Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение с солями хрома и ванадия

    Используют и раствор арсенита натрия для определения хромата в присутствии ванадатов, так как последние не восстанавливаются. Сильный восстановитель— раствор соли титана(III)—можно применять для определения железа и меди в смеси сначала железо (III) превращается в двухвалентное, а затем восстанавливается медь(II) до одновалентной. Существуют и методы титрования другими сильными восстановителями, например растворами солей хрома (II) или олова, хотя работа с такими растворами сопряжена с необходимостью защиты их от действия кислорода воздуха. Раствор хлорида олова (И) восстанавливает молибден (VI) до молибдена (V) и ва-надий(У) до ванадия(1П) так можно определить оба элемента при их совместном присутствии. [c.459]


    Образует соли (типа аммиакатов), например с титаном (IV) и цирконием (IV). Применяют для фотометрического определения титана (IV) в интервале кислотности от 0,1 до 5—6 н. Определению не мешают ванадий, молибден, вольфрам, тантал, ниобий, железо, кобальт, никель, хром, марганец, алюминий, цинк, кадмий и ртуть. [c.134]

    Последовательное определение других металлов. Потенциометрическим титрованием растворами солей хрома (И) можно раздельно определять ртуть (П) и висмут (П1) [481 ртуть (II) и железо (III) 48] селен (1У) и теллур (IV) [107] ванадий (У) и титан (1У) [12] вольфрам (У1) и хром (У1) [41]. [c.179]

    Навеска стали 0,6260 г была обработана для определения ванадия и хрома. При определении ванадия на титрование навески было израсходовано 13,10 мл раствора соли Мора, а при определении хрома (сумма хрома и ванадия)—29,80 мл соли Мора. На титрование стандартного образца 0,6500 г в аналогичных условиях (содержание ванадия в стандартном образце 1,28% и хрома 2,52%) затрачено 15,20 мл раствора соли Мора при определении ванадия и 35,50 мл раствора соли Мора при определении суммы хрома и ванадия. Вычислите процентное содержание ванадия и хрома в исследуемом образце стали. [c.86]

    При восстановлении солями титана, ванадия, хрома и олова определяют расход восстановителя на восстановление определенного количества нитросоединения и на этом основании вычисляют содержание нитросоединения. При восстановлении цинковой пылью расход восстановителя не измеряют, а определяют путем титрования нитритом количество амина, образовавшегося в результате восстановления нитросоединения. [c.271]

    Определению титана объемным методом мешает присутствие хрома, ванадия и ниобия, которые также восстанавливаются кадмием и титруются раствором соли трехвалентного железа. Чтобы устранить влияние хрома и ванадия, их удаляют из навески выщелачиванием водой щелочного хромата и ванадата, которые образуются в процессе сплавления или спекания со щелочным реагентом. [c.295]

    Перекись водорода образует желтую окраску с солями урана (VI) в растворе карбоната натрия или аммония. Реакция не особенно чувствительна, однако иногда ее можно применить к фильтрату после осаждения карбонатом натрия или же после сплавления с ним. На этой реакции основан метод определения урана в силикатных породах 1. Предел чувствительности такого метода лежит приблизительно при 0,01% урана. Влияние солей хрома (VI) можно компенсировать, помещая аликвотную часть анализируемого раствора в контрольную кювету фотоколориметра. Соединения молибдена (VI) и ванадия (V) также дают с перекисью водорода желтоватую окраску, однако последняя значительно менее интенсивна, чем образуемая ураном. Соли церия (III, IV) образуют интенсивную желтую окраску с перекисью водорода в карбонатном растворе (стр. 511). Фториды и фосфаты в малых количествах не влияют, однако в больших количествах (около 0,1 г аммониевой соли в 50 мл раствора) уменьшают интенсивность окраски. Силикаты практически не влияют. [c.493]


    Некоторые металлы, введенные в раствор в виде солей в количестве, которое находится за пределами прямого аналитического определения, сильно катализируют разложение амальгамы натрия. Наиболее эффективны соли германия, ванадия, молибдена и хрома. Механизм действия таких добавок состоит в том, что соль восстанавливается до металла, осаждающегося на поверхности амальгамы, и разряд водорода при электролизе идет не на щелочной амальгаме, а на металле. Чтобы металл был эффективен при разложении амальгамы, он должен обладать относительно низким перенапряжением водорода. Кроме того, нужно, чтобы металл не растворялся заметно в ртути. Поэтому действие таких металлов, как медь, серебро, золото, перенапряжение водорода на которых значительно меньше, чем на амальгаме, относительно невелико вследствие их хорошей растворимости в ртути. [c.28]

