Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксационные явления при деформации полимеров

    Релаксационные явления в полимерах. Многие свойства полимеров и, в частности, механические и диэлектрические свойства обнаруживают своеобразные особенности, обусловленные частично замедленной реакцией материала на внешние воздействия. Всякая деформация полимера под действием внешней силы не сопровождается мгновенной перестройкой внутренней структуры до состояния равновесия, отвечающего новым условиям. Для этого требуется некоторый промежуток времени, пока все частицы в соответствии с этими условиями придут в равновесие. Процесс перехода частиц в новое состояние равновесия называется релаксацией. (Релаксацией буквально называется ослабление, в данном случае имеется в виду ослабление напряжения, созданного внешним воздействием). Так, если быстро деформировать полимер и [c.579]


    Повышения температуры плавления гибкоцепного полимера можно достигнуть не только варьированием скорости и температуры кристаллизации, но и его растяжением. Такое явление особенно характерно для аморфных кристаллизующихся эластомеров и известно как ориентированное состояние полимеров. Поэтому различают понятия кристаллический и кристаллизующийся полимер. Это различие связано с релаксационными явлениями в полимерах. Кристаллическим называют полимер, в котором кристаллическая структура (независимо от ее количества) создана в процессе синтеза полимера, т. е. сформирована одновременно с формированием самих макромолекул. Кристаллизующимся называют полимер, который при синтезе получается аморфным, а кристаллические структуры возникают в нем в процессе деформации (обычно растяжения) при ориентации макромолекул в направлении деформации. Общим свойством кристаллических и кристаллизующихся полимеров является невозможность разделения образца на кристаллическую и аморфную фазы, так как в процессе формирования кристаллической структуры одна и та же макромолекула может входить и в кристаллическую, и в" аморфную области. Прочность и относительное удлинение ориентированных полимеров выше, чем у кристаллических полимеров из-за направленного расположения макромолекул. [c.29]

    В заключение заметим, что положение Гт, так же как и Гс, зависит от режима деформации и что все приведенные соображения справедливы в пределах хорошо известных релаксационных явлений в полимерах. Этот вопрос подробно рассмотрен в другой работе нашей лаборатории [8]. [c.255]

    Релаксационные явления в полимерах. Многие свойства полимеров и, в частности, механические и диэлектрические свой" ства обнаруживают своеобразные особенности, обусловленные частично замедленной реакцией материала на внешние воздействия. Всякая деформация полимера под действием внешней силы не сопровождается мгновенной перестройкой внутренней структуры [c.571]

    Связь механич. в электрич. релаксационных явлений. А.—Л. ч.-т.м.позволяет сравнивать механич. и электрич. релаксационные явления в полимерах путем измерения деформации (податливости) и механич. потерь, с одной стороны, и диэлектрич. проницаемости и диэлектрич. потерь — с другой. Дипольно-эластич. потери (см. [c.32]

    Предположение о влиянии условий деформации на скорость релаксационного процесса как об определяющем условии образования шейки может излагаться также в терминах теории свободного объема 1 195-197. Этот подход основан на основном предположении широко распространенной (см., например, обзоры 1 1 ) теории релаксационных явлений в полимерах, согласно которой времена релаксации экспоненциально зависят от относительного свободного объема. Деформирование полимеров, поскольку оно приводит к возрастанию объема полимера (коэффициент Пуассона для кристаллических полимеров и аморфных полимеров при Т <Т, меньше 0,5), способствует увеличению свободного объема и, следовательно, ускорению релаксации. На основании этого предположения могут быть установлены критические условия образования шейки. Несмотря на общность некоторых положений теории свободного объема и предположения о зависимости времени релаксации от напряжения, между ними имеется существенное отличие, заключающееся в том, что в то время как размягчение материала происходит только в направлении действующих напряжений (согласно 195-197 изменение объема при деформировании до момента образования шейки приводит к возрастанию объемной сегментальной [c.192]


    Поскольку Та<Тб < Тв, а 2 > з, то мы видим, что влияние увеличения времени воздействия может быть компенсировано понижением температуры. Этот вывод, являющийся одним из важнейших, прямо следует также из всех изложенных выше представлений о природе высокоэластической деформации и механизме релаксационных явлений в полимерах. [c.64]

