Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Солевой гемоглобине

    Глобулярные белки растворяются в воде и солевых растворах с образованием коллоидных систем. Примерами таких белков служат альбумин, основная составная часть белка куриного яйца глобин, белковый компонент гемоглобина, а также важный в процессах свертывания крови фибриноген. --Структура белков крайне сложна. В принципе, как и для других макромолекул, строение белков может быть описано в терминах конституции, конфигурации, конформации, суммарной брутто-конформации и ассоциации. Однако в химии белков более целесообразно применять другую номенклатуру. Различают при этом четыре типа структурных признаков [3.3.6]. [c.656]


    Для глобулярных белков более характерна а-спираль-ная структура, а цепи их изогнуты в пространстве так, что макромолекула приобретает форму сферы. Глобулярные белки растворяются в воде и солевых растворах с образованием коллоидных систем. Примеры глобулярных белков — альбумин (яичный белок), глобин (белковая часть гемоглобина), миоглобин, почти все ферменты. [c.376]

    Важнейшими буферами крови являются бикарбонаты и фосфаты Ыа и К, белки плазмы и особенно гемоглобин эритроцитов. Механизм действия бикарбонатов и фосфатов как буферов, препятствующих изменению pH крови при появлении в ней кислот или оснований, подробно рассмотрен в главе Водно-солевой обмен (стр. 393). [c.435]

    Механизм гомотропного и гетеротропного взаимодействия в гемоглобине, по-видимому, зависит от трех типов конформационных переходов в белке небольших изменений третичной структуры каждой из полипептидной субъединиц, от малых изменений четвертичной структуры и больших изменений четвертичной структуры комплекса из четырех ассоциированных полипептидных субъединиц. Первый из этих переходов представляет собой последовательность изменений, охватывающих только небольшую область полипептида, и связывает процессы, в которых участвует железо, с равновесием между свободными и связанными аминокислотными остатками на определенном участке поверхности субъединицы. Этот тип переходов достаточен для объяснения гетеротропного взаимодействия в белках, состоящих только из одной полипептидной цепи. Однако в гемоглобине конформационные изменения второго типа приводят к образованию или разрыву солевых мостиков между субъединицами, что автоматически влечет за собой небольшие изменения четвертичной структуры. Нарастание этих небольших изменений в четвертичной структуре в конце концов приводит к К—Т-переходу. Таким образом, процессы, в которых участвует железо в каждой из субъединиц, косвенно связаны с переходами между К- и Т-формами всего белка. [c.182]

    Хорошо растворимые белки, такие, как яичный альбумин или гемоглобин, легко образуют поверхностные пленки на воде или на разбавленных солевых растворах. Менее растворимые белки, такие, как миозин, образуют пленки только после кратковременной обработки их трипсином [46]. Желатина совершенно не образует пленок на свободной от солей воде, но может образовывать пленки на поверхности раствора сульфата аммония. [c.115]


    Все это объясняет причину низкого сродства дезоксигемоглобина к кислороду по сравнению с миоглобином или искусственно полученными отдельными цепями гемоглобина [13]. При связывании кислорода в четвертичной структуре гемоглобина происходит нарушение взаимодействий, ответственных за пониженное сродство к кислороду. Солевые мостики разрываются, и гидрофобные поверхности обнажаются. Становится понятным и механизм действия аллостерических эффекторов органические фосфаты прочно связываются с определенным центром в Т-состоянии и затрудняют его переход в R-состояние. [c.270]

    Согласно новым представлениям белки делятся на две морфологически различные группы — глобулярные и фибриллярные белки. К первым относятся кристаллические, в большей или меньшей степени растворимые в воде или солевых растворах вещества, молекулы которых по форме напоминают uiap, эллипсоид вращения, цилиндр или диск. Примерами таких белков могут служить гемоглобин и миогло-бин. Выводы о форме их молекул сделаны на основании вискозиметри-ческих, рентгенографических, осмометрическнх измерений и электронной микроскопии. [c.396]

