Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Качественный анализ органических соединений по функциональным группам

    УФ- и видимая спектрофотометрия, вероятно, один из наиболее широко применяемых методов качественного и количественного анализа органических соединений и функциональных групп, позволяющий определить содержания от 10 до 100 %. [c.312]

    Одной из важнейших методических задач в аналитической химии является идентификация вещества, присутствующего в анализируемой пробе в чистом виде или в смеси, и его количественное определение. В аналитической химии органических соединений для решения этих задач широко применяются методы функционального анализа, цель которого — количественное и качественное определение содержания различных функциональных групп в анализируемой пробе или в отдельных компонентах пробы. [c.5]


    Функциональный анализ. Одним из необходимых шагов в структурном анализе органических соединений является определение природы и числа функциональных групп. На функциональные группы обращали внимание уже сторонники теории радикалов и теории типов. Поэтому и до появления теории химического строения было известно немало реакций для открытия функциональных групп. Б Введении к полному изучению органической химии Бутлеров упоминает о таких реакциях, например, на гидроксильную группу (в спиртах) с металлическим натрием образование алкоголята с хлорокисью фосфора продукта замещения гидроксильной группы на хлор с кислотами сложных эфиров, особенно характеристический и свойственный собственно алкоголям случай замещения водорода водяного остатка [25, с. 133]. Те же реагенты могут действовать и на гидроксильную группу кислот, однако при этом образуются соли, галогенангидриды кислот, которые в отличие от га-логенпроизводных алкогольных радикалов легко разлагаются водой. Подобный анализ имеет не только качественный, но и количественный характер, так как по числу атомов замещенного водорода в гидроксильных группах или самих этих групп можно судить, например, об атомности и основности оксикислот. К характерным реакциям альдегидов, открытым ранее, относится их легкая способность окисляться до кислот, восстанавливая окись серебра (Либих, 1835), а также способность к прямому соединению с аммиаком (Деберейнер, 1832). Кетоны резко отличаются от альдегидов тем, что не присоединяют кислород, а при действии окисляющих веществ, в отличие от альдегидов, распадаются. Бутлеров упоминает также о бисульфитной реакции на альдегиды и кетоны (Бертаньини, 1853). Были известны также реакции не только на аминогруппы, но и для [c.298]

    Нужно объяснить учащимся, что основное отличие методов анализа органических соединений связано с особенностями их строения. Большая часть неорганических соединений, с которыми приходится сталкиваться в аналитических лабораториях, — электролиты. В водных растворах они диссоциируют на ионы и определяются в виде ионов. На этом основано большинство методов качественного и количественного анализа неорганических соединений. Органические соединения в основном нерастворимы в воде и не диссоциируют на ионы. Для анализа почти всех органических соединений применяются, методы, основанные на химических свойствах функциональных групп, имеющихся в этих соединениях. [c.174]


    До сравнительно недавнего времени идентификацию органических веществ можно было осуществлять только с помощью систематического химического анализа проведение предварительных испытаний, качественных реакций на функциональные и нефункциональные группы, получение различных производных. Широкое внедрение спектроскопии в органическую химию позволяет теперь составить представление о строении того или иного соединения на основании анализа его спектров. Однако и в настоящее время структура органического соединения может считаться окончательно доказанной, даже если осуществлен его встречный синтез, только после получения нескольких кристаллических производных. [c.224]

    КАЧЕСТВЕННЫЙ АНАЛИЗ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ ПО ФУНКЦИОНАЛЬНЫМ ГРУППАМ [c.308]

    Качественный анализ органических соединений по функциональным группам. [c.174]

    В специальной части даны прописи получения ста органических препаратов. Часть прописей проверена в Венском университете. Ценно также, что, кроме этих прописей, специальная часть в соответствующих местах содержит описание капельных реакций, позволяющих произвести качественный анализ органических соединений по функциональным группам. [c.11]

