Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние механизма полимеризации

    Влияние механизма полимеризации [c.92]

    В 30-е годы была установлена возможность синтеза бутадиенового каучука в процессе эмульсионной полимеризации под влиянием диазоаминобензола ДАВ [1]. Долгоплоск детально изучил кинетику и механизм полимеризации в присутствии ДАБ и его производных и показал, что введение в молекулу ДАБ в орто- и пара-положения алкильных групп, смещающих заряд в сторону азогруппы, облегчает распад триазена на свободные радикалы, а введение в эти положения электроотрицательных групп повышает его устойчивость [2]. [c.134]


    На самом деле в процессе титрования степень набухания выделившихся частиц может изменяться, так как она зависит от состава смеси растворитель — осадитель. Кроме того, возможны агрегация и коагуляция частиц. Поэтому мутность обычно зависит от условий проведения эксперимента от скорости добавления осадителя, объема добавляемых порций, скорости перемешивания раствора и др. Ни при какой практически приемлемой скорости титрования процесс не удается провести равновесно. Тем не менее воспроизводимые результаты можно получить, если добавлять осадитель медленно, непрерывно, строго одинаковым способом, поддерживая и все остальные условия постоянными. В таком варианте метод Турбидиметрического титрования широко используется для качественной Характеристики ММР. Ценной особенностью метода является его быстрота и возможность работы с очень малыми количествами полимера. Метод оказывается полезным, в частности, при подборе систем растворитель — осадитель для препаративного фракционирования, при оценке изменений, происшедших в полимере под влиянием внешних воздействий (тепла, света, механических напряжений и др.), для качественной оценки ММР, иногда достаточной при изучении механизма полимеризации и т. д. [c.96]

    Рассматриваются технологические схемы производства, механизм полимеризации, свойства исходного сырья, а также влияние отдельных параметров технологического процесса производства на свойства полипропилена. [c.4]

    В первые годы на исследователей механизма полимеризации па этих катализаторах оказала влияние работа Циглера [146] о получении длинноцепных алюми-нийорганических соединений из этилена и триалкил-алюминня  [c.143]

    Получаемые методом ИК-спектроскопии данные по содержанию в ПЭВД связей -С=С- и КЦР дают важную информацию, представляющую значительный интерес при изучении механизма полимеризации этилена и влияния на него параметров процесса. [c.123]

    Подробно описывая систему —Н2О, автор подчеркивает, что растворение кремнезема в воде — процесс химический, и дает термодинамическую оценку этой системы. Он рассматривает осаждение кремнезема из раствора и определяет влияние различных физикохимических факторов на указанные процессы. Большое внимание уделяется механизму полимеризации простейших растворимых форм кремнезема с последующим образованием золей и гелей. [c.6]

    Механизм радиационной полимеризации ТФЭ еще более сложный, чем механизм полимеризации при химическом инициировании, так как на скорость процесса оказывают влияние продукты радиолиза [1]. При мощности дозы излучения 0,06 Вт/кг (6 рад/с) в газовой фазе скорость возрастает в интервале температур 40—70°С, а энергия активации составляет [c.37]


    Для понимания механизма образования стереохимических конфигураций большой интерес представляет исследование влияния температуры полимеризации на микроструктуру образующегося полимера. В табл. 12 приведены результаты таких исследований. [c.92]

    Поверхностноактивный агент при полимеризации в суспензии не оказывает большого влияния механизм реакции с кинетической точки зрения полимеризация в суспензии является просто удобным методом проведения большого числа микрореакций в массе в условиях, при которых можно легко отводить тепло реакции. Каждая частица мономера с растворенным в ней инициатором ведет себя как очень маленькая реакционная система, подчиняющаяся обычным кинетическим закономерностям. [c.164]

    Достаточно обоснованные представления о механизме полимеризации под влиянием окисных катализаторов пока отсутствуют. Весьма вероятно, что ионы тяжелых металлов, обладающие [c.436]