    Остаток тирозина НС-2, расположенный на втором месте со стороны С-конца, является одним из немногочисленных инвариантных остатков в молекуле гемоглобина. Положение его сохранилось в процессе эволюции в гемоглобинах и миоглобинах всех изученных видов. В де-зоксигемоглобине тирозин НС-2 лежит как бы в кармане , образуемом Н- и F-спиралями, и связан водородной связью с карбонильной группой полипептидной цепи у остатка FG-5 (рис. 4-17 и 4-19). Перутц и его сотрудники обнаружили, что при оксигенации этот тирозин выходит из кармана, солевые мостики на концах молекул разрываются и субъединицы смещаются, образуя новую систему связей, характерную для оксигемоглобина. Оксигенация двух гемов (Перутц считает, что ими являются гемы а-цепей) приводит к кооперативному конформационному изменению всех четырех субъединиц [71, 72]. [c.307]

    Каким образом присоединение О2 к гемовому железу вызывает конформационное изменение гемоглобина Как указано в гл. 10 (разд. Б.4), при связывании с кислородом атом железа в геме, по-видимому, смещается в плоскости гемогруппы приблизительно на 0,06 нм [73]. Это смещение передается через гистидин F-8, и спираль F смещается в сторону гема в результате происходит изменение третичной структуры, приводящее к ослаблению водородных связей в области а1р2-контактов и солевых мостиков между субъединицами. Несмотря на тщательные рентгеноструктурные исследования, детали механизма, инициирующего конформационные изменения при присоединении О2, остаются неясными. Необходимо иметь в виду, что разрешение, которое удается получить при рентгеноструктурном исследовании кристаллов белков, позволяет установить локализацию легких атомов с достаточной точностью, в результате чего механизм передачи кооперативных эффектов не поддается непосредственному изучению и его приходится выяснять, исходя из изменений третичной структуры субъединиц при атшеплении лиганда от Р(т. е. окси-)- или при присоединении его [c.307]

    Разрушение солевых мостиков на концах молекулы гемоглобина при оксигенации приводит к другому интересному эффекту. Значения рК N-кoнцeвыx валинов а-субъединиц и гистидинов НС-3 3 субъединиц в дезокси-форме гемоглобина аномально высоки, поскольку остатки этих аминокислот участвуют в образовании солевых мостиков. В окси-форме эти группы не принимают участия в образовании мостиков и их рКа ниже. Если гемоглобин находится в среде с постоянным значением pH, равным 7, то при оксигенации происходит высвобождение протонов. Это явление, получившее название эффект Бора, имеет важное значение, поскольку подкисление раствора гемоглобина способствует стабилизации дезокси-формы. В капиллярах, где парциальное давление кислорода невелико и может накапливаться двуокись углерода и молочная кислота, понижение pH приводит к тому, что оксигемоглобин отдает свой кислород более эффективно. [c.312]

    Другой пример аллостерического действия в случае гемоглобина был уже рассмотрен в предыдущем разделе. Эффект Бора можно считать результатом действия протонов, играющих в данном случае роль аллостерических эффекторов, присоединяющихся к амино- и имидазоль-ным группам, которые участвуют в образовании солевых мостиков. Физиологическим эффектором является также двуокись углерода, обратимо связывающаяся с концевыми МНг-группами а- и р-субъединиц с образованием карбамино(карбамат, —NH—G00 )-групп [77, 78]. Сильнее сродство к СОг выражено у дезокси-формы гемоглобина. Вследствие этого отдача кислорода оксигемоглобином облегчается в тканях, богатых СОг. Гемоглобин переносит значительную часть СОг к легким, где его оксигенация облегчает отщепление СОг от карбами-но-групп. [c.313]