    Потенциометрическое титрование марганца, хрома и ванадия широко применяют при анализе сплавов, минералов, руд и прочих технически важных материалов, после разложения которых определяемые компоненты, как правило, переходят в раствор в степенях окисления марганец(П), хром(III), ванадий(V) и частично(1У). Определение основано на титровании стандартным раствором соли Мора после переведения их в высшую степень окисления. [c.132]

    В присутствии ванадия результаты титрования дают сумму хрома и ванадия. В этом случае определяют отдельно ванадий и вычитают из общего объема раствора соли Мора, израсходованного на титрование обоих элементов, тот объем, который соответствует определенному количеству ванадия. [c.190]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    В качестве окислительно-восстановительного индикатора при титровании солей цинка раствором ферроцианида для обнаружения меди, золота, ванадия для количественного определения нитритов и золота для кинетического определения хрома (П1). [c.134]

    Ванадий и молибден в особых условиях также образуют с перекисью водорода окрашенные комплексные соединения. Интенсивность окраски ванадиевого комплекса сравнима с интенсивностью окраски титанового комплекса, но окраска подобных соединений молибдена слабее. Мешают анализу окрашенные соли железа, хрома и никеля. Метод применяется для анализа промышленных сортов титана в этих материалах ни один из элементов, мешающих определению, не присутствует в количествах, которые могли бы оказать заметное влияние на результаты анализа. [c.98]

    Потенциометрическое титрование растворами солей урана (IV) применяют для определения всех упомянутых выше веществ [2, 3], а также бромат- и гексацианоферрат (П1)-ионов [2, 3), теллура (IV) [2, 3], ванадия (V) [1], хрома (VI) [1], марганца (VII) [1] и церия (IV) [1]. [c.218]

    Марганец относится к элементам с переменной валентностью, поэтому для его амперометрического определе] я могут быть использованы окислительно-восстановительные методы в разделе Ванадий было уже описано определение ванадия, хрома и марганца при их совместном присутствии Разумеется, такой же метод — переведение марганца (II) в перманганат-ион и последующее титрование перманганата солью Мора по току окисления железа (II) при потенциале +1,0 в (Нас. КЭ) с платиновым вращающимся электродом— может быть применен и для определения одного марганца. Этот метод особенно рекомендуется для [c.247]

    Подобным же путем можно отделить железо и хром от урана, бериллия, циркония и тория молибден от ванадия кадмий от магния медь от алюминия и т. д. При электролизе нейтральных растворов их солей на ртутном катоде могут быть выделены щелочные и щелочноземельные металлы. При этом образуются амальгамы, которые легко разлагаются водой с образованием гидроокисей этих металлов. Выделение этих наиболее электроотрицательных металлов было бы невозможно, если бы перенапряжение выделения водорода на ртути не было бы столь велико. Легкость, с которой эти металлы образуют амальгаму, используется при электроаналитических определениях для отделения их от других катионов. [c.280]


    Метод основан на восстановленпн солями хрома (II) перрената до четырехвалентного рения. Титрованне проводят при 60—70° С в среде 4 н. серной кислоты в присутствии небольших количеств иодида калия как катализатора. Точку эквивалентности устанавливают с помощью компенсационного потенциометра, применяя в качестве индикаторного электрода платиновую пластинку, а в качестве электрода сравнения — насыщенный каломельный полуэлемент. Определение возможно в присутствии небольших количеств молибдена (Re Mo= 1 1), а также-железа, титана, хрома, ванадия, никеля, кобальта, ниобия и меди. Последние легко отделяются в виде гидроокисей путем осаждения аммиаком или щелочью перед титрованием. [c.389]

