тока силой 10 А, экспозиция 40 с. Достигнуты следующие пределы обнаружения (в мкг/мл) медь и магний — 0,09, алюминий — 0,12, марганец— 0,41, железо и никель—1,5, кальций — 5,0. Эти же авторы при анализе полиорганосилоксановых лаков пробу смешивают с эталоном и толуолом в соотношении 7 1 2, вводят в канал электрода и испаряют под ИК-лампой [198]. [c.163]

    Анализируемый азотнокислый раствор, содержащий около 0,3 г висмута и свободный от соляной и серной кислот, осторожно йрибавляют при непрерывном перемешивании к 50 мл титрованного (1%-ного) раствора арсената калия KH2ASO4, находящегося в мерной колбочке на 100 мл, разбавляют водой до метки, хорошо перемешивают и отфильтровывают осадок арсената висмута. Для определения избытка арсената к 50 мл фильтрата прибавляют 40 мл 25%-ного раствора соляной кислоты и 1 г иодистого калия и титруют через 15—20 мин. выделившийся иод 0,1 н. раствором тиосульфата (без применения раствора крахмала). Титр раствора мышьяковокислого калия устанавливают таким же образом по тиосульфату. Кроме висмута, Валентин определял аналогичным методом магний, кальций, стронций, барий, цинк, кадмий, свинец, марганец, никель, кобальт, алюминий и хром. [c.97]

    На титровании марганца (III) раствором гидрохинона основан быстрый и простой непрямой метод определения растворенного кислорода и окислителей в промышленных сточных водах [70, 71] гидромшсь марганца (III), образовавшуюся при окислении гидроокиси марганца (II) кислородом в щелочной среде, подкисляют и титруют марганец (III) раствором гидрохинона потенциометрически или в присутствии ферроина [70] или дифениламина [71]. [c.258]

    Марганец. Восстановление марганца (II) изучалось полярографическим методом во многих комплексообразующих и некомплексообразующих средах. В комплексообразующем электролите, например, в цианиде натрия, первым продуктом восстановления является марганец (I), а не металл или амальгама. Мейтес и Моро fill] провели глубокое исследование этого восстановительного процесса, применяя метод потенциостатической кулонометрии с большим ртутным катодом, и обнаружили интересную вторичную реакцию с участием продукта восстановления, марганца (I), и растворителя. Взаимодействие между марганцем (I) и водой создавало дополнительное количество восстанавливающегося вещества, в результате чего возникал аномально высокий фоновый ток, увеличивающий погрешность аналитического определения. [c.58]

    Ход анализа. Навеску 2 г металла растворяют при нагревании в смеси. 25 мл серной (1 5) а 5 мл фосфорной кислот, после растворения навески окйсляют железо азотной кислотой, упаривают до дыма, охлаждают, прибавляют 50 мл воды, 5 мл 1%-ного раствора нитрата серебра, нагревают до кипения и окисляют хром и могущий присутствовать в пробе марганец 10 мл 10%-ного раствора персульфата аммония. Избыток персульфата удаляют кипячением, а марганцевую кислоту восстанавливают хлоридом натрия (5 мл 5%-ного раствора). После охлаждения титруют раствором соли Мора, концентрация которого определяется количеством хрома в титруемом растворе. Можно титровать либо весь раствор, либо, переведя его в мерную колбу, титровать только аликвотную часть (в зависимости от содержания хрома и от взятой навески). Из этого же раствора можно определять и ванадий, как указано в соответствующем разделе. Описанным методом определяют от 0,03 до 0,15% хрома в различных чугунах, сталях и в стандартном образце стали № 20-Г. Метод считается наилучшим (по сравнению с колориметрическим или обычным объемным) методом определения хрома. [c.339]

    Для определения общего содержания всех форм марганца в питьевых, поверхностных и сточных водах предлагается колориметрический метод, в котором марганец(11) окисляют до перманганата персульфатом. Раздельное определение нерастворимых и растворимых форм марганца проврдят, определяя его в нефильтрованной и в профильтрованной пробах. [c.267]

    Описанное определение хрома и общего железа можно провести также в пробах, в которых определяется железо (И). В этом случае от раствора, переведенного в мерную колбу после разложения пробы смесью серной и фосфорной кислот, отбирают отдельные аликвотные чггсти для определения железа (II), хрома и железа (III). Для определения хрома отбирают 50 мл и окисляют его персульфатом аммония с добавкой 1%-ного раствора нитрата серебра (особенно если присутствует марганец). После разрушения избытка окислителя кипячением раствор переносят в мерную колбу емкостью 200—250 мл, доводят до метки водой. Если присутствует марганец, то предварительно кипятят раствор с небольшим количеством соляной кислоты или хлорида натрия. Титруют аликвотную часть (20 мл) 0,1 н. раствором соли Мора. Титр раствора соли Мора устанавливают по стандартному раствору бихромата, добавив в него несколько капель смеси серкой и фосфорной кислот, применяемой для разложения пробы (см. Железо ). Общее железо определяют в 25 м.л первоначального раствора, восстанавливая и титруя его, как описано выше, раствором бихромата калия. ] 1ожно применять другие окислители — перман- [c.340]

