Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выделение элементов на ртутном катоде

    Количества щелочных и щелочноземельных элементов на восходящих бумажных хроматограммах определяют после электролитического выделения на ртутном катоде с большой поверхностью при [c.49]

    Не прерывая тока, раствор сливают со ртути и ртуть промывают водой. Промывные воды присоединяют к основному раствору. Полученный раствор, свободный от элементов, выделенных на ртутном катоде подвергают анализу. Если нужно извлечь из ртути осажденные в ней металлы, амальгаму растворяют в кислотах или отгоняют ртуть. [c.358]


    Электролиз можно применять для выделения следовых количеств элементов, стоящих в ряду напряжений дальше, чем элемент матрицы или другие мешающие определению компоненты. При этом можно провести кулонометрическое определение с одновременным электрохимическим отделением или выделить элемент электрохимически или химически, а затем применить другие методы анализа. После выделения следовых количеств элементов на проволоке из инертного тугоплавкого металла их можно определить эмиссионными методами, внося проволоку, например, в пламя. Электролиз можно также применить для отделения матрицы, если металл матрицы стоит в ряду напряжений дальше, чем элемент, содержащийся в следовых количествах. Такие выделения обычно осуществляют, проводя восстановление на ртутном катоде. Преимуществом использования ртутного катода по сравнению с электролитическим осаждением является то, что не происходит адсорбции следовых количеств элемента, т. е. определяемый элемент практически полностью остается в растворе, не содержащем ионов металла матрицы. Но с другой стороны, при этом не достигается концентрирование определяемого элемента. [c.422]

    Электролиз можно производить также с применением ртутного катода. Этот метод чаще применяется для удаления из раствора больших количеств мешающих элементов, с последующим определением элементов, оставшихся в растворе. Иногда осаждение на ртутном катоде проводят для количественного определения выделенного металла с последующей отгонкой ртути или переведением его в раствор электролитическим окислением. [c.58]

    Для повышения избирательности метода электролиз ведут при контролируемом потенциале. Если потенциалы выделения двух элементов различаются больше, чем на 250—300 мв, можно произвести количественное разделение. Ячейка для проведения разделения с ртутным катодом при контролируемом потенциале приведена на рис. 30. [c.59]

    Эксперимент заключается в снятии поляризационных кривых компенсационным методом. Поскольку измеряемый потенциал анода велик, необходимо навстречу исследуемой ячейке включить несколько нормальных элементов. Электролизер — стеклянный сосуд, на дно которого налита чистая ртуть, сбоку к ней подведен платиновый контакт (рис. 88). Ртуть служит катодом. Применение ртутного катода способствует поддержанию постоянного значения pH в процессе опыта, так как вместо выделения водорода на ней образуется амальгама. Анодом служит торцовый платиновый микроэлектрод, изготовленный из тонкой тщательно отполированной проволочки, впаянной в стеклянную трубку. В трубку для электрического контакта налита ртуть. Электролизер с помощью двух промежуточных сосудов и солевых мостиков (один с раствором кислоты, другой — с раствором хлористого калия) соединен с кало- [c.221]


    Электролиз разбавленных сернокислых растворов обеспечивает количественное выделение В1, Сё, Сг, Со, Оа, Ое, Аи, 1п, 1г, Ре, Н , Мо, N1, Рё, Р1, Ро, Не, НИ, Ag, Т1, 5п и 2п. Количественно выделяясь из раствора, мышьяк, свинец, осмий и селен не переходят полностью в катодную ртуть. Сурьма, марганец и рутений осаждаются неполностью, а остальные элементы совершенно не осаждаются из кислого раствора на ртутном катоде [8, стр. 58]. [c.339]

    Методы выделения кобальта электролизом и его отделение от других элементов рассмотрены на стр. 90. Был предложен метод разделения кобальта и цинка [339], основанный на выделении обоих элементов на ртутном катоде и последующем анодном растворении полученной амальгамы. Прн этом цинк переходит из амальгамы в виде ионов в водный раствор, а кобальт выделяется пз амальгамы с большим перенапряжением и поэтому практически полностью остается растворенным в ртути. Проверка метода показала [39], что разделение не количественно, много цинка остается в амальгаме. Для отделения кобальта от цинка и кадмия было предложено проводить электролиз из щелочного раствора, содержащего тартрат натрия-калия и иодид калня последний прибавляется для предотвращения окисления кобальта на аноде до высшего окисла [1449, 1463]. Изучены условия отделения висмута от кобальта электролизом [66а]. [c.87]