    Разработан метод определения марганца, хрома и ванадия при их совместном присутствии [98]. Суш ность метода состоит в последовательном титровании раствором соли Мора суммы марганца, хрома и ванадия, окисленных до Mn(VII), r(VI) и V(V) персульфатом аммония в присутствии ионов Ag(I), затем суммы r(VI) и V(V) после разрушения МпО добавлением в раствор Na l и титровании одного V(V) после окисления его КМПО4. Все три этапа титрования проводят при постоянном потенциале + 1,0 S (нас. к.э.) с платиновым анодом, враш аюш имся со скоростью 800—1000 об1мин. Метод применяют при анализе сталей [158, 236, 658-660]. [c.51]

    За последние годы предложено несколько вариантов этого метода для определения ванадия в различных объектах в металлическом ванадии, в хромитев урансодержащих веществах по-прежнему много внимания уделяется этому методу при анализе легированных сталей причем особенно для одновременного определения нескольких компонентов — ванадия, хрома и марганца Предложен этот метод и для определения ванадия и хрома в силико-алюминиевых катализаторах крекинга нефти, причем вместо обычного в таких случаях селективного окисления хрома пользуются восстановлением его до трехвалентного при помощи азида натрия хром (III) не мешает титрованию ванадия солью Мора. Можно селективно определять ванадий и железо при совместном их присутствии в растворе сперва титруют ванадий солью Мора, затем — общее содержание железа аскорбиновой кислотой. Из общего содержания железа вычитают то количество железа, которое было израсходовано (в виде соли Мора) на титрование ванадия [c.181]

    Эту реакцию можно использовать также для перманганатометрического определения солей марганца (И). Однако при анализе других веществ эта реакция иногда не позволяет точно наблюдать точку конца титрования. Перманганатометрия чаще всего применяется для определения солей железа (II), железа (HI) (после предварительного восстановления их), марганца (П), кальция (в виде оксалата кальция), меди (I), олова (П), титана, ванадия, молибдена, хрома (HI) (косвенно). Перманганатометрия применяется также для определения анионов-восстановителей нитрит, оксалат, роданид, гексацианоферроат-ионов, а также перекиси водорода и персульфатов (косвенно). Из органических веществ чаще всего [c.516]

    В качестве маркировочного и экспрессного метода определения ванадия при содержании его до 0,15% стандарт приводит 1 колориметрический способ, сводяш ийся к действию перекиси водорода на обесцвеченный фосфорной кислотой раствор стали. Если исследуемая сталь содержит больше 0,5% хрома или никке.тя, то к раствору углеродистой стали, служащей для приготовления эталонного раствора, нужно до введения в него ванадия прибавить соответствующее количество солей хрома и никкеля. [c.171]

    Для количественного определения азокрасителей, так же как нитрозосоединений (см. стр. 297), широко применяют в качестве восстановителя хлорид олова (II). Однако восстановление двухвалентным оловом происходит только при длительном нагревании и сопровождается побочными реакциями (см. стр. 271) поэтому часто результаты получаются неточными. В связи с этим для количественного определения органических красителей двухвалентное олово рекомендовать нельзя. В последнее время для этой цели, так же как и для количественного анализа нитросоединений, предложен ряд других восстановителей (например, соли двухвалентных ванадия и хрома). [c.322]

    Длительное время в практике анилинокрасочных заводов для анализа азокрасителей применялся хлорид олова (II). Сейчас от его применения почти совсем отказались и пользуются преимущественно сульфатом ванадия (II) (см. стр. 278). Кроме того, для анализа азокрасителей начали применять соли двухвалентного хрома. Анализы при помощи солей двухвалентного ванадия и двухвалентного хрома проводятся без нагревания и в течение очень короткого времени результаты, получаемые при этих анализах, достаточно точны. Многие азокрасители представляют собой комплексные соединения органического красителя с хромом или медью. Количественное определение этих красителей также осуществляется одним из методов восстановления. [c.324]

    Р1алболее часто в качестве восстановителей используются хлорид титана (III), соли ванадия (II), соли хрома (II), хлорид олова (II), цинковая пыль. Восстановление обычно проводят в сильно-кисло11 среде. Выше описан (см. 153) метод определения нитро-соедпнений восстановлением цинковой пылью с последующим диазотированием. Однако весьма /добным и часто используемым методом является также ванадометрический метод определения нитросоединений. [c.269]