Рис. 6.21. Схема оксигенации гемоглобина по Перутцу 1 — НЬ с интактными солевыми мостиками и с молекулой ДФГ, зажатой между двумя -цепями 2—НЬОг 3—НЬО,. На стадиях 1 — 2 и 2 — 3 оксигенируются а-цепи 4 — ИЬО, с измененной конформацией на стадиях 3—4 происходит конфор-ыационное превращение 5 НЬОв 6 — НЬО Рис. 6.21. Схема <a href="/info/1388212">оксигенации гемоглобина</a> по Перутцу 1 — НЬ с интактными <a href="/info/68402">солевыми мостиками</a> и с молекулой ДФГ, зажатой между двумя -цепями 2—НЬОг 3—НЬО,. На стадиях 1 — 2 и 2 — 3 оксигенируются а-цепи 4 — ИЬО, с <a href="/info/33013">измененной конформацией</a> на стадиях 3—4 происходит конфор-ыационное превращение 5 НЬОв 6 — НЬО

    Важной особенностью гемоглобина, которая обусловлена наличием нескольких гем-групп, является форма кривой связывания кислорода не простая гиперболическая кривая насыщения, как для миоглобина, а S-образная. Сродство гемоглобина к кислороду возрастает с давлением. Поэтому при умеренных давлениях гемоглобин эффективно связывает кислород в легких, но отдает его миоглобину при низких давлениях в тканях. При потере кислорода образуется дезоксигемоглобин, субъединицы молекулы слегка смещаются относительно друг друга и поворачиваются так, что два р-гема удаляются друг от друга на расстояние около 6,5 А. Эта конформационная перестройка, несомненно, тесно связана с кооперативным взаимодействием гемов, которое позволяет им более прочно связывать кислород, когда молекула уже частично окислена. Однако детали этого взаимодействия еще не ясны. В концентрированных солевых растворах (например, в 4 М Na l) молекула [c.375]

    С каким участком молекулы гемоглобина связывается ДФГ В молекуле гемоглобина имеется открытая центральная полость, или канал, который хорошо виден на рис. 8-10, Этот канал, выстланный многими положительно заряженными К-группами, и служит местом связывания ДФГ, который присоединяется к дезоксигемоглобину и образует поперечную связь (солевой мостик) между двумя 3-субъеди-ницами. При связывании гемоглобином кислорода ДФГ вытесняется из полости. Г емоглобин связывает только одну молекулу ДФГ (рис. 1) напомним, что он может связывать по четыре молекулы О2 или СО2 и примерно четыре иона Н.  [c.213]

    В результате этих исследований было установлено, что частицы многих белков обладают округлой, эллипсоидной формой. Такие белки получили название глобулярных белков (лат. globulus — шарик). К таким белкам относятся главным образом белки, растворимы ев воде или в слабых солевых растворах, например альбумины и глобулины яичного белка, молока, сыворотки крови, органов и тканей, гемоглобин крови, фермент желудочного сока (пепсин) и др. [c.45]

