Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная кислота, ее свойства, получение и применение

    В производстве резины серу (или ее соединения) используют для вулканизации каучука, т. е. поперечного сшивания его макромолекул. При введении в каучук максимального количества серы в результате вулканизации получается эбонит—жесткий материал, обладающий электроизоляционными свойствами. Получение взрывчатых веществ и спичек также требует применения серы (и серной кислоты). Чистая сера нужна для производства красителей и светящихся составов. [c.242]


    До недавнего времени на нефтеперерабатывающих заводах старались не извлекать и утилизировать сернистые соединения нефтей, а разрушать и возможно полнее удалять их из товарных продуктов в основном с целью предотвращения коррозии аппаратуры и оборудования в процессах переработки нефти и применения нефтепродуктов. Сернистые соединения моторных топлив снижают их химическую стабильность и полноту сгорания, придают неприятный запах и вызывают коррозию двигателей. В бензинах, кроме того, они понижают антидетонационные свойства и приемистость к тетраэтилсвинцу, который добавляется для повышения качества. В настоящее время лучшим способом обессериваниЯ нефтяных фракций и остатков от перегонки нефтей является очистка в присутствии катализаторов и под давлением водорода. При этом сернистые соединения превращаются в сероводород, который затем улавливают и утилизируют с получением серной кислоты и элементарной серы. [c.29]

    Применение серной кислоты для дегидратации спиртов ограничено из-за ее окислительных свойств. Этилен, полученный [c.232]

    На практике расщепление жиров осуществляется автоклавным методом или обработкой концентрированной серной кислотой. Расщепление жиров энзимами не нашло широкого применения, хотя но этому методу и получаются светлые мыла. От способа расщепления жиров зависят и свойства образующихся сточных вод. При автоклавном расщеплении жиры нагреваются до 7—8. атм с половинным количеством воды и в присутствии 0,5 % окиси цинка и цинковой пыли. После окончания расщепления слой жирных кислот отделяется ог глицериновой воды, а цинк удаляется, обработкой 30%-ной серной кислотой Для получения продукта, не содержащего остатков серной кислоты и солеи цинка, жирные кислоты промывают водой. [c.228]

    На свойстве серной кислоты давать с водой прочные гидраты основано применение ее как дегидратирующего вещества. Например, при производстве серной кислоты контактным методом газовая смесь, содержащая двуокись серы и кислород, освобождается от водяных паров промыванием ее концентрированной серной кислотой. Для получения концентрированной азотной кислоты нагревают смесь разбавленной азотной кислоты с концентрированной серной кислотой. Азотная кислота улетучивается и пары ее конденсируются, в остатке получается разбавленная серная кислота, которую концентрируют перегонкой. [c.125]


    Сущность процесса ионного обмена. В середине XIX в. было открыто свойство почв обменивать в эквивалентных количествах входящие в их состав ионы на дрз гие ионы, содержащиеся в почвенном растворе. Способность к ионному обмену была позднее открыта и у некоторых природных алюмосиликатов (глауконитов, бентонитов). Первый искусственный минеральный ионообменный материал был получен в начале XX в., но из-за малой механической и химической стойкости и недостаточно высокой способности к ионному обмену он не нашел широкого применения в практике. Несколько позднее обработкой бурых углей серной кислотой был получен сульфоуголь, обладающий способностью к обмену катионов. Первый полимерный ионообменник, синтезированный Адамсом и Холмсом в 1935 г., положил начало большому количеству работ по синтезу новых ионообменных материалов, по изучению их свойств и применению в различных отраслях хозяйства. Наиболее ши Уоко используются ионообменные материалы в практике подготовки природных и очистки производственных сточных вод. Природные, искусственные и синтетические материалы, способные к обмену входящих в их состав ионов на ионы контактирующего с ними раствора, называются ионитами. Иониты, содержащие подвижные катионы, способные к обмену, называются катионитами, а обменивающие анионы — анионитами. Наибольшее практическое значение для очистки воды имеют органические полимерные иониты, которые являются полиэлектролитами. В этих соединениях одни ионы (катионы или анионы) фиксированы на углеводородной основе (матрице), а ионы противоположного знака являются подвижными, способными к обмену на одинаковые по знаку заряда ионы, содержащиеся в растворе. [c.80]