    Поскольку вязкое сопротивление перемещению участков молекул значительно ниже сопротивления перемещению цепных молекул целиком, то скорости этих двух процессов ориентации резко различны. Поэтому при действии ориентирующих сил прежде всего развивается ориентация участков цепей, а затем и ориентация цепных молекул в целом. Это различие скоростей процессов ориентации полностью соответствует различию скоростей развития высокоэластической и необратимой деформаций, как это явно следует из изложенного ранее комплекса сведений о релаксационных явлениях в полимерах. [c.123]

    Рассмотренных двух примеров достаточно для того, чтобы представить себе физический смысл механических релаксационных явлений в полимерах и их значение в понимании свойств высокомолекулярных веш,еств. Весьма близок к ним и весь комплекс электрических релаксационных явлений в полимерах. Это сходство обусловлено общим характером развития деформации полимеров и поляризации полимерных диэлектриков. [c.139]

    Высокоэластическое состояние. Термодинамика и молекулярный механизм высокоэластических деформаций. Связь между равновесной упругой силой и удлинением. Нижний предел молекулярных масс, необходимых для проявления высокоэластичности. Релаксационные явления в полимерах и кинетика структурных перестроек. Механические и диэлектрические потери. Переход в стеклообразное состояние. Релаксационная природа перехода. Принцип температурно-временной суперпозиции. [c.382]

    Аномалии в механических свойствах полимеров достаточно подробно рассмотрены в работах [2—5, 16, 17, 43, 48, 49]. Причины, вызывающие эти аномальные отклонения, кроются в свойствах и строении цепных макромолекул, а также в развитии тех или иных надмолекулярных структур. Исходя из современных представлений релаксационных явлений полимерных тел [16, 18, 42, 48], можно утверждать, что рассматриваемой системе полимер — растворитель при ограниченном набухании полимера с пространственной структурой присущи свойства, характерные как для жидкости, так и для твердого тела,— так называемые вязкоупругие свойства. Свойства вязкоупругости проявляются различными путями. Тело, не являющееся идеально твердым, не достигает постоянных значений деформации при постоянных напряжениях, а продолжает медленно деформироваться с течением времени (ползти). С другой стороны, не являющееся полностью жидким, тело при течении под действием постоянного напряжения может накапливать подводимую энергию, вместо того чтобы рассеивать ее в виде тепла. [c.308]

    Дальнейший термодинамический анализ высокоэластических деформаций делается для квазиравновесных процессов деформации. В этом случае применимы уравнения, аналогичные приведенным выше. Что касается неравновесных процессов деформации, то их анализ относится к релаксационным явлениям и, в частности, к термодинамике необратимых процессов в полимерах. [c.63]

    К образцу полимера приложено переменное напряжение, дей- ствующее, например, по синусоидальному закону а = оо sin at. В этом случае приложенное напряжение а характеризуется двумя величинами — амплитудой Оо и частотой ш (или периодом Г=2л/ш). Под действием периодических напряжений в образце возникают периодические деформации, также изменяющиеся по синусоидальному закону е = ео sin( i — ф). Однако синусоида деформации сдвинута по фазе относительно синусоиды напряжения на угол ф, как это показано на рис. V. 11. Возникновение разности фаз между напряжением и деформацией обусловлено релаксационными явлениями, вызывающими запаздывание изменений деформации по сравнению с соответствующими изменениями напряжения. [c.148]

    Рассмотрим более детально релаксационные явления при деформации полимеров в широком интервале температур. Для этого проанализируем процесс развития деформации под действием [c.149]

    Силам контракции противостоят силы вязкости и упругости полимера, при этом процесс слияния происходит во времени. Как следует из рис. 4.5, в случае гексагональной укладки полимерных сфер, независимо от того, находится полимер в высокоэластическом или вязко-текучем состоянии, процесс слияния глобул в агломерате заканчивается при достижении площади контакта, определяемой величиной центрального угла 2а=60°. Следует заметить, однако, что для большинства синтетических смол, включая и ПВХ, достижение вязкотекучего состояния в процессе сушки возможно только после удаления свободной влаги. Для описания процесса слияния полимерных сфер в вязкотекучем состоянии применимо уравнение Я.И.Френкеля (4.7). В случае высокоэластического состояния полимера описание процесса слияния должно учитывать релаксационные явления при деформации полимерных глобул и уплотнении частиц-агломератов. Количественную оценку действующих сил можно получить из рассмотрения схемы двух контактирующих полимерных сфер (рис. 4.6). [c.128]