    Как мы уже видели (разд. 7.2), четыре полипептидные субъединицы гемоглобйнов лошади и человека могут образовывать две слегка различные четвертичные структуры, так называемые К-или Т-структуры ( окси - и дезокси -структуры). Основное различие между этими двумя формами белка, по-видимому, состоит в том, что в Т-форме имеются восемь солевых мостиков (образующихся за счет электростатических взаимодействий) в местах контакта 0102 и Р1Р2 Т-формы. Исследование различных природных и модифицированных гемоглобйнов показало, что гомотропное взаимодействие наблюдается при координации кислорода Ре(П) только в том случае, когда в процессе оксигенации происходит изменение четвертичной структуры [173]. Переход от Т- к 1 -форме происходит в НЬ А1 человека примерно при 50%-ной оксигенации, однако в других случаях он может наблюдаться при существенно более высокой степени оксигенации или очень малой оксигенации, а иногда и вовсе не наблюдается, т. е. белок может остаться замороженным в исходной К- или Т-форме [94, 204]. Изменение четвертичной структуры сопровождают и другие процессы, в которых имеет место гомотропное взаимодействие [33]. Исследование различий в спектрах (см. выше) и в величинах Р1/2 (разд. 7.5) между гемоглобином и изолированными а- и 3-цепями показало, что гемоглобин ведет себя нормально при высокой насыщенности кислородом и что 8-образная форма кривой определяется аномалиями при низкой оксигенации, т. е. когда белок находится в Т-форме. В настоящее время известны константы равновесия координации кислорода К- и Т-формами гемоглобина человека при pH 7 и гемоглобина при pH 9. Константа равновесия для Т-формы в 250 раз меньше, чем для Н-формы [204]. Скорость взаимного превращения Я- и Т-форм может быть установлена в отсутствие всяких изменений, связанных с реакциями железа, поскольку фотолиз гемоглобина, содержащего только Ре СО (и потому находящийся в К-форме), дает Ре с сохранением в первый момент после фотолиза К-формы, которая затем быстро переходит в Т-форму с временем полупревращения около 2 мс при 3°С [8, 88]. Возникает вопрос каким образом изменение состояния железа приводит к изменению четвертичной структуры  [c.175]

    Эффект Бора, т. е. взаимное влияние изменения pH и связывания кислорода, тесно связан с описанным выше гем-гемовым или гомо-тропным взаиА-юдействием, хотя эти два эффекта удается разделить в случае некоторых гемоглобйнов (разд. 7.5). По-видимому, эффект Бора определяется несколькими аминокислотными остатками, р/С которых меняется вместе с изменением окружения, которое сопровождает R—Т-переход. К этим остаткам относятся аргинин НСЗ и валин NA1 в а-цепи, а также гистидин НСЗ в (3-цепи. Все эти остатки участвуют в гомотропном взаимодействии, равно как и гистидин Н5 в а-цепи, который затрагивается при этом лишь косвенным образом [169, 173]. 2,3-Дифосфоглицерат влияет на свойства гемоглобина, связываясь специфически с Т-формой белка с образованием комплекса состава 1 1 [169, 173]. Исследования мутантных и модифицированных гемоглобйнов, в том числе изучение структуры областей, в которых находятся С-концевые остатки, также подтверждают важную роль солевых мостиков в механизме гомотропного и гетеротропного взаимодействия в гемоглобинах млекопитающих [94, 130, 169, 173]. [c.177]

    Что же касается влияния температуры на растворимость белка, то здесь такого общего правила нет. Так, растворимость таких белков, как, например, глобулины семян, фос-форилаза мышц и пепсин, растет с повышением температуры. При этом увеличение растворимости зависит от окружающей среды. Для некоторых белков растворимость возрастает с повышением температуры в том случае, если они находятся в разбавленном солевом растворе, тогда как для других необ ходимы крепкие растворы солей или водно-спиртовые смеси. В то же время растворимость белка часто резко убывает с повышением температуры, и это уменьшение растворимости можно наблюдать как в водных, так и в солевых растворах. Примером подобных белков могут быть альдолаза мышц, сульфат инсулина и различные формы гемоглобина. Интересно, что на растворимость последнего белка температура оказывает двоякий эффект. Так, при повышении температуры от О до 25° происходит уменьшение растворимости оксигемоглобина, метге-моглобина и карбоксигемоглобина. Однако при дальнейшем увеличении температуры до 40° растворимость снова начинает увеличиваться. [c.181]