    Микрограммовые количества серебра можно отделить от меди и железа, используя в качестве коллектора металлическую ртуть. При электролизе с ртутным катодом вместе с серебром осаждаются также железо и медь. Если же перемешивать разбавленные сернокислые или аммиачные растворы, содержащие серебро, с металлической ртутью, серебро выделяется на ртути в виде амальгамных шариков, в то время как медь и железо остаются в растворе. Ртуть из амальгамы можно затем удалить нагреванием при 350° С в токе азота и в остатке определить серебро фотометрическим методом [977]. Для выделения серебра вместе с другими благородными металлами — золотом, платиной, палладием и родием — из сульфидных медно-никелевых руд концентрируют эти элементы на металлическом свинце пробу руды обжигают для удаления серы и затем растворяют в кислоте, нерастворимый остаток сплавляют с плавнями, содержащими окись свинца. Серебро и другие названные металлы концентрируются на металлическом свинце. Свинцовый королек купелируют до веса 100 мг и охлаждают, после чего определяют благородные металлы спектральным методом [1132]. [c.143]

    Так, например, метод количественного определения алюминия в при- утствии ионов железа и других элементов, основанный на выделении железа электролизом на ртутном катоде, состоит в следующем. Сначала выделяют железо из сернокислого раствора на ртутном катоде вместе с, железом выделяются другие элементы цинк, хром, никель, кобальт т. д. В растворе остаются ионы алюминия, бериллия, титана, фосфора и т. п. Затем определяют обычным путем ионы алюминия. Титан осаждают [c.358]

    Ртутный катод позволяет выделить из раствора много элементов. На ртути велико перенапряжение водорода при комнатной температуре и плотности тока 0,01 А/см оно составляет 1,04 В. Благодаря этому можно выделять -металлы из кислых растворов. Некоторые металлы дают с ртутью амальгамы, что облегчает их выделение. [c.138]

    На ртутном катоде выделяют металлы, которые со ртутью легко образуют амальгамы, разлагающиеся впоследствии с выделением гидроокисей соответствующих металлов. К таким металлам относятся элементы основных подгрупп первой и второй групп периодической системы элементов, например, натрий, калий, барий и др. Определение ведут в специальных приборах. В данном случае электролиз играет роль подсобного процесса, применяемого для отделения ионов. [c.313]

    В ряде работ М. Т. Козловского, П. П. Цыб н других советских исследователей предложен новый вариант электролитического выделения группы металлов на ртутном катоде с последующим растворением выделенных металлов. переход металлов в раствор происходит в соответствии с анодными потенциалами растворения этих металлов. Так, например, при электролизе с ртутным катодом цинк и железо вместе переходят в ртуть катода, разделить эти элементы, регулируя катодный потенциал, нельзя. Если сделать ртутный ка-Т..1Д анодом и регулировать анодный потенциал, то при потенциалах от —0,8 до —0,6 в в раствор перейдет почти весь цинк, а железо останется в амальгаме. [c.314]

    Электрогравиметрический метод анализа заключается в выделении определяемого элемента в виде металла на предварительно взвешенном катоде, после чего электрод с осадком взвешивают и определяют количество металла. Этим способом можно определять кадмий, медь, никель, серебро, олово и цинк. Некоторые вещества могут окисляться на платиновом аноде с образованием нерастворимого плотного осадка, пригодного для гравиметрического определения. Примером может служить окисление свинца(П) до диоксида свинца. Кроме того, в аналитической химии электролиз можно использовать для разделений ионов известен способ, когда легко восстанавливающиеся ионы металлов осаждаются на ртутном катоде, а трудно восстанавливающиеся катионы остаются в растворе. Таким способом алюминий, ванадий, титан, вольфрам, щелочные и щелочноземельные металлы можно отделить от железа, серебра, меди, кадмия, кобальта и никеля, которые выделяются на ртути. [c.413]