    Анализ органических соединений подразделяют на качественный и количественный. Однако основным аналитическим приемом в обоих видах анализа является разрушение органического вещества и превращение его в какие-либо неорганические соединения, определение которых можно затем проводить методами обычного качественного и количественного анализа неорганических соединений. Это не исключает применения и некоторых других аналитических приемов (образование комплексов проведение окислительно-восстановительных реакций, позволяющих из одних органических веществ получать другие взаимное превращение органических соединений, особенно широко распространенное в функциональном органическом анализе, т. е. в анализе функциональных групп, наличие которых позволяет отнести данное органическое вещество к тому или иному классу). [c.220]

    В чем состоит основная задача качественного анализа органических соединений по функциональным группам 2. Какой реакцией обнаруживают двойные связи в органическом соединении 3. Какой реакцией открывают этиловый спирт 4. Какой реактив используют для открытия многоатомных спиртов 5. Какие реакции используют для открытия альдегидов 6. В чем состоит сущность реакции серебряного зеркала Как ее выполняют 7. Какие реакции используют для открытия фенолов 8. Какие цветные реакции используют для открытия ароматических аминов  [c.164]

    Это совокупность методов анализа, пользуясь которыми можно качественно и количественно определить в органических соединениях реакционноспособные группы атомов (или отдельные атомы) — так называемые функциональные группы. Функциональным анализом устанавливают структуру неизвестных органических соединений и определяют степень чистоты известных химических продуктов. Известно около 100 функциональных групп  [c.46]

    Важнейшие элементы строения — наличие функциональных групп и отчасти строение углеродного скелета — позволяет установить качественный функциональный анализ органических соединений. Этот вопрос освещен во всех главах теоретической части курса и опытах главы 19. [c.481]

    Фундаментальная область. Фундаментальные колебания обычно наблюдаются между 2,5 и 50 мкм. Спектры поглощения в этой области являются в высшей степени характеристичными для отдельных частиц, поэтому можно проводить как качественный, так и количественный анализ. Для анализа органических соединений особенно интенсивно используют интервал между 2,5 и 15 мкм, так как здесь появляется большое число пиков поглощения функциональных групп. Большая часть рассматриваемого нами материала будет относиться именно к этой области. [c.726]

    Молекулярные спектры поглощения вещества также находят приложение в качественном анализе, при этом первое место, бесспорно, принадлежит колебательным спектрам. Их исключительно широко используют в органическом качественном анализе для установления присутствия различных функциональных групп. В неорганическом качественном анализе их применение ограничивается чаще всего определением состава и структуры комплексных соединений. Использование колебательных спектров дает возможность установить наличие изомеров. данного вещества (например, цис- и транс-изомеров).-Один из вариантов метода, известный как метод отпечатков пальцев , позволяет идентифицировать не только отдельные функциональные группы, но и целые молекулы. В этом случае после того, как будут установлены основные функциональные группы исследованного соединения и на основании всех данных предложена его определенная структура и состав, сравниваются спектры поглощения в инфракрасной области образца и того чистого известного соединения, которое, как было допущено, идентично пробе При совпадении обоих спектров можно считать, что предполагаемый состав верен, а если спектры не совпадают, то спектр исследованного вещества сравнивают со спектрами других соединений, которые, как допускается, могут иметь состав, соответствующий анализируемому образцу. [c.196]


    Рентгеноэлектронная спектроскопия может служить не только для качественного, но и для количественного элементного анализа органических соединений. Точность ее данных — несколько весовых процентов [45]. Интенсивности. полос поглощения в инфракрасном спектре находятся в прямой зависимости от числа функциональных групп или отдельных связей, отвечающих этим полосам. Однако использование абсолютных значений интенсивностей в количественном органическом анализе не представляется достаточно надежным, тогда как относительные интенсивности позволяют сравнивать содержание данной функциональной группы или атомной группировки в различных образцах или даже внутри одной молекулы, если они находятся в различном структурном положении. [c.311]