    В некоторых случаях денатурация сопровождается образованием больших белковых агрегатов, в других же, наоборот, образуются мелкие молекулы. Осмометрические определения, проведенные Бёрком [153], показали, что денатурация гемоглобина, казеина и эдестина концентрированнымк растворами мочевины ведет к дезагрегации молекул этих белков. Молекулярный вес образующихся продуктов равен соответственно 34 300, 33 600 и 49 500, тогда как молекулярный вес нативного гемоглобина составляет 68 000, а нативного эдестина — 212 000. Сывороточный альбумин, сывороточный глобулин и яичный альбумин обнаруживают один и тот же молекулярный вес в водных растворах и в концентрированных растворах мочевины. С другой стороны, при денатурации яичного альбумина кислотами, щелочами или нагреванием образуются агрегаты, содержащие от 5 до 20 молекул [154]. При небольших сдвигах pH или изменении концентрации солей в растворе, а также при действии ультразвука молекула гемоцианина делится пополам или на восемь частей [155, 156]. Подобным же образом расщепляются пополам при образовании мономолекулярных пленок на поверхности солевых растворов молекулы лактоглобулина с молекулярным весом 35 ООО и молекулы инсулина [157]. Дезагрегация молекул инсулина может быть предотвращена солями меди [158]. [c.150]

    Данные рентгеноструктурного анализа позволяют представить наиболее вероятный механизм оксигенирования гемоглобина и связанных с ним эффектов [59]. Вначале, по-видимому, происходит оксигениро-вание одной из а-цепей. Поскольку при соединений с кислородом железо переходит из высокоспинового (S = 2) в низкоспиновое (S = 0) состояние, уменьшается его ковалентный радиус и ион железа перемещается в плоскость порфинового ядра вместе с ним приближается к группе гема (приблизительно на 0,08 нм) жестко связанный с железом проксимальный гистидин. Смещение гистидина, находящегося в спиральном участке F полипептидной цепи, вызывает перемещение всей спирали F к центру молекулы, что в свою очередь приводит к уменьшению полости между спиралями F н Н, в которой находился остаток Туг НС 2 (140) ai, в результате чего этот остаток выталкивается из полости. Выталкивание тирозина приводит к перемещению С-концевого Arg НС 3 (141) 02 и разрыву двух солевых мостиков со второй а-субъеди-ницей. [c.137]

    Подобно гем-гемному взаимодействию эффект Бора возникает в результате изменения четвертичной структуры молекулы гемоглобина в процессах оксигенирования и дезоксигенирования. При оксигенировании вследствие разрыва солевых мостиков происходит выделение протонов, а при дезоксигенировании в результате образования солевых мостиков — поглощение (нейтрализация). Механизм этого явления показан на стр. 138. [c.139]

    Саркоплазматические белки растворимы в воде и слабых солевых растворах. Основную массу их составляют белки-ферменты, локализованные главным образом в митохондриях и катализирующие процессы окислительного фосфорилирования, а также многие ферменты гликолиза, азотистого и липидного обменов, находящиеся в саркоплазме. К этой группе относится также белок миоглобин, который связывает кислород с большим сродством, чем гемоглобин, и депонирует молекулярный кислород в мышцах. В последнее время открыта группа саркоплазматических белков парвальбуминов, которые способны связывать ионы кальция, однако их физиологическая роль остается не выясненой. [c.296]

    Глобулярные белки (от лат. globulus — шарики) имеют округлую, эллипсовидную или близкую к ним форму. Сюда относятся белки, хорошо растворимые в воде и в слабых солевых растворах, например альбумины и глобулины яичного белка, сыворотки крови, молока, органов и тканей, гемоглобина крови, фермент желудочного сока — пепсин, а также много растительных белков. Молекулы некоторых растительных белков (пшеницы, ку- [c.37]

    При недостатке в пище железа уменьшается количество гемоглобина в крови. Чувствителен также организм к недостатку и иных минеральных веществ (йода, фтора, марганца, кобальта и др.). Минеральные вещества доставляются в организм с пищей, и только одно вещество — хлористый натрий—специально добавляется к пищевым продуктам. Недостаток поваренной соли в пищевом рационе, солевой голод , очень тяжело переносится человеком. Взрослый человек ежесуточно потребляет до 15 г поваренной соли и столько же выделяет ее из организма. Это количество значительно превышает физиологически необходимое, и 01ю определяется прежде всего вкусовым качеством х юристого натра, привычкой к соленой гшще. Несоленая, пресная пища невкусна. Количество хлористого натрия в пище можно без ущерба для организма человека снизить до 5 г в сутки. [c.213]