    В или выше, раствор непрерывно перемешивается. В этих условиях можно удалить из раствора в виде амальгамы или осадка все элементы, которые восстанавливаются до металлического состояния при меньшем потенциале, чем тот, который необходим для выделения водорода на поверхности ртути. Из 0,1—0,2 М раствора серной кислоты осаждаются Ад, Аи, В1, Сс1, Со, Сг, Си, Нд, Ре, N1, Мо, Р(1, Р1, 5п, Т1 и 2п. Ртуть отделяют от водного раствора в конце электролиза. Для того чтобы предотвратить растворение осадка в кислом растворе, который все еще может содержать многие элементы (такие, как А1, Ве,. Vlg, Т1, V, щелочноземельные и редкоземельные металлы), в процессе разделения фаз систему продолжают держать под напряжением. Аналитическое использование этого метода обычно основано на полном удалении из раствора элементов одной группы, с тем чтобы облегчить определение какого-либо элемента другой группы, остающегося в растворе. Метод предварительного разделения с применением ртутного катода был рекомендован для определения А и Мд в цинковых сплавах и А1, V, 2г, Се или Ьа в сталях. [c.429]

    Электролиз на ртутном катоде удобен для выделения тяжелых и цветных металлов из весьма разбавленных растворов. Выделенные элементы определяют после удаления ртути в токе азота. [c.82]

    Эксперименты с индикаторными количествами радиоактивных изотопов элементов показали возможность количественного выделения металлов на твердых (и ртутных) электродах до весьма малых содержаний, например, 10- г/мл [459]. При достаточном времени электролиза все примеси, у которых величина потенциала выделения более положительна, чем величина потенциала выделения водорода (последняя составляет, например, при 20° С и плотности тока 1 а/см на платиновом катоде в 0,1 н. растворе НгЗО —0,10 в), можно количественно извлечь из разбавленных растворов кислот и солей щелочных металлов путем электроосаждения на металлических электродах с последующим возбуждением спектра катодного осадка [1465]. Выделение следов происходит по законам диффузионной кинетики, причем скорость электро-осаждения падает с уменьшением концентрации примеси и зависимость количества выделенного на электроде вещества уменьшается во времени по экспоненциальному закону. В интересах полноты и ускорения выделения элементов следует увеличивать площадь катода (точнее, отношение поверхности катода к объему исследуемого раствора) и повышать температуру раствора. [c.314]

    Полярографические исследования РЗЭ (см. ниже) показывают, что почти все они имеют потенциал полуволны около -—1,8 (и. к. э.) [—1,55 в (н. Б. э.)], т. е. потенциал, близкий к потенциалу выделения щелочных металлов на ртути. Поэтому если, в растворе присутствует ион щелочного металла, то при электролизе образуется амальгама щелочного металла, на которой и разряжается ион лантанида, поскольку потенциал катода принимает при этом соответствующее значение. Это особенно наглядно прослеживается на примере лантана — элемента, не обладающего переменной валентностью. По нашим данным, потенциал ртутного катода достигает —2,2 в (н. к. э.) в растворе цитрата лития и —2,0 в в растворе цитрата калия. При введении лантана в эти же растворы потенциал катода практически не меняется. В растворах же ацетата лантана, не содержащего цитрата калия или лития, потенциал катода устанавливается равным —1,4 б, т. е. отвечает потенциалу выделения водорода на ртутном катоде при данном pH (4,5). Таким образом, можно считать, что потенциал ртутного катода диктуется щелочным металлом и что выделение лантана является сопряженным процессом. [c.293]

    При электролизе на ртутном катоде прометий переходит в амальгаму при плотности тока выше 75 ма/см , однако его переход осуществляется после выделения основных количеств других редкоземельных элементов, способных восстанавливаться на ртутном катоде в этих условиях. Следует сказать, что прометий восстанавливается на ртутном катоде только в присутствии лантаноидов, имеющих в растворе устойчивую степень окисления - -2. На процесс электролиза оказывает влияние присутствие и природа комплексообразующих ионов, а также ионов щелочных металлов. [c.287]

    Широко применяемый в аналитической практике метод разделения элементов электролизом на ртутном катоде до сих пор не подвергался систематическому обследованию в отношении полноты выделения отдельных элементов и влияния различных факторов. Так, например, совершенно не изучен вопрос о выделении элементов, присутствующих в малых концентрациях. [c.127]

    Шведов В. П., Фу И-бей. Выделение радиоактивных изотопов на ртутном катоде. И. Изучение возможности выделения редкоземельных элементов, не имеющих устойчивого двухвалентного состояния.— Радиохимия, 1960, 2, № 2, 231—233. Библиогр. 6 назв. [c.204]