    Переходя к данным по радиационной ионной полимеризации, необходимо прежде всего перечислить доказательства протекания тех или иных процессов по механизму, отличному от радикального. Наиболее общими доказательствами такого рода являются 1) характерные значения констант сополимеризации 2) отсутствие влияния ингибиторов радикальной полимеризации 3) особенности кинетики — первый порядок по интенсивности облучения, иной температурный ход скорости полимеризации (низкие или отрицательные значения энергии активации). Подобные доказательства требуются даже в таких случаях, как полимеризация изобутилена. Неспособность этого мономера к полимеризации по радикальному механизму в обычных условиях, строго говоря, не позволяет утверждать, что низкотемпературная полимеризация изобутилепа представляет собой ионный процесс. Можно было думать, что повышение термодинамической устойчивости полиизобутилена при низкой температуре будет способствовать развитию радикальной полимеризации в этих условиях. Поэтому для обоснованного вывода о катионном механизме полимеризации изобутилена иод влиянием у лучей при низкой температуре 1Д следует знать поведение этого мономера в той же температурной области по отношению к свободным радикалам. Такие данные были получены при фотохимическом инициировании процесса в присутствии соединений, распадающихся под влиянием ультрафиолетовых лучей на свободные радикалы (диацетила, бензоина и др.). Как оказалось, фотолиз этих соединений при —78° в среде изобутилепа не приводит к процессу полимеризации [8]. На ионный механизм полимеризации изобутилена при радиационном инициировании указывает также отсутствие чувствительности этого процесса к типичному ингибитору радикальной нолимеризации дифенилпикрилгидразилу. В соответствии с ионным механизмом находится пропорциональность скорости полимеризации изобутилена иод влиянием у-лучей при низкой температуре интенсивности облучения [7].  [c.448]

    В 1942 г. данные Львова подтверждены А. и Л. Фаркасами [15] при изучении механизма полимеризации изобутилена под влиянием дейтерированной фосфорной кислоты. [c.92]

    Хотя полностью механизм полимеризации олефинов с металлоорганическими катализаторами егце недостаточно разработан, однако основные закономерности, установленные для цепной полимеризации, здесь сохраняются. К ним относятся влияние температуры, примесей, регуляторов молекулярного веса и др. [c.78]

Таблица 3. Влияние механизма полимеризации пол функ1щональных мономеров на строение макромолекул Таблица 3. <a href="/info/978253">Влияние механизма полимеризации</a> пол функ1щональных мономеров на строение макромолекул
Рис. VIII.1. Влияние механизма полимеризации на состав сополимера Рис. VIII.1. <a href="/info/978253">Влияние механизма полимеризации</a> на состав сополимера
    С другой стороны характер полидисперсности, наряду со средним значением М, оказывает принципиальное влияние на свойства полимеров. Поэтому определение параметров молекулярномассового распределения (ММР) является одной из первостепен-ных задач структурной характеристики полимеров, необходимой как при изучении механизма полимеризации, так и при установлении связи структуры со свойствами. [c.21]

    Получение латексов в присутствии неионных ПАВ. Механизм полимеризации в присутствии одних только неионных поверхностно-активных веществ (ИПАВ) до сих пор является предметом дискуссии [64—66]. По-видимому, на кинетику процесса полимеризации, размер образующихся частиц и молекулярную массу полимера существенное влияние оказывают природа мономера, концентрация и химический состав эмульгатора, а в случае использования смеси ионных и непонных эмульгаторов, их соотнощение. [c.600]


    Однако, если, зная механизм полимеризации, нетрудно предугадать структуру вышеуказанных первичных форм тримеров, то лишь экспериментальное исследование могло установить действительное равновесное соотношение между этими формами и продуктами их изомерных превращений, имеющее место в тех или иных конкретных условиях полимеризации. На это соотношение должны былиоказывать влияние температура, давление, катализаторы и кинетические условия проведения процесса. [c.109]

    Наконец, имеется большое число соединений, оказывающих ингибирующее влияние на полимеризацию. Такими соединениями являются молекулярный кислород, окись азота, фенолы — гидрохинон, грвг-бутилкатехин, некоторые ароматические амины, например Ы-фенил-р-нафтиламин, нитросоединения и ряд серосодержащих соединений. Механизм действия большинства ингибиторов точно не установлен. Ингибитор может реагировать либо с инициирующим радикалом, либо с растущей цепью с образованием продуктов, не способных к дальнейшему присоединению молекул мономера. Стабильные свободные радикалы, как, например, дифенилпикрил-гидразил  [c.117]