    Основной вклад в парамагнетизм крови вносит гемоглобин, который включает 2/3 всего железа организма. Основная часть железа в цитоплазме клеток связана с белками, но небольшое его количество может находиться в свободном состоянии и проявлять ферромагнетизм. Вклад других металлсодержащих протеинов и ферментов в парамагнетизм клеток животного происхождения, по-видимому, незначителен вследствие их малого количества. У растений и микроорганизмов магнитным материалом могут быть ферредоксиноподобные протеины и многочисленные металлсодержащие ферменты. Кроме того, уровень диамагнитной восприимчивости предопределяет минерально-солевой состав клеток, а точнее, соот- [c.33]

    Источником гемоглобина может служить любой образец свежей крови, обработанный антикоагулянтом. Для приготовления гемолизатов используют также капиллярную кровь. Осажденные эритроциты трижды промывают солевым раствором (3— 5-кратный объем по отношению к осадку). Гемолиз проводят в стеклянных пробирках, добавляя к клеткам 1—1,5 объема дистиллированной воды и 0,4 объема ССЦ. Смесь встряхивают 4 мин и центрифугируют. Прозрачную надосадочную жидкость затем фильтруют через фильтровальную бумагу и разбавляют до нужной концентрации [598, 753]. Лизис клеток можно ускорить, добавив после дистиллированной воды небольшое количество сапонина или путем их замораживания и оттаивания в дистиллированной воде. Однако обработка клеток вторым способом приводит к осаждению гемоглобина Н. Этот аномальный гемоглобин и некоторые другие нестабильные гемоглобины могут денатурироваться во время интенсивного встряхивания с ССи. Для предотвращения денатурации таких гемоглобинов содержащие их эритроциты лизируют в 4 объемах дистиллирован- [c.320]

    Энгл ер и др. [341] подвергали сыворотки электрофорезу в полиакриламидном геле в системе Орнштейна — Дэвиса [281, 942]. Затем столбики геля помещали на 18 ч в свежеприготовленный 12,5 мкМ раствор гемоглобина лошади. Избыток гемоглобина удаляли промыванием в солевом растворе, а комплексы гантоглобин-гемоглобин окрашивали раствором бензидин-НгОг. [c.343]

    Данные рентгеноструктурного анализа подтвфждают наличие в белках ионных пар. Некоторые из обнаруженных в дезоксигемоглобине солевых мостиков описаны в табл. 5. 10. В их формировании принимают участие и ионизованные боковые группы, и С-концевые карбоксилы. Примечательно, что ионные взаимодействия нарушаются, когда гемоглобин переходит в оксиформу (см. гл. 17). [c.269]

    В соответствии с изложенными прннщшами механизм функционирования гемоглобина включает в себя, по-крайней мере частично, механизмы модели МУШ и модели последовательных изменений, или индуцированного соответствия. Дезоксиструктура является напряженной вследствие ограничений, налагаемых солевыми мостиками, а оксиформа, свободная от этих ограничений, соответствует релаксированному состоянию. Эти представления хорошо согласуются с концепцией МУШ. Однако переход между напряженной и релаксированной формами может быть индущ1рован связыванием кислорода, которое является причиной перемещения железа гема, что в свою очередь влияет на конформацию других частей белка. Это придает механизму черты модели индуцированного соответствия. [c.118]

    Связывание О, сопровождается разрывом солевых связей, образованных концевыми карбоксильными группами субъединиц (рис. 6.9). Это облегчает связывание следующих молекул О,, поскольку при этом требуется разрыв меньшего числа солевых связей. Указанные изменения заметно влияют на вторичную, третичную и особенно четвертичную структуру гемоглобина. При этом одна а/Р-пара субъединиц поворачивается относительно другой а/р-пары, что приводит к компактизации тетрамера и повышению сродства гемов к Оз (рис. 6.10 и 6.11). [c.57]