    В некоторых нефтехимических синтезах, в частности при получении бутилкаучука, изопрена, термостойких пластических масс,, используют только разветвленные олефины С4—Се. Примеси нормальных олефинов, как правило, ухудшают свойства готового продукта. Например, химическая инертность, высокая термостабильность и низкая электропроводность бутилкаучука достигаются-лишь при отсутствии в мономере (изобутене) примесей н-бутенов. Применяемая в промышленности абсорбция изобутена из фракции олефинов С4 (их содержится 50—60%) серной кислотой не обеспечивает должной чистоты мономера — в нем остается небольшое количество бутена-1, а также меркаптана. Применение адсорбционных методов с использованием цеолитов (главным образом a ) позволило решить эту проблему, в частности выделить-99,9%-ный изобутен. . [c.199]

    Во втором томе даются сведения о каталитических процессах исчерпывающего и селективного гидрирования, обычного и окислительного дегидрирования, синтеза метанола, получения дизельного топлива из монооксида углерода и водорода. Рассмотрены также общие вопросы подбора катализаторов, свойства и применения некоторых гетерогенных и гомогенных катализаторов. Завершает второй том описание катализаторов производства серной кислоты. [c.6]

    Применение серной кислоты в качестве водоотнимающего средства ограничено из-за ее окислительных свойств. Этилен, полученный путем нагревания этилового спирта с серной кислотой, всегда загрязнен двуокисью углерода и двуокисью серы. Количество этих загрязнений можно уменьшить прибавляя сульфат меди и пятиокись ванадия, но все же этот метод дает худшие результаты по сравнению с другими методами получения этилена. В общем при применении в качестве водоотнимающего средства серной кислоты следует избегать высоких температур и добавлять ее очень осторожно из-за возможности обугливания вещества. Например, при получении пентена-1 из амилового спирта необходимо употреблять значительно меньшее количество серной кислоты, чем при получении пропена или 2-метилпропена из соответствующих спиртов, так как в первом случае происходит значительное обугливание вещества . Применение малых количеств серной кислоты или проведение реакции в присутствии большого избытка спирта приводит к образованию значительных количеств эфира и в связи с этим—к понижению выхода алкена. [c.697]

    Однако, используя серную кислоту для этих целей необходимо учитывать и другие свойства этой кислоты, ограничивающие ее применение. Концентрированная серная кислота является достаточно сильным окислителем, поэтому ее нельзя использовать для получения таких кислот как НВг, HI, H2S, кислотообразующие элементы которых она может перевести в другие степени окисления, например  [c.20]

    В седьмой главе на примере элементной серы изложены результаты применения метода механической активации для получения практически полезных продуктов. Накопление серы на предприятиях нефтяного и газового комплекса, а также ценные свойства серы (бактерицидные, гидрофоб-ность, низкая теплопроводность и др.) делают этот материал привлекательным для практического применения. Ограниченные на сегодня возможности использования элементной серы в традиционных сырьевых направлениях (производство серной кислоты, целлюлозно-бумажная промышленность др.), а также возрастающие объемы накапливающейся нефтегазовой серы делают особо актуальной задачу поиска рациональных путей ее применения. Работа является попыткой расширения области применения серы посредством перевода ее в высокодисперсное состояние осаждением из растворов. Для решения этой задачи на первом этапе был использован метод механической активации элементной серы в дезинтеграторе, далее механически активированная сера растворялась в водном растворе гидроокиси кальция путем термической обработки. Установлено существенное ускорение перехода механически активированной серы в раствор в составе полисульфида кальция. Обнаружена также возможность уменьшения количества не вступивших в реакцию компонент в три-четыре раза после однократной обработки и полное использование исходных компонент в результате двукратной обработки. [c.35]


    В настоящей главе рассматриваются то химические свойства парафинов и циклопарафинов, которые пс вошли в предыдущие главы. В фи-зиологич( ском отношении парафины и циклопарафины, как правило, инертны и не оказывают раздражающего действия. Циклопропан применялся как анестезирующее вещество, концентрация же пропана, необходимая для оказания анестезирующего действия, слишком велика, чтобы его можно было использовать [9]. У рабочих, имеющих дело с парафином в процессе его получения, иногда развивается определенная форма рака, которая рассматривалась как профессиональное заболевание, одпако в настоящее время известно, что прямогонные и особенно крекинговые смазочные масла содержат небольшие количества веществ, которые раздражают кожу и являются канцерогенными [3]. Это справедливо также и в отношении высококипящих масел, получающихся в качестве побочного, продукта при каталитическом крекинге. Канцерогенное действие приписывается некоторым ароматическим углеводородам, содержащимся в этих маслах [23а]. Мягкий парафин, плавящийся приблизительно около 45°, широко применяется как защитное покрытие при лечении тяжелых ожогов [81]. На отсутствие токсического и раздражающего действия тщательно очищенного американского белого медицинского масла указывает широкое применение его в качестве механического слабительного средства. При производстве белого медицинского масла содержащие ароматические кольца углеводороды удаляются путем сульфирования крепкой дымящей серной кислотой. Непредельность таких масел также практически равна нулю (йодные числа, определенные по методу Хэнаса, меньше 1,0). [c.88]