    При разработке ускоренного метода определения кальция в шлаках мы отделяли марганец и другие мешающие элементы путем экстрагирования их диэтилдитиокарбаминатных комплексов [1]. Судя по литературным данным 2—4], взаимодействие марганца с диэтилдитиокарбаминовой кислотой (остаток ее обозначим ДДК) изучено слабо. О составе этого соединения существуют противоречивые мнения. Отсутствуют также данные о растворимости комплекса в воде и о константах нестойкости в органических растворителях. С целью выяснения и уточнения затронутых вопросов и было предпринято настоящее исследование. [c.183]

    После отделения кремниевой кислоты фильтрат используют для определения компонентов, которые осаждаются аммиаком алюминий, железо, титан, марганец и фосфор. Чтобы полностью осадить содержащийся в пробе марганец, необходимо окислить его до Mn(IV), который в этом состоянии осаждается в виде марганцевой кислоты (НзМпОз) или, точнее, в виде МпОг-лИгО. Окисление Мп 11) до Mn(IV) чаще всего осуществляют в слабоаммиачной среде бромной водой. Осаждение аммиаком приводит обычно к соосаждению небольших количеств кальция и магния с осадком гидроксида, вследствие чего после фильтрования осадок растворяют в НС1 и снова осаждают аммиаком. Осадок фильтруют, промывают разбавленным раствором NH4 I и после прокаливания взвешивают сумму оксидов, обозначаемую обычно как R2O3. [c.459]

    Белый кристаллический порошок, устойчивый на воздухе. Плохо растворяется в холодной воде, лучше при нагревании. 5%-ный его раствор в азотной кислоте (1+4) удобен для окисления марганца (II) в марганец (VII) 25 г препарата растворяют в 400 мл HNO3 (1 + 1), доливают водой до 500 мл, перемешивают. Применяется при определении марганца, железа, никеля. [c.61]

    Второй способ применяют для определения натрия, калия, марганца, кальция, магния, железа и алюминия. Во фторопластовом тигле к 0,1 г золы прибавляют 5 мл 65%-ной фтороводородной кислоты и 0,5 мл 65%-ной хлорной кислоты, тигель помещают на песочную баню при 50—60 °С и, повышая температуру до 200—250 °С, выпаривают раствор досуха. Сухой остаток растворяют при нагревании в 2,5 мл концентрированной хлороводородной кислоты и 25 мл воды и разбавляют водой до 100 мл. Эталоны для определения кремния содержат 1% борной, 5% хлороводородной и 1% сЬто-роводородной кислот, а для определения остальных элементов — 2,5% хлороводородной кислоты. Для подавления ионизации при определении кальция к пробам и эталонам добавляют 0,1% калия в виде хлорида. Кремний, алюминий, кальций и магний определяют в пламени ацетилен — оксид диазота железо, марганец, калий и натрий — в ацетилено-воздушном пламени. Использован СФМ Перкин-Элмер , модель 305. Аналитические линии и характеристики метода анализа приведены в табл. 60. [c.225]

    Очевидно очень важно, чтобы применяемый гексацианоферрат (III) калия не содержал гексацианоферрата (II) калия, иначе синяя окраска получится и с двухвалентным и с трехвалентным железом. Для приготовления реактива кристаллы чистого гексацианоферрата (III) калия промывают несколько раз водой для удаления гексацианоферрата (II) калия, который мог образоваться вследствие восстановления первого случайно попавшей на него пыль ), и затем растворяют с таким расчетом, чтобы получить 1 %-ный раствор. Растворы гексацианоферрата (III) калия при стоянии медленно восстанавливаются, поэтому при] отовляют очень малые количества этого раствора. На солнечном свету гексацианоферрат (III) калия и железо (III) реагируют друг с другом с образованием окрашенного в синий цвет соединения. При определении железа этим методом нельзя для его восстановления применять металлический цинк, потому что образующиеся в растворе соли цинка будут реагировать с гексацианоферратом (III) калия с выделением осадка, мешающего пробе. Должны отсутствовать также и другие элементы, образующие нерастворимые гексацианоферраты (III), как, например, медь, никель и марганец. Присутствие фтористоводородной кислоты в растворе приводит к замедлению образования сивего окрашивания и к получению неправильных результатов. Для устранения ее мешающего влияния надо прибавить борную кислоту [c.448]


Смотреть страницы где упоминается термин Определение марганца водах: [c.136]    [c.67]    [c.151]    [c.45]    [c.20]    [c.23]    [c.24]    [c.62]    [c.79]    [c.111]    [c.115]    [c.10]    [c.89]   
Аналитическая химия марганца (1974) -- [ c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Марганец определение

Марганца ион в воде



© 2025 chem21.info Реклама на сайте