    Перечисленные прев ращения кремнийоргаиических соединений не свойственны органическим соединениям и имеют очень важное практическое значение при аиализе кремнийорганических соединений. Влияние воды на гидролизующиеся кремнийорганические соединения следует учитывать при выделении, растворении, кристаллизации, осаждении, возгонке, экстрагировании, дистилляции, ректификации, определении физических констант (в особенности молекулярного веса), качественном и количественном элементарном анализе и определении функциональных групп кремнийорганических соединений. [c.89]

    Этот том представляет собой капитальное справочное руководство по органическому анализу во всех его аспектах. В нем рассмотрены прежде всего методы элементарного анализа органических соединений, как качественного, так и количественного, включая органический микроанализ. Большую часть труда занимает изложение методов исследования важнейших функциональных групп и основных классов органических соединений. В книге содержатся также главы по газообъемным методам анализа, определению температур плавления, затвердевания, кипения и конденсации, термическому анализу органических молекулярных соединений, хро.матографии и анализу смесей растворителей. Охвачена литература по 1952 г. [c.229]

    Элементный анализ органических соединений дает возможность узнать, из атомов каких элементов состоит молекула данного органического соединения. Однако эти данные недостаточны для определения структуры вещества. Эта задача может быть решена с помощью функционального анализа вещества, при котором используется специфическая реакционная способность отдельных группировок атомов (=С=0 —СООН —ОН и др.). В функциональном анализе применяются химические, физические и физикохимические методы исследования. Наибольшее значение в настоящее время приобретает спектроскопия в инфракрасной и ультрафиолетовой области, ядерный магнитный резонанс, масс-спектрометрия. На основании анализа ИК-, УФ- и ПМР-спектров можно судить о наличии тех или иных функциональных групп в данном веществе и установить его строение. Однако химический качественный анализ на функциональные группы в настоящее время не потерял значения. Для качественных проб используются такие реакции, которые имеют наибольшую избирательность и чувствительность. [c.197]

    В зависимости от задач и методов их решения различают качественный и количественный анализ. Цель качественного анализа — определение элементного или изотопного состава веществ. При анализе органических соединений определяют непосредственно отдельные химические элементы, например углерод, серу, фосфор, азот или функциональные группы. При анализе неорганических соединений определяют, какие ионы, молекулы, группы атомов, химические элементы составляют анализируемое вещество. Цель количественного анализа — установление количественного соотношения составных частей вещества. По результатам количественного анализа можно установить константы равновесия, произведения растворимости, молекулярные и атомные массы. Количественному анализу всегда предшествует качественный анализ. [c.11]

    Наибольшее значение в производственных лабораториях имеют методы качественного и количественного анализа органических соединений по функциональным группам. При этом в отдельных случаях используются методы, аналогичные методам, применяемым для анализа неорганических веществ. Например, для определения органических кислот применяют метод нейтрализации — титрование раствором щелочи в присутствии фенолфталеина. [c.150]

    В книгу включены описания макро-, полумикро- и микрометодов элементарного анализа методы качественного и количественного определения функциональных групп анализ отдельных представителей основных классов органических соединений газовый анализ. Описаны основные методы определения температур плавления, затвердевания, кипения и конденсации методы термического анализа органических соединений основы хроматографического анализа методы анализа органических растворителей и их смесей. Для анализа каждой группы соединений приводится ряд методов, что дает возможность читателю выбрать, из них наиболее подходящий для работы. [c.15]

    Качественный анализ по хроматограммам не вызывает затруднений, если определяемые вещества сами образуют характерно окрашенное пятно на хроматограмме или же окрашивание появляется в результате взаимодействия с каким-либо реагентом. Однако такими свойствами обладает весьма ограниченное число соединений, особенно органических. Если и удается получить характерную окраску для органических соединений в результате опрыскивания пластинки соответствующим реагентом, то только для того или иного класса соединений в целом, тогда как разные соединения, относящиеся к одному классу, дают одинаковое окрашивание, обусловленное наличием определенной функциональной группы. [c.147]