    При непрерывном питании смесителя с непрерывным выводом смеси через перелив в смесителе находится постоянный объем пульпы, содержащей в жидкой фазе фосфорную кислоту. Вводимая серная кислота сразу же разбавляется жидкой фазой реакционной пульпы, что позволяет избежать неблагоприятных условий, ведущих к образованию непроницаемых корок, несмотря на применение относительно концентрированной (до 68,5—69,5%) серной кислоты. В этих условиях обеспечиваются сравнительно высокая скорость разложения фосфата и получение суперфосфата с хорошими физическими свойствами [c.47]

    При регенерации коагулянта из осадков основных отстойников и отстойников промывных вод фильтров целесообразно использовать осадки, содержащие 1—15% сухого вещества. Степень регенерации при этом зависит от количества добавленной кислоты и pH полученного раствора. В случае применения серной кислоты pH следует поддерживать в пределах 2,5—3, в случае соляной кислоты pH должен быть равным 2. В каждом конкретном случае расход кислот зависит от свойств и структуры осадка и определяется экспериментальным путем. Нерастворимый в кислоте шлам можно отделить от регенерирующего раствора путем отстаивания при медленном перемешивании его в течение 6—8 ч. Объем уплотненного шлама составляет 7—15% объема поступающего на регенерацию осадка. [c.154]

    КОНТАКТ ПЕТРОВА представляет собой густую прозрачную жидкость, от темно-желтого до бурого цвета с синим отливом. К- П. содержит около 40% нафтеновых сульфокислот, 15% вазелинового масла, небольшое количество свободной серной кислоты и воды. Подобно мылам К. П. проявляет поверхностноактивные свойства, но в отличие от них смачив. зет и эмульгирует даже в кислой среде, не требуя нейтрализации. К- П., эмульгируя жиры, увеличивает поверхность соприкосновения с омыляющей жидкостью, ускоряя тем самым реакцию. К. П. впервые получен в России в 1912 г. Г. С. Петровым и применен как эмульгатор в нефтепромышленности. К- П. образуется в результате действия серной кислоты, серного ангидрида или олеума на высококипящие фракции нефти при очистке нефтепродуктов (керосина, газойля, солярового масла и др.), содержится также в кислых гудронах, образующихся при сернокислотной очистке нефтепродуктов. К. П. широко применяется в различных отраслях промышленности для расщепления жиров, в качестве синтетических моющих средств, антикоррозионных веществ, пластификаторов для цемента и бетона, как промывные жидкости при бурении, в текстильной промышленности при крашении и обработке тканей, в производстве фенолформальдегидных смол, клеев и др. [c.134]

    Для производства эфиров обычно используется полученная лесохимическим способом уксусная кислота-сырец, обладающая более активными коррозионными свойствами, в частности к меди и ее сплавам, чем чистая кислота. Концентрация серной кислоты составляет 76—78% и 92—94%. Серная кислота 76— 78%-ной концентрации обладает высокой коррозионной активностью по отнощению к черным металлам, поэтому при ее применении необходимы защитные футеровки (большей частью силикатные). [c.125]

    Химические свойства и применение серной кислоты. Применение серной кислоты определяется ее химическими свойствами — ее применяют как кислоту, обезвоживающее средство и окислитель. Серная кислота имеет высокую температуру кипения (330°), что позволяет применять ее для обработки солей более летучих кислот с целью получения этих кислот. Азотную кислоту, например, можно получить нагреванием нитрата натрия с серной кислотой [c.297]