    Как было отмечено выше, осадки сернистых металлов, полученные как из кислого, так и из аммиачного раствора, склонны захватывать земельные кислоты. Кроме того, здесь возникают обычно неудобства, связанные с работой с сероводородом и с фильтрованием сернистых осадков, особенно в тех случаях, когда они объемисты, вследствие присутствия в испытуемом материале значительного количества железа. Лаборатория Института редких элементов устраняет эти неудобства тем, что выделение сероводородом и сернистым аммонием заменяет выделением электролизом на ртутном катоде (см. т. I, вып. 1, стр. 440). Виннокислый фильтрат, содержащий после выщелачивания сплава весьма небольшое количество серной кислоты (не выше 1% по объему) и имеющий объем около 75 мл, переносится в сосуд С а i n a, и железо вместе с другими тяжелыми металлами, например оловом, осаждается током около 4 ампер. В освобожденном от железа растворе главная фракция земельных кислот выделяется виннокислым гидролизом, т. е . кипячением подкисленного соляной кислотой раствора. [c.443]

    Наконец, необходимо отметить амальгамы, о существовании которых упоминалось сравнительно давно. Рзэ цериевой группы образуют амальгамы легче, чем элементы иттриевой группы. Амальгамы можно получать замещением щелочных металлов редкоземельными металлами из насыщенных спиртовых растворов безводных хлоридов [2031], прямым растворением редкоземельных металлов и ртути или выделением на ртутном катоде при электролизе. Последний метод широко применяется при электролитическом отделении 8т, Ей и УЬ от других элементов. Амальгамы с содержанием до 5% редкоземельного металла еще жидки, но при дальнейшем увеличении его концентрации постепенно переходят в пастообразные смеси. Вакуумной отгонкой можно почти полностью освободить сплав от ртути. Остаточные количества ртути удерживаются довольно прочно, особенно для тяжелых рзэ. При нагревании нлн стоянии на воздухе амальгамы имеют тенденцию к разрушению, которое при соприкосновении с кислородом сопровождается быстрым окислением. [c.29]

    Применение электролиза с ртутным катодом для выделения и разделения радиоактивных элементов пока еще мало изучено и не получило большого распространения. Ртутный электрод был использован для выделения из водных растворов радия и полония, а также для отделения натрия, полученного по реакции а)На11, от вещества мишени. Выход радиоактивного изотопа натрия из раствора, полученного растворением в соляной кислоте облученной мишени, составлял 95% при продолжительности электролиза 9—10 час. (напряжение 24 в, сила тока 130 ма). Выделение на ртутном катоде радиоактивных изотопов В1(КаЕ), Со ° и 2п 5 из 1% сернокислых растворов (напряжение 6 в, сила тока 2,5 а, температура 80°) было практически полным при продолжительности электролиза около 100 мин. [c.163]

    Хорошо известно, что бор, германий, мышьяк, селен, теллур и сурьма не растворяются в ртути, не амальгамируются ею и не дают амальгам при электролитическом выделении на ртутном катоде. Из них только сурьма, по данным А. И. Зебревой и М. Т. Козловского переходит в ртуть, если электролиз проводят при очень малых плотностях тока. Большинство из перечисленных элементов при электролизе растворов, содержащих только ионы одного элемента, образуют в электролите суспензии, состоящие из данного вещества. Но если в растворе присутствуют ионы металлов, с которыми указанные выше элементы дают интерметаллические соединения, то в этих условиях бор, германий, мышьяк, селен, теллур и др. переходят в ртуть. [c.127]

    В последнее время показана возможность выделения на ртутном катоде радиоактивных изотопов редкоземельных элементов, не пмэющих устойчивого двухвалентного состояния [78[. Было установлено, что в присутствии некоторых ксмплексообразующих веществ (лимонной, винной или молочной кислот) и понов лития возможно отделение членов церневой группы от элементов иттрие-вой группы. Например, Се и Рш полностью переходят в амальгаму лития, а остается в растворе. Кроме того, этим же методом может быть отделен от Ьа " и Се . Ртутный [c.39]

    Интересным представляется применение ртутных электродов для непосредственного отделения индия от других элементов, а также в целях рафинирования чернового металла. Так П. П. Цыб , подвергая электролизу с ртутным катодом раствор, полученный растворением индиевого концентрата в H2SO4, получил амальгаму индия и некоторых других металлов. Из амальгамы индий извлекают электролитическим способом с выделением его на алюминиевом катоде. Полученный индий снова [c.558]

