Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы как химические системы Химическая теория растворов

    Жидкие растворы по своей природе, свойствам, характеру взаимодействий между частицами очень разнообразны, в связи с чем трудно создать единую количественную теорию, описывающую поведение различных растворов в широкой области концентраций. Наука о растворах —одна из наиболее старых областей естествознания, в развитие которой сделан вклад многими исследователями. В ходе развития учения о растворах были высказаны две точки зрения на природу растворов —физическая и химическая. Физическая теория растворов, возникшая главным образом на основе трудов Вант-Гоффа, Аррениуса и Оствальда, опиралась на экспериментальное изучение коллигативных свойств разбавленных растворов (осмотическое давление, новышение температуры кипения, понижение температуры замерзания раствора и т. п.), зависящих главным образом от концентрации растворенного вещества, а не от его природы. Количественные законы (законы Вант-Гоффа, Рауля) были открыты в предположении, что в разбавленных растворах молекулы растворенного вещества подобны молекулам идеального газа. Отступления от этих законов, наблюдаемые для растворов электролитов, были объяснены на основе теории электролитической диссоциации Аррениуса. Простота представлений физической теории и успешное применение ее как для объяснения свойств растворов электролитов, так и для количественного изучения электрической проводимости растворов обеспечили быстрый успех этой теории. Химическая теория растворов, созданная преимущественно Менделеевым и его последователями, рассматривала процесс образования раствора как разновидность химического процесса, характеризующегося взаимодействием частиц смешивающихся компонентов. Менделеев рассматривал растворы как системы, образованные частицами растворителя, растворенного вещества и неустойчивых химических соединений, которые образуются между ними и находятся в состоянии частичной диссоциации. В классических трудах Менделеева четко сформулированы основные положения теории растворов. Менделеев указывал на необходимость использования всей суммы химических и физических сведений о свойствах частиц, [c.344]


    При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения АН в большинстве случаев мала в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера н растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров. [c.33]

    Таким образом, растворы не могут быть отнесены к химическим соединениям. Но, с другой стороны, они не могут быть, причислены и к простым механическим смесям. Занимая промежуточное положение, растворы представляют жидкие диссоциационные системы, образованные частицами растворителя, растворенного тела и тех определенных нестойких, но экзотермических соединений, которые между ними происходят, одного или нескольких, смотря по природе составляющих начал . В приведенных словах Д. И. Менделеева (1887 г.) заключена основная сущность развитой им химической теории растворов. Последняя принципиально отличается от физической теории, которая рассматривает растворитель лишь как инертную среду и отвергает наличие сольватов в растворах (т. е. по существу приравнивает их к простым механическим смесям). В настоящее время точка зрения Менделеева на природу растворов является общепризнанной. [c.155]

    Химическая теория (Д. И. Менделеев, И. А. Каблуков, Н. С. Курнаков) рассматривает растворы как системы, образованные частицами растворителя, растворенного вещества и неустойчивых химических соединений, которые образуются между ними за счет водородной связи или электростатических сил взаимодействия. [c.70]

    Аналитическая химия как ветвь химического знания имеет хорошо разработанную и находящуюся в непрерывном развитии теорию. Главное содержание теории химических методов анализа составляет химическая реакция как средство получения информации о химическом составе вещества, т. е. используемая для целей качественного и количественного анализа. Важное значение имеют тип реакции, условия и способы ее проведения. Особенно широко распространены в аналитической химии реакции в растворах. Теория химических методов анализа включает расчет химических равновесий, протекающих в растворах, в том числе и сложных равновесий, когда в системе возможны одновременно несколько реакций. Критерии для правильного выбора химической реакции и условий ее проведения дают химическая термодинамика и кинетика. [c.8]


    РАСТВОРЫ КАК ХИМИЧЕСКИЕ СИСТЕМЫ Химическая теория растворов [c.55]

    Величайшим результатом творческой деятельности Менделеева было открытие им в 1869 г., т. е. в возрасте 35 лет, периодического закона и создание периодической системы элементов. Из других работ Менделеева наиболее важными являются Исследования водных растворов по удельному весу , докторская диссертация О соединении спирта с водой и Понимание растворов как ассоциаций . Основные представления разработанной Менделеевым химической, или гидратной, теории растворов составляют важную часть современного учения о растворах. [c.52]