    Доступность в настоящее время дешевых источников у-радиа-ции побуждает заняться рассмотрением возможных приложений техники, связанной с облучением, к некоторым крупномасштабным химическим процессам. При этом необходимо учитывать ряд обстоятельств стоимость первоначальных фундаментальных исследований возможность обеспечения крупномасштабного производства достаточным количеством радиационной энергии целесообразность и экономическую выгодность такого изменения технологии. Нередки, впрочем, случаи, когда экономичность процесса не имеет решающего значения, если применение излучения обеспечивает выполнение новых либо специфических требований. При радиационном производстве серной кислоты уменьшился бы объем завода и сократились бы расходы на транспортировку конечного продукта, обладающего коррозионными свойствами при радиационном получении гидразина оказывается возможным использование излучения атомного реактора. [c.250]

    Природные активированные алюмосиликатные катализаторы крекинга представляют собой главным образом монтмориллонито-вые глины, обработанные серной кислотой, сформованные и прокаленные. Применялись и другие природные алюмосиликаты — каолин, галлуазит. В процессе кислотной обработки из природного алюмосиликата удаляются кальций, натрий и калий, часть содержащихся в его структуре железа и алюминия. В катализаторах, полученных на основе различных глин, содержание алюминия (считая на АЬОз) составляет от 17,5 до 45%. Катализаторы этого типа обладают относительно низкой устойчивостью к действию высоких температур. Высокое содержание железа отрицательно влияет на их свойства, так как железо катализирует паразитную реакцию распада на углерод и водород. Антидетонационные свойства бензинов, получаемых при крекинге с катализаторами из природных алюмосиликатов, существенно ниже, чем при применении синтетических катализаторов. В настоящее время катализаторы на основе природных алюмосиликатов практически не применяют. [c.209]

    К сурику, применяемому для производства аккумуляторов, предъявляется ряд дополнительных требований в отношении чистоты продукта, так называемой абсорбции серной кислоты и насыпного веса. Последние два показателя могут быть изменены размолом, но так как при размоле частица сурика измельчается и обнажается поверхность ядра, состоящая из глета, то дробленый сурик при производстве аккумуляторов проявляет иные свойства по сравнению с недробленым. Применение такого сурика для производства аккумуляторов часто приводит к получению брака. [c.526]

    Получение контакта связано с утилизацией тех продуктов сернокислотной очистки масел, которые остаются главным образом в масляном слоз. Вне всякого сомнения, частично сульфонафтеповые кислоты содержатся также в кислом гудроне будучи выделена из этого гудрона в свободном виде или в форме солей, эта наиболее ценная часть кислого гудрона находит применение особенно как расщепитель жиров. Другое важное применение кислого гудрона связано с его деэмульгирующими свойствами, благодаря которым он находит применение при борьбе с с эмульсиями в процессах обезвоживания нефти (см. ч. II, гл. I, стр.317), при щелочной очистке масел (ср. выше) и т. п. Наконец, благодаря высокому содержанию серной кислоты кислые гудроны от очистки масел дымящей серной кислотой находят успешное применение в сернокислотной очистке тян<елых остаточных масел, заменяя собой свежий моногидрат [27]. [c.600]

    Природные сульфиды составляют основу руд цветных и редких металлов и широко используются в металлургии. Некоторые из них служат также сырьем для получения серной кислоты. В этих же целях используется и природный полисульфид — железный колчедан (пирит) ГеЗг (см. разд. 18.2.1 и 18.2.4). Сульфиды щелочных и щелочноземельных металлов находят применение в химической и в легкой промышленности. Так, НагЗ, СаЗ и ВаЗ применяются в кожевенном производстве для удаления волосяного покрова с кож. Сульфиды щелочноземельных металлов, цинка и кадмия служат основой люминофоров. Некоторые сульфиды обладают полупроводниковыми свойствами и применяются в электронной технике. [c.461]