    Релаксационные явления и связанная с ними вынужденная эластическая деформация приводят к тому, что первичные трещины, образующиеся при растяжении органического стекла, раскрываются настолько широко (на 0,5 мкм и более), что удается наблюдать их возникновение и развитие непосредственно под микроскопом и даже невооруженным глазом. Эта особенность органических стекол и подобных им полимеров позволяет получить прямые доказательства неодновременности разрыва образца и подтверждение теории хрупкой прочности. В пользу этих представлений также говорят результаты исследования поверхности, образующейся при разрыве образца (поверхность разрыва), на которой хорошо видна линия встречи трещин. У полиметилметакрилата эта линия представляет собой гиперболу, возникшую вследствие пересечения двух растущих с одинаковой скоростью трещин, одна из которых начала развиваться раньше другой. У полистирола кривые менее правильны, что, по-видимому, связано с неодинаковой скоростью распространения различных трещин или с зависимостью ее от времени. Иногда линии встречи трещин [c.419]

    Главное достоинство книги И. Уорда — высокий уровень изложения при последовательном рассмотрении всех основных аспектов механики полимеров малых деформаций и вязкоупругих эффектов, нелинейных явлений, больших деформаций и перехода через предел текучести, изотропных и анизотропных механических свойств полимерных материалов, их прочностных характеристик, соотношений между релаксационными явлениями и определяющими их структурно-физическими механизмами. Все этд вопросы, составляющие специфику механических свойств полимерных материалов, изложены четко, систематично, в достаточной мере строго и при том весьма кратко. [c.9]

    Уникальные деформационные свойства полимеров, обусловливающие возможность их широкого применения, определяются длиной и подвижностью макромолекул. Поэтому в гл. I кратко рассмотрены основные закономерности, связывающие молекулярную и надмолекулярную структуры полимера с его деформационными характеристиками. Приведен всесторонний анализ физической сущности релаксационных явлений и методам их количественного описания. Подробно рассмотрена природа высокоэластических деформаций. Особое внимание уделено введению основных понятий (таких, как упругая, высокоэластическая и пластическая деформация, скорость сдвига, релаксационный и динамический модули, обобщенный релаксационный спектр и т. п.). [c.9]

    РЕЛАКСАЦИОННЫЕ ЯВЛЕНИЯ НРИ ДЕФОРМАЦИИ ПОЛИМЕРОВ [c.29]

    Релаксационные явления прп циклических деформациях и динамическая прочность полимеров [c.214]

    Если, например, скорость деформирования образца или изделия из полимера меньше скорости протекания релаксационных процессов в нем, то последние успевают завершиться за время испытания или воздействия внешней силы. В этом случае мы можем измерить величину равновесной деформации полимера, так как время наблюдения или действия силы больше времени релаксации. Если же скорость деформирования больше скорости релаксации, т. е. время действия силы меньше времени релаксации, то равновесная деформация не достигается, и необходимо учитывать протекание релаксационных явлений, которые будут влиять на изменение формы образца или изделия из полимера с течением времени. [c.89]

    Механические свойства и закономерности деформации частично закристаллизованных полимеров определяются природой кристаллических областей, которая может обусловить преимущество механизма Гуковских деформаций. В этом случае закономерности деформации полимера приблизятся к соответствующим закономерностям твердых кристаллических тел (например, металлов). При Гуковских деформациях почти не изменяется положение элементов структуры если же изменение все-таки происходит, то этот процесс их перемещения протекает очень быстро. Поэтому релаксационные процессы в таких полимерах тоже протекают быстро и их влияние на основные закономерности деформации очень мало. Если процессы кристаллизации в полимерах протекают при их деформировании, что требует значительного времени для перестройки старой и формирования новой структуры, то релаксационные явления должны уже учитываться при изучении свойств таких полимеров. [c.90]