    В конце XIX и начале XX в. параллельно с химическими теориями растворов развивались теории, названные физическими (Вант-Гофф, Аррениус, Нернст). Состояние веществ в растворе уподоблялось их состоянию в газовой смеси, специфические взаимодействия из рассмотрения полностью исключались. Физические теории успению объясняли свойства разбавленных растворов, но оказались непригодными для интерпретации свойств концентрированных растворов, в особенности, если это системы с химическими взаимодействиями. Современные теории растворов, базируясь на достигнутых к настоящему времени знаниях о межмолекулярных взаимодействиях, синтезируют взгляды физической и химической теорий растворов. [c.398]

    Начав научную работу под руководством М. М. Коновалова, убежденного сторонника химической теории растворов, В. А. Плотников в скором времени продолжает ее у крупнейшего представителя физического направления — В. Нернста. Однако было бы неверным считать, что заслуга В. А. Плотникова заключается лишь в том, что он механически соединил основные тезисы физической и химической теории растворов. Историческое значение работ В. А. Плотникова, организованной и возглавлявшейся им Киевской электрохимической школы, заключается в создании оригинальной системы взглядов на растворы вообще и на электролитные растворы в особенности. [c.173]

    Пионерами новой главы в учении о растворах стали отечественные ученые И. А. Каблуков и В. А. Плотников. С именем И. А. Каблукова связаны первые работы, в которых концентрационный ход изотерм электропроводности объяснялся химическими особенностями системы [183]. Основная заслуга В. А. Плотникова и возглавляемой им школы заключается в привлечении и соединении наиболее передовых для того времени теорий электролитической диссоциации, химической теории растворов и химии комплексных соединений [453, 534]. [c.5]

    Такое положение не согласуется с гипотезой о механическом распаде вещества на ионы, протекающем без всякого участия растворителя. Скорее оно свидетельствует в пользу химической теории растворов, по которой растворы представляют собой своеобразные химические системы. [c.55]

    О твердых растворах, являющихся предметом изучения, главным образом физики твердого тела и металловедения, будет более подробно упомянуто в следующей главе. В этой же главе будут обсуждаться лишь жидкие растворы — системы, весьма разнообразные по своей природе и характеру межмолекулярного взаимодействия. Так, при растворении серной кислоты в воде наблюдается выделение большого количества теплоты, отмечается образование ряда гидратов определенного состава. Отчасти на основании этих наблюдений Д. И. Менделеев развивал свою химическую теорию растворов. Несомненно, что силы, действующие в упомянутых гидратах серной кислоты, приближаются по своему характеру к силам химической связи. В качестве другого крайнего случая можно указать на растворы веществ типа аргона и неона (или других элементов нулевой группы), когда проявляется действие сил только физической природы — относительно слабых сил Ван-дер-Ваальса. [c.285]

    В последние два десятилетия XIX века физическая химия обогатилась рядом выдающихся исследований по растворам вообще и по двойным системам в частности. Эти исследования, значительная часть которых выполнена в России, отличались стремлением объединить в одной концепции физическую и химическую теории растворов [182, 183]. [c.9]

    Одним из самых видных представителей химической теории растворов, работы которого посвящены в основном неводным средам, является Д. П. Коновалов. Поскольку данная книга рассматривает гомогенные равновесия, мы не будем останавливаться на работах Д. П. Коновалова, посвященных равновесиям жидкость — пар, хотя эти исследования, приведшие к формулировке законов, носящих его имя, несомненно являются главным результатом научной деятельности этого ученого. Напомним также, что Д. П. Коновалов установил факт, определивший на несколько десятилетий развитие химической теории электролитных растворов образование электролитного раствора при смешении не проводящих в индивидуальном состоянии ток компонентов. Исследовав ряд систем, образованных аминами и карбоновыми кислотами, Д. П. Коновалов связал экстремальные точки на изотермах электропроводности с определенным стехиометрическим составом образующихся в системе соединений. Пусть теоретические представления Д. П. Коновалова об особых точках на кривых электропроводности впоследствии потребовали значительного уточнения, а в ряде случаев и существенного изменения, но основной тезис химической теории растворов — основные особенности раствора должны быть связаны с конкретным химическим взаимодействием строгой стехиометрии — был сформулирован в этих работах с полной определенностью. [c.9]