    Британские камеди приготовляются путем нагревания или без гидролизующего вещества, или с небольпшм количеством его при температурах, несколько высших (от 150 до 200° С), чем для получения обычных декстринов (от 105 до 150° С). Все эти продукты отличаются по вязкости, цвету, клеящей способности и т. д., в зависимости от типа использованного крахмала и жесткости гидролитической обработки. Картофельный крахмал образует декстрин с хорошими клеящими свойствами, но вкус и запах его неприятен. Крахмал, получаемый из зерен тапиока, лишен этих недостатков, и поэтому употребляется для приготовления клея для конвертов, почтовых марок и т. п. Декстрины, получаемые из кукурузного крахмала, имеют широкое применение и вырабатываются, пожалуй, в наибольшем количестве. Если температуру поддерживать достаточно низкой, гидролиз может быть проведен в водной суспензии без разрушения зерен. Так поступают при приготовлении так называемых легко кипящих крахмалов, образующихся при кипячении крахмальной пены с разбавленными растворами соляной или серной кислоты при температуре от 40 до 60°С. Гидролиз в таком случае происходит внутри зерна, и когда при дальнейше обработке кипящей водой оболочка зерна лопается, то получается относительно жидкий раствор. Эти вещества часто употребляются для проклейки и придания жесткости хлопчатобумажным тканям, так как при их высыхании образуется пленка, в противоположность декстриновой пленке, не хрупкая и сопротивляющаяся растворению в воде. [c.317]

    Свойства. Протравной краситель антрахинонового ряда. Темно-коричневый порошок. Из нитробензола кристаллизуется в виде листочков с бронзовый блеском. Не растворим в воде, растворим в ледяной уксусной кислоте, раствор имеет желтовато-красную окраску с зеленой флуоресценцией. С растворами щелочей дает сиешй раствор, с конц. серной кислотой — синий раствор с красной флуоресценцией, . Применение. В микроскопии в сочетании с хлоридом алюминия в качест ве протравного красителя для получения очень чистой и четкой окраски ядер в синий цвет [Ромейс, 176]. I, Хранение. Плотно укупоренный.  [c.25]

    В этом случае использование кинофрагмента служит основой для более глубокого понимания сущности процессов и способствует уяснению вопросов промышленной переработки каменного угля. Кинофрагмент используют как источник новых знаний без предварительного изучения содержащихся в нем сведений на уроках, с последующим анализом и развитием полученных знаний. С таким назначением могут быть использованы фильмы Фтор и его соединения , Строение и свойства кристаллов , Стекло и цемент , Коррозия металлов (раздельно первая и вторая части), Применение кислорода в производстве стали телепередачи-экскурсии Водоочистительная станция , Производство серной кислоты , Производство алюминия и др. [c.143]

    Латексные покрытия под общим названием полан — эластичные, бесшовные, применяются в качестве непроницаемого подслоя под футеровку штучными кислотоупорными материалами. Покрытие полан получают на основе защитной композиции (ТУ 38-106473—84) — водной дисперсии подвулканизованного латекса типа ревультекс, модифицированного метилцеллозольвом. Выбор этого типа латекса обусловлен его хорошими пленкообра-зующими свойствами, возможностью получения прочной пленки без применения высокотемпературной обработки, химической стойкостью. В настоящее время разработаны следующие виды покрытия полан-М, -2М, -Б, -ПЭ, -хлор. Промышленное применение имеют латексные покрытия полан-М, -2М и -Б. Покрытие полан применяется для защиты оборудования, железобетонных сооружений, эксплуатирующихся в диапазоне температур от —30 до 100 °С в следующих агрессивных средах фосфорная экстракционная, фосфорная термическая, полифосфорная, плавиковая, кремнефтористоводородная кислоты и растворы фторсодержащих солей любых концентраций, а также в серной кислоте (до 60%). [c.220]

    Триоксид серы и его свойства. Серная кислота. Растворение в воде. Окислительное действие разбавленной и концентрированной серной кислоты. Сульфаты и гидросульфаты. Качественная реакция на сульфат-ион. Олеум, дйсерная кислота. Получение в промыщ-.1енности и применение серной кислоты. [c.121]

    Практическая ценность работы. Предложен метод гидроочистки бензина термического происхождения на основе реакции ионного гидрирования с применением доступных реагентов прямогонного бензина, серной кислоты (п-толуолсульфокислоты) и хлористого алюминия. Проведены опытные испытания гидрирования крекинг-бензинов системой ПБ-НгЗОд/ А1С1з в лаборатории серной кислоты нефтеперерабатывающего завода Уфанефтехим и на гетерофазном катализаторе в проточном режиме в лаборатории приготовления катализаторов Института нефтехимии и катализа. Показано что полученный гидроочищенный бензин по групповому химическому и фракционному составу и свойствам близок к бензину А-76. Предложенный метод может быть использован на малых заводах, где гидроочистка нефтяных фракций в присутствии молекулярного водорода не осуществляется. [c.4]