    Наоборот, при высвобождении кислорода вновь формируется Т-структура с присущими ей солевыми мостиками, при образовании которых происходит присоединение протонов к остаткам гистидина в Р-цепях. Таким образом, в периферических тканях протоны благоприятствуют образованию солевых мостиков путем протонирования (по атому азота) концевых остатков гистидина в р-субъединицах. Образование солевых мостиков форсирует освобождение кислорода из оксигенированной К-формы гемоглобина. Итак, повьииение концентрации протонов способствует освобождению кислорода, а повышение концентрации кислорода стимулирует высвобождение протонов. Первый из этих эффектов проявляется в сдвиге кривой диссоциации кислорода вправо при повышении концентрации ионов водорода (протонов). [c.59]

    С фетальным гемоглобином ДФГ связывается менее прочно, чем с гемоглобином взрослого человека, поскольку в его Р-цепи в положении Н21 находится не His, а Ser, который не может участвовать в фор-мировэнии солевых мостиков, удерживающих ДФГ в центральной полости. -Поэтому ДФГ в меньшей степени способствуют стабилизации Т-формы фетального гемоглобина и последний обладает более высоким сродством к кислороду по сравнению с гемоглобином взрослого человека. [c.60]

    О плазматической мембране эритроцитов человека (рис. 6-22) известно гораздо больше, чем о любой другой мембране эукариотической клетки. Такая ситуация сложилась вследствие ряда причин. 1) Эритроциты можно ползгчать в большом количестве (например, из банков крови). При этом они практически не загрязнены клетками других типов. 2) Поскольку эритроциты не имеют ядра и внутренних органелл, их плазматическая мембрана - это единственная мембрана данных клеток и ее можно выделить в чистом виде, без примеси внутренних мембран. Между тем при получении плазматической мембраны из клеток других типов, в которых она обычно составляет менее 5% от массы всех мембран (см. табл. 8-2), это представляет серьезную проблему. 3) Мембраны эритроцитов, ши тени (пустые оболочки), легко получить, поместив клетки в гипотетический солевой раствор. Концентрация соли в таком растворе ниже, чем в клетке, поэтому вода устремляется внутрь эритроцитов, заставляя их разбухать и лопаться (лизис), высвобождая гемоглобин (главный немембранный белок). 4) Мембранные тени можно изучать как в поврежденном виде (в этом случае реагенты взаимодействуют с молекулами на обеих сторонах мембраны), так и после самопроизвольного восстановления их целостности, когда водорастворимые реагенты не могут проникать во внутреннее пространство. Кроме того, из теней эритроцитов можно получить замкнутые, вывернутые наизнанку пузырьки (рис. 6-23), это дает возможность изучать независимо друг от друга внешнюю и внутреннюю (цитоплазматическую) стороны мембраны. Использование теней эритроцитов с разрывами и без разрывов впервые п вoлилo установить, что некоторые мембранные белки пронизывают липидный бислой (см. ниже), и что состав липидов на двух сторонах бислоя различен. Как и в большинстве основных принципов, первоначально установленных при изучении мембран эритроцитов, эти факты постепенно были подтверждены и при изучении мембран ядерных клеток. [c.363]


Смотреть страницы где упоминается термин Солевой гемоглобине: [c.54]    [c.431]    [c.54]    [c.50]    [c.307]    [c.170]    [c.191]    [c.76]    [c.257]    [c.363]    [c.60]    [c.48]   
Принципы структурной организации белков (1982) -- [ c.202 , c.256 ]

Принципы структурной организации белков (1982) -- [ c.202 , c.256 ]




ПОИСК





Смотрите так же термины и статьи:

Гемоглобин



© 2025 chem21.info Реклама на сайте