    Следовательно, увеличение времени действия силы на полимер эквивалентно повышению температуры испытания, и наоборот. Иными словами, один и тот же эффект при механическом воздействии на полимер может быть достигнут медленно действующей силой при низкой температуре или быстродействующей силой при высокой температуре. На этом основан так называемый принцип температурно-временной суперпозиции, связывающий математической зависимостью время действия силы на полимер с температурой. Для появления петли гистерезиса решающее значение имеет соотношение времени действия силы и времени перегруппировок структурных элементов макромолекул (сегментов). На это соотношение можно влиять как изменением времени действия силы, так и изменением температуры, так как релаксационные и гистерезисные явления обусловлены структурными перегруппировками макромолекул. Зависимость проявления релаксационных свойств и гистерезиса от времени действия силы имеет большое значение при работе полимерных изделий или испытании образцов в условиях действия циклических многократно повторяющихся деформаций. Большие гистерезисные потери в первом цикле деформации полимера быстро уменьшаются при проведении второго, третьего и т. д. циклов деформации (рис. 47), После первого цикла деформации структура полимера перестраивается и как бы приспосабливается к новым условиям (величина и время нагружения). Во втором цикле после разгрузки в первом цикле структура полимера не успевает вернуться в исходное состояние, и последующие циклы деформации проходят с уже ориентированным в направлении деформирования полимером, В результате площадь петли гистерезиса уменьшается и механические потери снижаются. Естественно, что такая перестройка характерна для данного вида циклической деформации и при его изменении вновь возрастут гистерезисные потери. [c.102]

    Релаксационные явления в полимерах. Как указывалось выше, особенности деформационных свойств полимеров, в том числе и аномалия вязкости, являются следствием релаксационного механизма деформации. Существенной особенностью полимеров является то, что релаксационные процессы перегруппировки цепных макромолекул и их агрегатов под действеим внешних сил протекают чрезвычайно медленно, не заканчиваясь иногда в течение многих суток. При действии внешних сил на простые жидкости величины сил межмолекулярного взаимодействия и размеры молекул таковы, что эти перегруппировки при комнатной температуре протекают очень быстро, за ничтожные доли секунды (10 —10 с). Очевидно, что чем выше вязкость при прочих равных условиях, тем медленней протекают релаксационные процессы. Естественно ожидать у полимеров, обладающих очень длинными молекулами и имеющими огромную вязкость, больших значений этого времени. Однако гибкость цепей полимера чрезвычайно усложняет релаксационные процессы. Гибкость макромолекул полимера означает некоторую свободу движения отдельных ее частей. Перемещение же этих участков, размеры которых могут быть весьма различны в разные моменты времени и в разных местах макромолекул, будет происходить с различной скоростью. Поэтому у полимеров наблюдается сложный ралексационный процесс, состоящий из множества одновременно идущих простых релаксационных процессов с весьма различными временами релаксации. Макромолекулы, кроме того, способны к образованию различных надмолекулярных структур и имеют различную молекулярную массу. Все эти образования обладают различной подвижностью и разным временем релаксации. Поэтому релаксационные процессы в полимерах могут быть описаны с помощью широкого набора времен релаксации, содержащего как очень малые, так и очень большие их значения, т. е. спектром времен релаксации. [c.21]

    Мы видим, что студни 20%-ного раствора желатины, ксантогената целлюлозы и нитроцеллюлозы в спирте не имеют частотной зависимости при изменении скорости деформации в 1000 раз, что свидетельствует о наличии у студней только очень малых периодов релаксации, связанных с изменением формы молекулы полимера. Действительно, релаксационные явления в полимерах обусловлены взаимодействием цепей между собой, их перемещением и поворотом. Отсутствие больших периодов релаксации свидетельствует о том, что взаимодействие ме кду цепями очень мало и, с другой стороны, что цепи лишены возможности перемещаться друг относительно друга. Следовательно, у студней имеются локальные связи между цепями, время существования которых велико по сравнению с временем опыта связи препятствуют перемещению молекул относительно друг друга (течению). Локальные связи соединяют цепные молекулы в непрерывную сетку, пе препятствуя деформации участков цепей, что обусловливает высокую эластичность сетки. [c.300]

    В книгу включены основные работы В. А. Каргина по структуре полимеров, по установлению закопомериостой деформации полимеров, особенностям орпснтированного состояния п релаксационным явлениям в полимерах. Содержатся статьп по исследованиям зависимости физико-мехапических сво11ств полимеров от их структуры. [c.304]

    В. А. Каргина и Г. Л. Слонимского 48—50], которые в 1948 г. предложили модель полимера, описывающую три упомянутые физические состояния полимеров, а также основной комплекс механических релаксационных явлений в полимерах. В этой модели учтены константа упругости, обусловленная деформацией валентных углов и связей в цепных молекулах константа упругости (высокоэластичности), обусловленной изменением числа конформаций цепных молекул при их деформации вследствие наличия внутреннего вращения константа, характеризующая внутреннюю подвижность молекул, т. е. кинетику переходов от одной конформации к другой константа, характеризующая внехпнюю подвижность цепных молекул и связанная с вязкостью полимера. [c.323]