    Факторьц влняюп ,не на экстракцию металлов. При изучении факторов, от которых зависит экстракция металлов аминами, значительное внимание было уделено влиянию разбавителя и структуры амина. Было сделано несколько попыток объяснить влияние разбавителя на экстракционную способность различных аминов [441, 471, 483, 543, 593—595]. Трудность таких исследований объясняется высокой агрегацией солей аминов. В определенных условиях соль амина может быть мономерной, при увеличении концентрации та же соль полимеризуется. Механизм полимеризации известен только для нескольких систем. [c.65]

    В послевоенные годы в нашей стране получили быстрое развитие исследования по синтезу высокополимерных соединений и изучению механизма полимеризации. Одним из видных ученых в этой области был Сергей Сергеевич Медведев (1891—1970). Его научная деятельность протекала в Физико-химическом институте им. Л. Я. Карпова. Он выдвинул теорию полимеризации на основе кинетики цепных процессов с участием свободных радикалов. С. С.Медведев изучал также механизм эмульсионной полимеризации и влияния радиации на ход полимеризации. Валентин Алексеевич Каргин (1907— 1969) также работал в Физикохимическом институте им. Л. Я- Карпова, а в послевоенные годы возглавил кафедру высокополимерных соединений Московского университета. Первые его работы посвящены коллоидной химии, но в послевоенные годы он целиком перешел к исследованиям по химии высокополимерных материалов. Большое значение для развития этой области получили работы В. А. Каргина по изучению структурно-механических свойств высокополимеров. Его труды привели к решению ряда технологических проблем производства пластических масс, каучуков и искусственных волокон. Он основал советскую школу физикохимиков-полимерщиков. [c.302]

    Медведевым с сотр. [119, 125, 126] исследовано влияние длины гидрофильной части и соответственно ГЛБ неионогенных ПАВ, представляющих собой продукты конденсации цетилового спирта и окиси этилена, на скорость полимеризации, молекулярную массу полимера и средний размер латексных частиц. Как представляют авторы, эмульсионный механизм лолимеризации реализуется, только начиная с определенной степени оксиэтилирования ПАВ (20 групп окиси этилена). Ниже этого предела реализуется капельный механизм полимеризации. Скорость полимеризации возрастает с увеличением ГЛБ лри постоянной мольной концентрации ПАВ. Отмечается лрямая зависимость кинетики полимеризации от коллоидно-химических характеристик применяемых ПАВ. [c.33]

    Несмотря на то, что процесс полимеризации бутадиена на каталитической системе (С2Н5)2А1С1 — соединение кобальта хорошо изучен, относительно механизма полимеризации все еще существуют разные точки зрения. В работе [3] предполагают, что реакция протекает по карбкатионному механизму, в работе [4] — по карбанион-ному авторы работы [101 предполагают сосуществование двух конкурирующих механизмов — карбкатионного и карбанионного. Однако общепринятым положением является то, что соединение кобальта образует комплекс с бутадиеном, в котором мономер существует в г ис-форме. Этот комплекс находится на конце растущей цепи. Поэтому предполагают, что соединение кобальта оказывает влияние не на процесс прививки, а на полимеризацию бутадиена с образованием г ис-1,4-полибутадиена. [c.241]

    ОПТИЧЕСКИ АКТИВНЫЕ ПОЛИМЕРЫ, вращают плоскость поляризации света, проходящего через нх р-ры, расплавы и прозрачные стекла. Оптич. активность полимера м. 6. обусловлена хиральностью элементарных звеньев или спиральной конформацией цепи. Вклад спиральных структур в суммарную оптич. активность может достигать значит, величин (напр., у белков и полиаминокислот), однако он сильно меняется с изменением конформации цепи. О. а. п. отличаются от аналогичных неактивных полимеров гидродинамич. св-вами р ров (напр., зависимостью вязкости от мол. массы) и т-рой стеклования. Получ. полимеризация или поликонденсация оптически активных мономеров хим. модификация полимера оптически активным в-вом сте-реоселектиБная полимеризация рацемич. мономеров асимметрич. стереоспецифич. полимеризация или сополимеризация олефинов либо замешенных диенов полимераналогичные превращения О. а. п. Синтезируют О. а. п. с целью изучения влияния стереорегулярности цепи на ее конформацию по сохранению асимметрич. центров в элементарном звене судят о механизме полимеризации. Сшитые О. а. п., напр. ионооб]менные смолы, использ. для хроматографич. разделения энантиомеров. О. а. п. можно использовать для получ. поляроидов. [c.412]