    Теория растворов и термодинамические закономерности распределения вещества между сосуществующими фазами достаточно изучены и неоднократно рассматривались в специальной литературе. Поэтому имеет смысл рассмотреть в зтой главе лишь некоторые вопросы, которые имеют наибольшее значение для теории и практики расчета химических реакторов, и некоторые особенности фазового равновесия в системах с химической реакцией. [c.81]

    Современные представления о строении растворов основываются на сольватной теории, выдвинутой Менделеевым и развитой его последователями. Согласно этой теории, в системе при растворении одновременно происходят два процесса распределение растворяемого вещества в объеме растворителя (физический процесс) и образование из молекул растворителя и растворяемого вещества нестойких соединений переменного состава — сольватов (химический процесс). Менделеев, изучавший водные растворы, назвал эти соединения гидратами. [c.201]

    Растворы можно различать по агрегатному состоянию — твердые, жидкие и даже говорят о газообразных растворах, имея в виду газовые смеси. Последним, точнее идеально-газовым смесям, было уделено некоторое внимание в гл, V в связи с химическим равновесием. О твердых растворах, являющихся предметом изучения, главным образом физики твердого тела и металловедения, будет более подробно упомянуто в следующей главе. В этой же главе будут обсуждаться лишь жидкие растворы — системы, весьма разнообразные по своей природе и характеру межмолекулярного взаимодействия. Так, при растворении серной кислоты в воде наблюдается выделение большого количества теплоты, отмечается образование ряда гидратов определенного состава. Отчасти на основании этих наблюдений Д. И. Менделеев развивал свою химическую теорию растворов. Несомненно, что силы, действующие в упомянутых гидратах серной кислоты, приближаются по св ему характеру к силам химической связи. В качестве другого крайнего случая можно указать на растворы веществ типа аргона и неона (илн других элементов нулевой группы), когда проявляется действие сил только физической природы — относительно слабых сил Ван-дер-Ваальса. [c.262]

    В растворителях с низкими диэлектрическими проницаемостями преимущественно имеются только две конфигурации длинные и короткие пары. Поле, создаваемое короткими парами, отличается от поля, создаваемого длинными парами. Поле коротких пар можно рассматривать как дипольное, поле длинных пар — как ионное ноле в духе теории Дебая. В этих растворителях получается такая картина, будто бы короткие пары диссоциируют на длинные пары, и, следовательно, согласно Фуоссу, в этих растворах можно по аналогии с химическими системами рассматривать равновесие между длинными и короткими парами, как равновесие между ионами и молекулами. [c.120]

    Курс состоит из двух частей. В первой части рассматривается строение вещества. Здесь проводится подход к химической системе как системе из взаимодействующих электронов и ядер, из которых формируются атомы, многоатомные частицы, а затем и макроскопические вещества. В неразрывной связи со строением описывается состояние соответствующих систем. С этой целью авторы отказались от традиционной компоновки материала. В частности, понятия внутренней энергии и энтропии вводятся в первой части курса в связи с изложением вопросов строения и состояния макроскопических систем. Это же касается некоторых понятий теории растворов, как представления о предельно разбавленном и идеальном растворе, которое связано именно с особенностями строения растворов, природой взаимодействия между частицами раствора. Вторая часть посвящена теории химического процесса. В ней рассматриваются термодинамика и кинетика химических реакций. [c.3]