    Размеры рассмотренных участков реологической кривой могут быть самыми различными в зависимости от природы системы и условий, при которых проводят испытания механических свойств (например, температуры). В коагуляционных структурах систем с твердой дисперсной фазой предел упругости растет с увеличением концентрации частиц и межчастичного взаимодействия. В этом же наиравлении уменьшается область текучести. Для материалов, имеющих кристаллизационную структуру, например для керамики и бетонов, характерны большая (по напряжениям) гуковская область деформаций и практическое отсутствие области текучести — раньше наступает разрушение материала (хрупкость). Поэтому им не свойственны ни ползучесть, ни тиксотропия. Для полимеров с конденсационной структурой наиболее типичны релаксационные явления, включая проявление эластичности, пластичности и текучести. Доля Гуковской упругости в них возрастает с ростом содержания кристаллической фазы. Наличие области текучести у полимеров объясняют разрушением первоначальной структуры и возникновением определенного ориентирования макромолекул, надмолекулярных образований и кристаллитов. По окончании такой переориентации наблюдается некоторое упрочнение материала, а затем с ростом напряжения материал разруилается. В какой-то степени промежуточными реологическими свойствами между свойствами керамики и полимеров обладают металлы и сплавы. У них меньше области гуковской упругости (по напряжениям), чем [c.380]

    Механические свойства полимеров. Полимеры по своим механическим свойствам отличаются от остальных твердых и квазитвердых тел (стекла) ввиду сильно проявляющихся релаксационных явлений. Закон нормальной упругости Гука (см. гл. 10) к ним мало применим, так как относительная деформация зависит от многих переменных  [c.500]

    Стеклообразное состояние отличается от жидкого отсутствием релаксационных явлений в течение времени эксперимента и от кристаллического — наличием избыточной энтропии и энтальпии, сохраняющихся постоянными ниже температуры стеклования Характер теплового движения макромолекул ниже температур стеклования изменяется. Если в высокоэластическом состоянии кинетической единицей являлся сегмент, размеры которого определяла степень гибкости молекулы, то в стеклообразном состоянии подвижность в цепи сохраняется лишь на уровне отдельных звеньев. Частичная подвижность звеньев позволяет рассматривать полимерные стекла как более близкие по структуре к жидкости, чем низкомолекулярные стекла Об этом свидетельствуют данные по диэлектрическим свойствам застекло-ванных полимеров 4- , а также значительно более высокие значения коэффициентов диффузии по сравнению с низкомолекулярньши стеклами . Полимеры с более гибкими молекулами в стеклообразном состоянии более плотно упакованы и обладают меньшей способностью к деформации, чем полимеры с жесткими молекулами. Следовательно, полимеры с жесткими молекулами в стеклообразном состоянии упакованы более рыхло и по своим свойствам отличаются от низкомолекулярных сте- [c.123]

    Релаксационный характер процессов деформации полимеров приводит к тому, что границы между релаксационными (физическими) состояниями определяются не только температурой, но и прилагаемой нагрузкой (значением, скоростью и длительностью приложения). Поэтому релаксационные состояния называют также деформационными состояниями. В зависимости от характера нагрузки один и тот же полимер при данной температуре может вести себя как упругое, высокоэластическое или пластическое (текучее) тело. При действии быстрых сил -ударной нафузки - главным образом проявляется упругость, а в случае медленных сил - текучесть. Полимер, яааяющийся при данной температуре высокоэластическим, при большой скорости приложения кратковременных нафузок ведет себя как упругое тело (явление механического стеклования), а при длительно действующей силе обнаруживает текучесть. Жидкий полимер может в определенных условиях проявить высо-коэластичность и даже упругость. [c.156]