    Свойства. Ртуть является единственным металло.м, который находится в Ж идком состоянии при обыкновенной температуре (радмий элемент галлий плавится пр И 29,8 ). Осажде нная из растворов в тонко раздробленном состоянии и будучи не совсем чистой, она образует темвосерый порошок. Ртуть е окисляется при обыкновенных температурах воздухом или кислородом, но медленно окисляется при температуре ее кипения. Она растворяет многие металлы, образуя амальгамы, им еющие важное промышленное значение. Амальгамы часто получаются при электролизе растворов с ртутным катодом. Ртуть не растворяется в соляной и разбавле нной серной кислотах, но растворяется в горячей концентрированной серной ки слоте с выделением двуокиси серы, причем образуется сульфат одновалентной ИЛИ двухвалентной ртути в зависимости от того, что находится в избытке — кислота или металл  [c.122]

    К насыпным электродам можно отнести также используемые в промышленности насадки разлагателей амальгамы электролиза растворов Na l с ртутным катодом. Насадки обычно состоят из кусков дробленого графита в последнее время предложены насадки из кусков карбидов вольфрама [451 или других металлов, либо кускового материала, покрытого слоем карбидов. Такие насадки работают в качестве катода короткозамкнутого элемента нри разложении амальгамы щелочного металла. Для снижения потенциала выделения водорода на такой насадке предложено много вариантов активирования ее поверхности пропиткой растворами [c.42]

    Превосходные результаты при разделении и кулонометрическом определении никеля и кобальта путем выделения их на ртутном катоде при контролируемом потенциале дает метод Лингейна и Пейджа [223]. Метод основан на различии потенциалов выделения указанных элементов из водно-пиридиновых растворов. В качестве анода используют серебро или платину, применяя как деполяризаторы соответственно хлориды (бромиды) или гидразин. Оптимальный потенциал выделения никеля в 1 М растворе пиридина, содержащем С1 в концентрации 0,5 г-ион1л при pH = 4—9 составляет —0,95 в относительно насыщ. к. э. Кобальт выделяют при потенциале —1,20 в. [c.27]

    Электролиз на ртутном катоде применяют для удаления из раствора мешающих ионов, чтобы затем в нем определять малые количества других ионов. Например, при анализе сталей после выделения мешающих элементов на ртутном катоде в растворе определяют алюминий, ванадий, германий, лацтан при-анализе цинковых сплавов в растворе определяют алюминий и, магний. [c.138]

    Разделения с применением ртутного катода при постоянной силе тока, хотя и непригодны для электрогравиметрических определений, однако часто используются как вспомогательное средство при выполнении анализа другими методами. Касто приводит обзор различных методов электролитического удаления примесей металлов из урана. Особенно интересная методика, разработанная Фурманом и Брикером, заключается в количественном осаждении различных металлов на небольшом ртутном катоде. Ртуть удаляют дистилляцией, а остаток анализируют полярографическим или колориметрическим методом. Такая же методика может быть применена для выделения следов примесей из других металлов, например алюминия, магния, щелочных и щелочноземельных металлов, которые, подобно урану, при электролизе в кислом растворе не образуют амальгам. Паркс, Джонсон и Ликкен применяя несколько небольших порций ртути, удаляли из растворов большие количества тяжелых металлов, а именно меди, хрома, железа, кобальта, никеля, кадмия, цинка, ртути, олова и свинца, и сохраняли в нем полностью даже небольшие количества алюминия, магния, щелочных и щелочноземельных металлов для последующего определения этих элементов подходящими методами. [c.350]

    Электролитическое выделение металлов из раствора, благодаря простоте и быстроте его выполнения, является прекрясньш методом разделения элементов. Особое место в аналитической химии занимает разделение элементов на ртутном катоде. [c.62]