    Амальгамными ядами называют содержащиеся в соли и рассолах микропримеси хрома, ванадия, молибдена и некоторых других металлов, являющиеся катализаторами разложения амальгамы водой с выделением водорода, который попадает в хлоргаз в процессе электролиза по методу с ртутным катодом. Из-за крайне незначительной концентрации этих примесей (доли миллиграмма на 1000 г Na l) определение их обычными аналитическими методами весьма затруднительно. Однако с развитием хроматографии, методов выделения микроколичеств элементов путем соосаждения и экстрагирования, спектрографии, полярографии и других методов анализа улучшилась возможность определения этих примесей. Для анализа солей разработан метод определения некоторых тяжелых металлов после предварительного их выделения в форме дитизонатовЧ На хлорных заводах широко применяется простой газоволюметрический способ . Этот способ основан на измерении количества водорода, выделяющегося при контакте пробы анализируемого рассола или раствора испытуемой соли с амальгамой натрия  [c.194]

    Эта реакция имеет практическое значение, так как при соблюдении определенных условий антрахинпн, полупродукт производства ализарина, может быть получен с высоким выходом. Например, при электролизе суспензии антрацена на платиновом аноде или на аноде из двуокиси свинца окисление протекает с выходом 50%, который возрастает до 80—90% при введении небольших добавок солей церия, хрома, ванадия или марганца [175—183]. Окисление ведут при плотности тока 0,10—0,16 а см и температуре 90—100° С. [c.344]

    В рассмотренном определении был применен, Очевидно, метод замещения, поскольку неспособный титроваться перманганатом РеС1з был замещен эквивалентным количеством РеС , который и титровали. По методу замещения, т. е. после предварительного восстановления, можно определять также и некоторые другие вещества, например соли молибденовой кислоты Н2М0О4 и ванадие- вой кислоты НУОз, Кз[Ре(СМ)б1 и даже соли хрома (III), способные восстанавливаться цинком в соли хрома (II), которые и титруют КМПО4. [c.380]

    Избирательность метода весьма высока. Определению железа не мешают соли щелочных и щелочноземельных элементов, алюминия, свинца, никеля, марганца, хрома, ванадия и других металлов, что позволило предложить кспрессный метод определения 10 —10 5% железа в веществах особой чистоты (табл. 5.2). [c.156]

    Диоксинафталин-3,6-дисульфонат натрия (динатриевая соль хромо-троповой кислоты) реагирует с хромом(У1) в кислой среде, образуя растворимое соединение, окрашенное в красный цвет Этот реактив был использо Зан для определения хрома в стали и в золе растений Реакция достаточно чувствительна. В кислом растворе железо(1П) образует с реактивом зеленую окраску (не появляющуюся в присутствии достаточного количества фосфорной кислоты), ванадий(У) — бурую, титан — красную или красно-бурую окраску. [c.353]

    Лабораторная методика типового химико-спектрального определения микроцримесей алюминия, ванадия, висмута, железа, кобальта, марганца, меди, молибдена, никеля, олова, свинца, титана, снрефа, хрома, сурьмы индия, галлия, цинка в углекислых,азотнокислых, хлористых солях щелочных и щелочно-земельных металл лов, йодистых солях щелочных металлов в металлическом магнии и окиси магния, в интервала кон-цен чраций 1.10-5 - 1.10-7 . [c.56]

    I) Лабораторная методика типового химико-спектрального определения микроцримесей алшиния, ванадия, висмута, железа, кобальта, марганца, меди, молибдена, никеля, олова, свинца, титана, серебра, хрома, сурьмы,ин-дия, галлия, цинка в углекислых, азотнокислых, хлористых солях [c.56]

    Определению молибдена в сталях три помощи а-бензоиноксима ие мешает 0,4% мышьяка [760]. 1 г (МЫшьяксодержащей стали растворяют в серной кислоте, затем прибавляют азотную кислоту для окисления, нагревают с добавлением серной кислоты до Появления густых белых паров. После растворения солей в воде восстанавливают пятивалентный ванадий и шестивалентный хром добавлением раствора соли Мора, смесь охлаждают до температуры ниже -1-10° С, прибавляют раствор а-бензоиноксима, бромную воду и фкльтро-бумажную массу. Осадок отфильтровывают, прокаливают я взвешивают МоОз. Последний растворяют в водно1М аммиаке, раствор фильтруют, осадок озоляют, вычитают вес остатка из веса осадка. При определении 0,73% Мо в сталях, содержащих 0,4% Ав, получены удовлетворительные результаты. [c.124]