    Следует заметить, что механизм разрушения одного и того же полимера может быть различным в зависимости от того, в какой области температур испытывается образец. Например, ниже температуры хрупкости большинство полимеров могут испытывать разрушение, протекающее как по атермическому (гриффитовскому), так я по термофлуктуационному механизму разрушения. Вблизи ОК, где тепловое движение, по-видимому, не играет большой роли и не влияет на кинетику роста микротрещии, разрушение полимеров иредставляет собой атермический процесс. При более высоких температурах (но не выше Гхр), когда тепловые флуктуации определяющим образом влияют на долговечность, разрушение полимеров представляет собой термофлуктуа-ционный цроцесс. В случае твердых полимеров ири температурах Тхр<Т<Т0 возможен как термофлуктуаци-онный, так и релаксационный механизм разрушения. Последний связан с образованием трещин серебра и возникновением вынужденно-эластических деформаций. Явление вынужденной эластичности, природа которого была выяснена Александровым [21], заключается в том, что под действием больших напряжений аморфный полимер, находящийся в стеклообразном состоянии, способен испытывать большие деформации. Остаточная деформация, возникшая в полимере, сохраняется, если он находится в стеклообразном состоянии, но исчезает, если его нагреть выше ТВ работах Александрова [21] и Лазуркина [22] было показано, что вынужденная эластичность имеет релаксационный характер. Долговечность полимера, находящегося в области температур, в которой возможна вынужденно-эластическая деформация, будет определяться в основном временем, н течение которого трещины серебра распространятся на значительную часть образца. [c.301]

    Важнейшим параметром флуктуацнонной сетки зацеплений является среднее время жизни узла, или, что то же самое, время релаксации при механическом воздействии на элементы, образующие узел. Если это время неограниченно велико и сравнимо со временем существования химических связей, то напряжения в сетке не релак-сируют, если не считать механизма химической релаксации из-за разрыва химических связей. Тогда полимер способен неограниченно долго сохранять деформации или напряжения. Этот случай отвечает резинам или вообще полимерам с трехмерным структурным каркасом. Если время релаксации очень мало, во всяком случае существенно меньше, чем продолжительность наблюдения, то структурные элементы, с точки зрения наблюдателя, оказываются совершенно не связанными, они свободно проскальзывают в узлах, и система ведет себя как типичная жидкость. Во всех промежуточных случаях разыгрывается широкий комплекс релаксационных явлений, связанный с существованием набора (спектра) времен релаксации движений полимерной цепи. При этом весь спектр упрощенно можно разделить на две части — область медленных релаксационных процессов, завершающихся медленнее, чем распадаются узлы сетки флуктуационных связей, и область быстрых релаксационных процессов, которые осуществляются быстрее, чем происходит релаксация в структурных узлах сетки. По отношению к первой группе времен релаксации факт существования сетки является определяющим для поведения системы, по отношению ко второй группе он не сущестаён. [c.274]

    Попытка характеристики материала модулем упругости, т. е. рассмотрение его как эластического, пе достигает успеха, поскольку развивается необратимый процесс течения, что приводит к неоднозначности, а также вследствие релаксационных явлений, обусловливающих зависимость модуля от времени. Попытка характеризовать полимер с помощью коэффициента вязкости, т. е. рассмотрение его как ньютоновской жидкости, также пеудачна, поскольку развивающаяся эластическая деформация, сопровождающаяся релаксационными явлениями, также приводит к зависимости коэффициента вязкости от условий деформаций. [c.266]

    Деформация полимеров весьма осложнена релаксационными процессами, обусловленными взаимодействием между цепными молекулами. Однако явления, связанные с деформацией цепей, можно достаточно легко отличить от процессов течения, создавая между цепями полимера небольшое количество прочных связей, препятствуюш их перемещению молекул друг относительно друга (вулканизация). [c.299]

    С целью получения стабильных по качественным показателям изде.пий и стабилизации их размеров во времени, переработку и формование полимеров нужно осуществлять в области вязкотекучей деформации. Однако надо помнить, что переработка полимеров в реальных условиях всегда сопровождается и наличием высокоэластической составляющей общей деформации, которая в дальнейщем проявляется в виде релаксационных явлений. Четкой грани между текучим и высокоэластическим состояниями установить нельзя, но факторы, влияющие на снижение доли высокоэластической деформации, известны. [c.74]


Смотреть страницы где упоминается термин Релаксационные явления при деформации полимеров: [c.17]    [c.32]    [c.29]    [c.89]    [c.186]    [c.259]    [c.86]    [c.144]    [c.90]    [c.94]   
Смотреть главы в:

Теоретические основы переработки полимеров -> Релаксационные явления при деформации полимеров




ПОИСК





Смотрите так же термины и статьи:

Деформации полимера

Релаксационные явления



© 2025 chem21.info Реклама на сайте