    Теория растворов связана с учением о хими ческом равновесии, Поскольку растворение представляет собой обратимую реакцию, то раствор — это физико-химпческая система. Это подтверждается тем, что удаление воды (растворителя) совершается не всегда с одинаковой легкостью, так как система содержит как свободную воду, так ч связанную с растворенным веществом в химическом соединении. Раз-ло ф ение раствора (отделение от воды) может совершаться при температурах, значительно превышающих 100°С. Химические соединения, которые существуют в растворе, представляют собой по Менделееву, одну из многих возможных форм равновесия между водою и растворимым в ней веществом . Кроме того, еще одной особенностью растворов является то обстоятельство, что если два простых вещества, взаимодействуя друг с другом, образуют мало соединений, то при образовании растворов число гидратов может быть значительно большим. [c.67]

    Авторы также отказались от объединения в один раздел, традиционно называемый Электрохимия , разных вопросов. Одни из них связаны с рассмотрением э. д. с. обратимого гальванического элемента как меры энергии Гиббса другие —с кинетикой протекания электродных процессов третьи —с механизмом прохождения электрического тока через растворы электролитов иногда к электрохимии относят также учение о разного рода взаимодействиях ионов в растворах. Первая группа вопросов относится к учению о химических равновесиях и излагаться они должны в главе, посвященной учению о равновесных системах. Вопросы второй группы составляют содержание специальных курсов по электрохимии и в этой книге подробно не рассматриваются. И, наконец, вопросы, относящиеся к теории растворов и кинетике электродных процессов, затронуты лишь в такой степени, которая необходима для правильного понимания электродных равновесий. [c.4]

    В качестве примеров постепенного введения новых понятий и положений и постепенного перехода от простого к сложному можно указать на следующее. В гл. 8 определение условий равновесия смеси идеальных газов основано только на свойствах внутренней энергии иэнтропии. В гл. 9 дана общая теория равновесия, в частности, рассмотрена свободная энтальпия. В гл. 10 и И на основе свободной энтальпии рассмотрены равновесия неоднородной унарной системы и неоднородных систем с газовой фазой. Парциальные величины и в частности химический потенциал вводятся только в гл. 15. Равновесие произвольной неоднородной системы и теория растворов (гл. 16—21) изложены с помощью химического потенциала, и только в конце книги (гл. 22) появляются понятия летучесть, активность, коэффициент активности. В гл. 22 не только обстоятельно изложены эти понятия, но с их помощью некоторые результаты, полученные до сих пор для идеальных систем, распространены на произвольные системы. Отметим некоторые особенности в отдельных главах. [c.10]

    Вместе с тем в химической теории предполагается, что э. д. с. электрохимической системы слагается только из двух скачков потенциала, возникающих на тех границах раздела, где протекают тоготобразующие химические реакции, т. е. на границах раздела электрод — электролит. При этом электродные потенциалы отождествляются со скачками потенциалов между электродом и раствором, а э. д. с. — с разностью этих скачков  [c.212]

    Диссоциативная экстракция может быть определена как гетерогенный хемосорбционный процесс, включающий в сёбя совокупность физических и химических равновесий, существующих как внутри фазы, так и между фазами. Математическое описание равновесия для систем диссоциативной экстракции возможно путем составления системы уравнений, описывающих фазовые и химические равновесия, дополненной уравнениями материального баланса на ступени. При этом адекватность описания системы зависит как от соответствия выбранного механизма реальным взаимодействиям, так и от полноты описания физического и химического факторов. Попытки обосновать адекватность модели равновесия только на языке химических взаимодействий могут привести к выдвижению формальных гипотез о присутствии в системе комплексов и соединений, не идентифицированных в действительности. В то же время возможности физического подхода ограничены отсутствием строгих теоретических выражений для коэффициентов активности, позволяющих объяснить отклонения от идеальности с помощью теории растворов. [c.80]

    Установлено, что энергия активации вязкого течения увеличивается с понижением ПИ и роста СЭ соответствующих систем. На основании представленных результатов можно сделать неожиданный вывод, что вязкое течение полисопряженных ньютоновских углеводородных жидкостей связано с сильным химическим обменным взаимодействием или процессом переноса заряда. Таким образом, ньютоновское ючение жидкостей, содержащих п-электронные ароматические или непредельные соединения, связано с коллективным химическим взаимодействием частиц. Чем выше энергия химического взаимодействия молекулярных орбиталей, тем выше вязкость жидкости. Изложенное не прогиворе-чит существующим взглядам на природу жидкого состояния, как системы слабых химических связей [35] и решеточной теории растворов полимеров [c.102]