    Попытки восстановления этих элементов электролизом делались неоднократно, однако, на платиновом электроде идет в первую очередь восстановление водорода, сопровождающееся подщелачиванием прикатодного пространства, в результате чего РЗЭ выпадают в осадок в виде гидроокисей, которые, как указывалось, весьма мало растворимы. В 1930 г. Интема [763] применил для электролиза РЗЭ ртутный катод, обладающий высоким перенапряжением для выделения водорода, а немного позже Мак-Кой [764] предложил вести электролиз РЗЭ с ртутным катодом в присутствии комплексообразователей — органических кислот, так как в их присутствии РЗЭ при электролизе не осаждаются в виде гидроокиси. С тех пор работы по электролизу РЗЭ с ртутным катодом стали развиваться, тем более что европий, самарий и иттербий восстанавливаются на ртутном катоде не только до двухвалентного состояния, но и до металла, образуя амальгаму. Впоследствии было выяснено, что и другие РЗЭ способны образовывать амальгамы, причем эта способность понижается при переходе от лантана к самарию, а у гадолиния она уже весьма слабо выражена [765]. Это открывает новые возможности разделения РЗЭ проводя электролиз в сернокислой среде, можно выделить восстановившийся ланта-- нид в виде нерастворимого сульфата проводя электролиз в присутствии комплексообразователя, получают амальгаму, которую [c.292]

    Радий (Ra) радиоактивный серебристо-белый блестящий металл, быстро тускнеющий на воздухе. Существование радия предсказано Д. И. Менделеевым в 1871 г. Об открытии соединений радия сообщили в 1898 г. супруги Пьер Кюри и Мария Кюри-Склодовская. Тщательное изучение урановой смолки позволило открыть сначала полоний, а чуть позже и радий. Металлический радий впервые получили в 1910 г. М. Кюри-Склодовская и французский химик Дебьерн. Они использовали метод электролиза водного раствора хлорида радия с ртутным катодом с последующей перегонкой амальгамы радия. В ходе выделения радия за его появлением следили по излучению, отсюда элемент получил свое название (от латинского radius — луч). [c.120]

    Алюминий определяют после выделения мешающих элементов электролизом на ртутном катоде [418, 585, 779] и осаждением титана купфероном (или экстракции его купфероната). Описаны гравиметрические [585, 779], фотоколоримет-)ические методы с применением алюминона [418, 1136] или эриохромцианина 411]. [c.165]

    При электролизе водных растворов на катоде происходит выделение водорода. Поэтому на катоде можно осаждать только те элементы, критические потенциалы выделения которых менее отрицательны, чем потенциал выделения водорода. Эффективность электролитических методов удается повысить, используя катод из свинца или ртути — материалов, обладающих высоким перенапряжением водорода. Посредством электролиза с ртутным катодом можно, например, осуществить выделение На из магниевой мищени [изотоп 22Ма получают по реакции й, а)22Ма]. [c.197]

    Электролиз с ртутным катодом. Особенно удобным и важным методом разделения. металлов является электроосаждение на ртутном катоде . Перенапряжение водорода на ртути очень велико (1,2 в), поэтому любой металл, потенциал выделения которого меньше указанного значения, может осалс-даться на поверхности ртути металлы же, требующие отрицательных потенциалов, более чем —1,2 в, будут оставаться в растворе. Не осаждаются щелочные и щелочноземельные металлы, алюминий, металлы подгрупп скандия, титана и ванадия, а также вольфрам и уран. Метод с успехом применяют для удаления железа и подобных ему металлов из растворов алюминиевых сплавов, после чего основной элемент определяют весовым или другим способом. Он также широко используется при очистке урановых растворов . [c.110]

    Так, например, метод количественного определения алюминия в присутствии ионов железа и других элементов, основанный на выделении железа электролизом а ртутном катоде, состоит в следующем. Сначала выделяют железо из сернокислого раствора на ртутном катоде вместе с железом выделяются другие элементы щинк, хром, никель, кобальт и т. д. В растворе остаются ионы алюминия, бериллия, титана, фосфора и т. п. Затем определяют обычным лутем ионы алюминия. Титан выделяют в кислом растворе купфероном, алюминий осаждают из фильтрата оксихинолином или купфероном в аммиачном или слабоуксуснокислом растворе (см. Качественный анализ , гл. VI, 4, 5, 19). [c.502]


Смотреть страницы где упоминается термин Выделение элементов на ртутном катоде: [c.315]    [c.315]    [c.313]   
Смотреть главы в:

Справочник химика-аналитика -> Выделение элементов на ртутном катоде




ПОИСК





Смотрите так же термины и статьи:

Катод

Катод ртутный

Ртутные элементы

ртутный



© 2025 chem21.info Реклама на сайте