    Цифры этой таблицы показывают, что требуется значительное количество серной кислоты, чтобы получить заметное повышение дизельного индекса, например от 45 до 55. Расход серной кислоты и потери при обработке слишком высоки для промышленного применения этого метода. С экономической точки зрения обработка дизельных топлив селективными растворителями кажется значительно более обещающей. Тот же автор изучал обработку продуктов крекинга сернистым газом и нашел, что дизельные индексы могут быть повышены на 30 единиц в зависимости от объёмного отношения растворителя к топливу и от выходов очищенного продукта. Тот же самый растворитель был применен Стеффен и Сагебав [23]. Дизельный индекс продукта крекинга был улучшен от 40 до 62 и 81. Драйер, Ченисек, Эглофф и Моррелл (8) изучали экстракцью дизельных топлив селективными растворителями. Фракции крекинг-газойля с пределами кипения от 165—210 до 320—365° С из различных нефтей подвергались обработке сернистым газом и фурфуролом в непрерывном процессе. Действие сернистого газа более избирательное, чем фурфурола. Влияние экстракции селективными растворителями на свойства дизельных топлив можно видеть из данных табл. 179 для калифорнийского дизельного топлива, полученного при крекинге. [c.391]

    На обоих упомянутых выше свойствах азотной кислоты — ее окисляющей способности и нитрующем действии — главным образом и основано ее широкое применение в технике. В качестве окислителя, например, ее используют при получении фосфорной кислоты из фосфора, щавелевой кислоты — из углеводов, серной кислоты — при камерном способе ее приготовления. Нитрующее действие азотной кислоты используют преимущественно в производстве красок. При производстве большей части содержащих азот органических красителей применяют азотную кислоту. Далее, ею пользуются для приготовления нитроглицерина из глицерина, нитроцеллюлозы (бездымный порох и коллодий) — из клетчатки, пикриновой кислоты, а также вообще почти всех содержащих азот взрывчатых веществ. Кроме того, HNO3 применяют в производстве нитратов и используют в качестве химического растворителя для большинства металлов. Под названием разделительной жидкости ее применяют для отделения золота от серебра. [c.644]

    Для получения сульфата урана прибегают к различным методам, например к фотохимическому восстановлению сульфата уранила на солнечном свету в присутствии спирта, понижающего растворимость сульфата урана (этот метод был применен еще в 1842 г.), или к предварительному получению сульфида уранила иОгЗ, который термически разлагают, и обрабатывают полученную смесь двуокиси урана и серы серной кислотой в токе СОа. Серу отфильтровывают и из раствора кристаллизуют сульфат урана. Несколько лет назад Л. И. Евтеев и Г. И. Петр-жак 9,3(1] воспользовались восстановительными свойствами ронгалита (соединения МаНЗОг с формальдегидом), добавляя его к раствору уранилнитрата. При этом сперва появляется оранжево-красное окрашивание раствора, а после добавления крепкой серной кислоты раствор становится зеленым и выпадают кристаллы сульфата урана. [c.359]

    В лабораторных условиях испытано получение поволачных и лигнофе-нольных смол конденсацией сланцевых фенолов с формальдегидом без участия серной кислоты. В заводских условиях получен на основе сланцевых фенолов синтетический дубитель синтан, не отличающийся по свойствам от дубителя, полученного с применением серной кислоты. [c.326]


Смотреть страницы где упоминается термин Серная кислота, ее свойства, получение и применение: [c.673]    [c.255]    [c.176]    [c.126]    [c.176]    [c.176]    [c.5]    [c.1113]    [c.477]    [c.228]    [c.335]   
Смотреть главы в:

Технология минеральных удобрений и кислот -> Серная кислота, ее свойства, получение и применение




ПОИСК





Смотрите так же термины и статьи:

ВАЖНЕЙШИЕ ХИМИЧЕСКИЕ ПРОИЗВОДСТВА Производство серной кислоты Свойства, применение и способы получения

Кислоты свойства

Получение и применение серной кислоты

СОДЕРЖАНИЕ j ТЕХНОЛОГИЯ СЕРНОЙ КИСЛОТЫ j Свойства, получение и применение серной кислоты

Свойства, применение и способы получения серной кислоты . 2. Производство сернистого газа

Серная кислота получение

Серная кислота применение

Серная кислота свойства

Серная кислота свойства и применение

получение и свойства



© 2025 chem21.info Реклама на сайте