    Рассмотрим еще один класс растворов, имеющих огромное значение как в химической практике, так и в общей теории растворов. 1 ечь идет о таких системах, в которых молярная доля одного из компонентов (рас ворителя) х, очень близка к единице, а следовательно, молярная доля растворенных веществ много меиг.ше единицы х., 1 (для простоты ограничимся бинарными системами). Такие растворы назыкаготся разбавленными. Теория подобных растворов, которая будет развита в этом параграфе, соблюдается вполне строго, когда лишь иичтол1но (в пределе бесконечно мало) отличается от нуля. В этом случае растворы называются бесконечно разбавленными. Однако анализ большого экспериментального материала показывает, что с вполне удовлетворительной точностью теория оказывается справедливой до ж2 0,01. [c.135]

    Между тем при рассмотрении поведения отдельных компонентов раствора при переходе из одной фазы в другую или при химических превращениях существенно располагать количественными характеристиками именно применительно к отдельным компонентам. С этой целью в теории растворов вводится понятие — парциальная мбльная величина. Поясним это понятие на примере двух компонентной системы. [c.143]

    Научные основы теории химического взаимодействия между компонентами раствора были заложены Д. И. Менделеевым. Основной недостаток теории электролитической диссоциации он видел в игнорировании химического взаимодействия между частицами растворенного вещества и молекулами растворителя. Обычно это взаимодействие учитывают, вводя- представления о гидратации в водных растворах и о сольватации в общем случае. Последние вошли в науку в конце 80-х годов прошлого столетия в результате трудов отечественных (И. А. Каблуков, В. А. Кистя-ковский) и зарубежных (Т. Фицпатрик, Д. Чамичан) ученых. Долгое время в основе теории сольватации ионов лежало представление об электростатическом взаимодействии ионов с диполями молекул растворителя. Однако сейчас уже ясно, что электростатическая теория сольватации имеет ряд принципиальных недостатков. Развитие квантовой химии показало, что взаимодействие между атомными и молекулярными системами может быть объяснено и рассчитано на основе квантовой механики. [c.236]

    В истории химии были длительные периоды, когда это понятие развивалось в русле одной системы теорий. И тогда оно оставалось в принципе тем же самым, изменяясь лишь количественно за счет некоторого расширения его фактического содержания. Так было, например, в период господства классического атомно-молекулярного учения, основанного на аддитивном способе мышления и потому запрещавшего выход за пределы стехиометрии. Но были также и другие периоды, когда понятие о химическом соединении должно было претерпевать качественные изменения, ибо этого требовала новая система теорий, отражающая более глубокую сущность химизма. Так случилось, например, в связи с появлением гидратной теории растворов Д. И. Менделеева, которая отвергла подозрения в неистинности химических соединений переменного состава типа сольватных комплексов. [c.58]

    Далее речь пойдет об обычных изотропных жидкостях. Перед тем, как перейти к более детальному рассмотрению их свойств, отметим, что жидкие системы и в природе, и в промышленности являются наиболее важной средой для протекания химических реакций. Благодаря интенсивности межмолекулярных взаимодействий и структурной подвижности жидкая среда представляет уникальные возможности для получения сложных химических и биологиче ских композиций. Чрезвычайно большую роль в последних играет жидкокристаллическое состояние. Для химиков теория жидкостей интересна прежде всего как база построения теории растворов. [c.201]


Смотреть страницы где упоминается термин Растворы как химические системы Химическая теория растворов: [c.168]    [c.10]    [c.280]    [c.122]    [c.345]    [c.280]    [c.168]    [c.133]    [c.213]    [c.77]    [c.3]    [c.23]    [c.251]   
Смотреть главы в:

Теории кислот и оснований -> Растворы как химические системы Химическая теория растворов




ПОИСК





Смотрите так же термины и статьи:

Растворов теория растворов

Растворы теория

Химическая теория

Химическая теория растворов

Химический ая ое раствора



© 2024 chem21.info Реклама на сайте