    Особую трудность представляет определение хрома в металлах подгрупп титана и ванадия из-за близости летучести их хлоридов [419]. С целью увеличения разницы в летучестях микропримесей и матрицы исследуемые металлы предварительно прокаливают на воздухе для перевода их в труднолетучие окислы. 1Три анализе карбонатов и сульфатов марганца соли прокаливают до МП3О4 [61]. Благодаря близости летучестей окислов марганца и хрома и их смесей с угольным порошком [491] селективное фракционирование этих элементов в процессе испарения отсутствует. Предел обнаружения хрома равен 8-10 %. Однако и в этом случае для хрома не достигается полное отделение от основы. Так, выход хрома в плазму при анализе УаОз и УаОд достигает только 50% [419]. [c.81]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    В первом методе определение ванадия или хрома завершается титрованием раствора стандартным раствором соли Мора с дифенил-аминосульфонатом " .  [c.106]

    Титрование солью Мора при потенциале +1,0 s было предложено И. П. Алимариным и Т. К. Кузнецовым и вслед за ними Г. А. Бутенко и Г. Е. Беклешовой для определения ванадия, хрома и марганца в легированных сталях. Одновременно аналогичный метод предложен за рубежом для определения ванадия и хрома также в сталях и нефтяных продуктах. Метод апробирован лабораторией Днепропетровского металлургического завода Затем вышла работа И. П. Алимарина и Б. И. Фрид по приложению этого же метода к микроопределению ванадия и хрома (а также железа) в минералах, рудах и горных породах. На этом же принципе основан предложенный Е. Г. Кондрахиной и др. амперометрический вариант определения железа (II) по А. В. Шейну [c.180]

    Ход анализа. Навеску 2 г металла растворяют при нагревании в смеси. 25 мл серной (1 5) а 5 мл фосфорной кислот, после растворения навески окйсляют железо азотной кислотой, упаривают до дыма, охлаждают, прибавляют 50 мл воды, 5 мл 1%-ного раствора нитрата серебра, нагревают до кипения и окисляют хром и могущий присутствовать в пробе марганец 10 мл 10%-ного раствора персульфата аммония. Избыток персульфата удаляют кипячением, а марганцевую кислоту восстанавливают хлоридом натрия (5 мл 5%-ного раствора). После охлаждения титруют раствором соли Мора, концентрация которого определяется количеством хрома в титруемом растворе. Можно титровать либо весь раствор, либо, переведя его в мерную колбу, титровать только аликвотную часть (в зависимости от содержания хрома и от взятой навески). Из этого же раствора можно определять и ванадий, как указано в соответствующем разделе. Описанным методом определяют от 0,03 до 0,15% хрома в различных чугунах, сталях и в стандартном образце стали № 20-Г. Метод считается наилучшим (по сравнению с колориметрическим или обычным объемным) методом определения хрома. [c.339]

    Определение никеля фотоколориметрическим методом. Метод основан на реакции образования растворимого окрашенного в красный цвет комплексного соединения никеля с диметилглиоксимом в щелочной среде в присутствии окислителя. Состав образуемого комплекса пока полностью не установлен. Определению мешает большой избыток окислителя, так как он может вызвать обесцвечивание раствора. Определению мешают также железо, хром и марганец, поэтому при определении их связывают в растворимые бесцветные комплексные соединения сегнетовой солью (виннокислый калий-натрий). В этих условиях определению не мешают кобальт до 1,5%, молибден до 3%, хром до 18%, вольфрам до 18 %, медь до 2%, ванадий до 1 %. Измерение интенсивности окраски можно проводить визуальным методом, методом шкалы эталонных растворов, на фотоколориметре и спектрофотометре. [c.308]


Смотреть страницы где упоминается термин Определение с солями хрома и ванадия: [c.61]    [c.61]    [c.38]    [c.519]    [c.180]    [c.339]    [c.63]    [c.288]   
Смотреть главы в:

Аналитическая химия органических пероксидных соединений -> Определение с солями хрома и ванадия




ПОИСК





Смотрите так же термины и статьи:

Ванадий определение



© 2025 chem21.info Реклама на сайте