    В задачу качественного органического анализа входит определение класса органического соединения, установление присутствия тех или иных функциональных групп, проверка присутствия тех или иных химических элементов, а также идентификация индивидуального соединения. [c.280]

    Газовая хроматография (ГХ) в значительной степени расширила возможности исследований в области анализа функциональных групп органических соединений. Классические методы количественного анализа функциональных групп применяли в основном для определения структуры одного или в лучшем случае небольшого числа органических соединений путем определения продукта реакции той или иной единственной функциональной группы. Методом ГХ можно одновременно получать качественную и количественную информацию для всех продуктов реакции. Для проведения анализа требуется меньшее (иногда даже в 100 раз) количество анализируемого материала, причем методом ГХ определяют многие соединения, а не одно-два, как в обычной лабораторной практике. Эти возможности ГХ и легкость проведения соответствующих анализов привели к тому, что в настоящее время этот метод получил широкое распространение. [c.418]

    Исторически классический качественный химический анализ развивался как анализ неорганических катионов и анионов (и лишь самых простейших органических анионов, гаких, например, как ацетат-ион СНзСОО" и оксалат-ион СгО] ). Качественный анализ органичесыгх соединений, основанный преимущественно на открытии этих веществ по реакциям на функциональные группы, развивался параллельно со становлением органической химии и нашел особенно широкое применение в фармацевтическом анализе, поскольку очень многие лекарственные препараты включают органические вещества. [c.34]

    Если нужно идентифицировать и органические составляющие пробы, то их извлекают чаще всего, растворяя в подходящем растворителе (обычно в слабополярной органической жидкости), и исследуют методами органического качественного анализа. С этой целью проверяют присутствие различных функциональных групп посредством характерных аналитических реакций, а также с по- мощью колебательных спектров, изоляции чистых химических соединений, дистилляционными, хроматографическими и другими подходящими методами, установления температуры их плавления и кипения, коэффициентов преломления и т. д. [c.189]

    Вещества, обладающие очень близкими свойствами, часто переводят в их производные с различающимися свойствами. Капельный анализ органических соединений и их функциональных групп был разработан Файглем [26]. Этот метод позволяет использовать большое число органических реакций в микрохимическом варианте в качестве простых и быстрых качественных реакций. Однако некоторые макрохимические реакции органических соединений протекают при таких условиях, что они не могут быть выполнены в качестве капельных.  [c.56]

    В ряде случаев задачей структурного анализа является не выяснение структуры вещества в целом, а только определение природы и содержания некоторых атомных групп, определяющих свойства вещества. Такие структурные группы могут входить в каркас молекул или являться функциональными. Структурно-групповой анализ применяют при исследовании сложных природных или технических продуктов, для которых очень трудно или невозможно полностью определить структуру. Метод находит также применение при исследовании смесей веществ, из которых выделение отдельных соединений слишком длительно, или тогда, когда нет необходимости их выделения 126]. Простейшим примером структурно-группового анализа является качественный анализ неорганических соединений в растворах, поскольку при этом во многих случаях определяют не сами элементы, а определенные структурные группы (например, SOI, 50Г. l", С10 , СЮз, IO4 и т. д.). В области органической химии качественный анализ по Штау-дингеру является простейшей формой анализа структурных групп. [c.406]

    Функциональный анализ — совокупность физических и химических методов анализа, применяя которые можно качественно и количественно определять в органических соединениях реакцнонноснособные группы атомов (или отдельные атомы), так называемые функциональные группы. Известно около 100 функциональных групп. Напр. 1) Ф. г,, содержащие кислород гидроксильная (гидроксо) —ОН, [c.147]

    В настоящее время все большее значенне приобретают физические методы исследования органических соединений. С помощью этих методов можно решать задачи качественного и количественного анализа. Однако химические методы до сих пор остаются одним из основных видов функционального органического анализа. Обычно они основаны на простых химических реакциях, вполне доступны для каждой лаборатории и дают достаточно точные результаты. Особый интерес химические методы функционального анализа органических соединений представляют при определении степени чистоты веществ, малых концентраций органических соединении и при необходимости быстрого анализа промежуточных продуктов реакции. Предлагаемое вниманию читателей руководство Критч-филда по функциональному анализу органических соединений будет весьма полезным не только для органи-ков-аналитиков, но и для лиц, работающих в смежных с органической химией областях — биохимиков, фармакологов, физико-химиков и др. В настоящее время вопросы функционального органического анализа все больше интересуют органиков-сиитетиков, работающих в области физиологически активных соединений, природных и высокомолекулярных полимерных соединений. Б книге Критч-филда приводятся химические методы анализа органических соединений, содержащих наиболее типичные функциональные группы. В первой главе, посвященной методам [c.5]

    В зависимости от задач и методов различают качественный и ко чественный анализ. Цель качественного анализа—определение, элементного или изотопного состава вещества. При анализе органических соединений находят непосредственно отдельные химичеяще элементы, нахгоимер углерод, серу, фосфор, азот или функциональные группы. При анализе неорганических соединений определяют, какие ионы, молекулы, группы атомов, химические элементы составляют анализируемое вещество. [c.4]

    Обнаружение функциональных групп, которое рассматривалось в предыдущей главе, известно под названием анализа органических соединений по функциональным группировкам—название исключительно меткое . Наряду с этим методом давно известен элементарный органический анализ, т. е. качественное и количественное определение элементов, из которых состоит исследуемое вещество. Кроме того, существуют еще и методы идентификации индивидуальных органических соединений, в которых используются свойства всей молекулы. Эти методы основаны на определении физических свойств, связанных со структурой и размерами молекулы органических соединений. К таким свойствам относятся температуры плавления, температуры кипения, удельный вес, а также оптические свойства различных соединений. Определяют температуру плавления или кипения исследуемого вещества или готовят его смеси с заранее известными веществами и наблюдают за температурами, присущими, например, эвтектическим смесям. В последнее время этот метод стал применяться для исследования микроколичеств органических веществ и их смесей, что является определенным шагом вперед. Полезность такого метода со временем, несомненно, станет еще более очевидной. Для эбулиоскопи-ческого или криосконического методов определения молекулярного веса используют расплавы или растворы исследуемых веществ в различных растворителях. Для подобных определений можно использовать производные исследуемых веществ, которые в некоторых случаях обладают более характерными свойствами. Оптическими методами определяют коэффициенты преломления, оптическую активность, спектры поглощения в ультрафиолетовой и инфракрасной области спектра, спектры комбинационного рассеяния, форму и оптические свойства кристаллов и др. [c.426]

    Микрометоды крайне медленно внедрялись в лабораторную студенческую практику. Однако влияние двух прошедших войн вызвало необходимость экономии материалов и времени, что в свою очередь заставило многих преподавателей пересмотреть традиционные методы. Полумикрометоды с большим успехом стали применяться при преподавании качественного анализа вообще и, в частности, при идентификации путем получения производных. По мнению автора, студент должен постепенно знакомиться с применением микрометодов следующим образом. Обучение препаративной органической химии надо начинать с полумикроколичества (1—2 г) номере усовершенствования методов следует снижать количества веществ до 100— 200 мг при изготовлении производных и до 25—50 мг при определении функциональных групп для идентификации органических соединений. Таким образом, после обучения органической химии в течение года студент сможет оперировать с количествами порядка миллиграммов при элементар-1ЮМ анализе или определении функциональных групп. По мнению преподавателей, использовавших эти методь. , никакие методы в науке как объекты не приносятся в жертву. Наряду с экономией времени и материалов студент приучается, знакомясь с микротехникой, тщательности и аккуратности в работе, приобретает соответствующие экспериментальные навыки. Например, при работе с 1—5 г соединения для получения производных при идентификации органических соединений макрометодами, описанными в литературе, полученные количества настолько велики, что даже при небрежной работе можно провести 2—3 кристаллизации, причем останется около 100 мг вещества для определения точки плавления и других опытов. Однако при уменьшении количеств исходных веществ в 10 и более раз работать следует крайне тщательно необходимо подбирать такие условия, которые способствовали бы наиболее полному протеканию реакции, и проводить минимальное число перекристаллизаций, чтобы обеспечить достаточный выход продукта для проведения нескольких определений точки плавления. [c.10]

    В зависи.мости от того какие лучи электромагнитного спектра пропускать через вещество, могут возбуждаться либо вращательные, либо колебательные движения, либо электронные переходы, либо все виды движений одновременно. Возбуждение того или иного движения в молекуле происходит тогда, когда его частота совладает с частотой электромагнитного колебания (резонанс). Наибольшей энергией обладают рентгеновские лучи (Я = 0,01 — 10А), еатем ультрафиолетовые лучи (10ч-4000.4), затем видимый свет (4000.А.8000А), затем инфракрасные лучи (0,8—300 р), затем микроволны 0,03—100 см и далее радиоволны. Энергия радиоволн слишком мала, чтобы возбуждать колебания молекул органических веществ. Микроволны и длинные инфракрасные волны могут возбуждать только вращательные движения в молекулах. Если частоты колебания этих волн совпадают с собственной частотой вращения отдельных частей молекулы, то происходит резонансное поглощение энергии инфракрасного облучения этой частоты, что отразится в спектре поглощения. Такого рода спектры применяются для тонкого структурного анализа органических веществ. Инфракрасные спектры органических соединений обычно изучают в пределах длтш волн 1 25 х, при этом линии поглощения Б спектре появляются за счет вращательного п колебательного движения в молекулах исследуемого вещества. Каждой функциональной группе и группе атомов в молекуле исследуемого соединения в спектре соответствует одна или несколько линий с опре-денной длиной волны. С помощью инфракрасных спектров можнс проводить идентификацию чистых углеводородов, анализировать качественно и количественно смеси нескольких компонентов вплотг-до обнаружения таких близких структур как цис- и транс-изомеры. На рис. 16 приведен г /с-спектр толуола. [c.32]

    Второй из возможных подходов к парофазному качественному анализу —взаимодействие паров исследуемых веществ с химическими реагентами— детально разработали Хофф и Фейт [4] применительно к определению функциональных групп в летучих органических соединениях. [c.221]

    В случае многоатомных молекул математические соотношения, описывающие структуру спектров, имеют более сложный вид. Для них значение является сложной функцией совокупности силовых постоянных, межядерных расстояний, межсвязевых углов и масс атомов, образующих молекулу. Однако для групп атомов, мало изменяющихся при изменении окружения (например, функциональные группы в органических соединениях), совокупность определяющих параметров изменяется мало, поэтому величины г/е примерно одинаковы и являются характеристическими. Поэтому их можно использовать для проведения и качественного, и количественного анализа. [c.100]


Смотреть страницы где упоминается термин Качественный анализ органических соединений по функциональным группам: [c.806]    [c.298]    [c.6]    [c.9]    [c.476]   
Смотреть главы в:

Аналитическая химия -> Качественный анализ органических соединений по функциональным группам

Химический анализ -> Качественный анализ органических соединений по функциональным группам




ПОИСК





Смотрите так же термины и статьи:

Анализ качественный

Анализ функциональный

Органические качественный

Органические соединения анализ

Функциональные группы

соединения группа



© 2025 chem21.info Реклама на сайте