    Исследование зародышеобразования и его подавления захватом олигомеров, впервые описанное Фитчем и Тзаи, было рассмотрено нами для получения соотношений, соответствующих различным механизмам полимеризации и допускающих модификацию теории с учетом влияния стабилизатора. Предложены аргументы, свидетельствующие в пользу рассмотрения захвата олигомеров не как диффузионного процесса, а как равновесия. По мере роста олигомеров последнее сдвигается в сторону образования частиц это позволило нам предложить альтернативные уравнения. Однако оба подхода чрезмерно упрощены в реальном процессе, вероятно, происходит постепенный переход от равновесия к диффузии по мере роста каждого олигомера. При очень низких степенях полимеризации уравнения, основанные на диффузии с необратимым захватом, значительно переоценивают вероятность захвата, в то время как при высоких степенях полимеризации скорость роста и уменьшение растворимости олигомеров, вытекающие из равновесной модели, соответствуют большей скорости захвата, чем это допускает диффузия. Полного теоретического исследования этой сложной модели мы не предлагаем. Вполне вероятно, что та или другая из упрощенных моделей, основанных на диффузии или равновесии, может дать вполне хорошее приближение к практическим системам, в зависимости от условий, характеристик растворимости полимера и, в частности, от значения Р пороговой степени полимеризации для зародышеобразования. Возможно, что равновесие играет более важную роль в углеводородных разбавителях, чем в водных дисперсионных системах, изученных Фитчем с сотр. Такие вопросы могут быть разрешены только посредством экспериментальных исследований, при тщательном соблюдении условий, обеспечивающих постоянство растворяющей способности среды полученные к настоящему времени ограниченные данные не позволяют сделать определенных выводов, в частности, вследствие формального сходства уравнения поверхностного равновесия и. уравнения Фитча и Тзаи, зависящих одинаковым образом от общей площади поверхности частиц. [c.195]

    Другая важная схема механизма полимеризации, которая не предполагает никакого влияния стереохимии конца цепи на способ присоединения следующего мономерного звена, была предло- [c.173]

    Влияние различных оснований Льюиса на микроструктуру диеновых полимеров, образующихся в присутствии металлалкилов и щелочных металлов, изучалось рядом ученых [101—105]. В последнее время этот вопрос получил детальное освещение в исследованиях Медведева с сотрудниками [106] на примере по-либутадиеиа. Данные Медведева хорошо подтверждают представление об изменении механизма полимеризации для литийорганических соединений при переходе от углеводородных сред к полярным. Так, природа щелочного металла существенно влияет на микроструктуру полимера только в углеводородной среде. В тетрагидрофуране различия в микроструктуре полимеров, полученных в присутствии производных лития, калия и натрия, сглаживаются в этих случаях основной структурной единицей независимо от противоиона оказывается звено 1,2 (табл. 39). [c.359]

    Для понимания механизма полимеризации под действием катализаторов данного типа полезно обратиться к исследованиям Натта и сотрудников, касающимся циклобутена [60, 61]. Обычные радикальные, катионные и анионные возбудители не вызывают полимеризации этого мономера. Он может быть заполимеризо-ван с помощью катализаторов Циглера—Натта и, как недавно было показано, под влиянием хлорида родия в водной среде. На этом основании Натта принимает для полимеризации в системе циклобутен—Rh lg—НаО анионно-координационный механизм. Эти представления не могут быть, однако, перенесены на мономеры винильного ряда, для которых возможна полимеризация на основе тех же катализаторов в водных эмульсиях [62]. Полимеризация стирола и метилметакрилата в системах с участием содей родия, палладия и других переходных металлов приводит к атактическим полимерам, а сополимеры стирола с метилмета- [c.433]

    Б предшествующих главах мы подробно рассмотрели механизм реакций полимеризации, протекающих под влиянием различных инициаторов. Те же процессы могут быть вызваны и без введения посторонних веществ, если для инициирования используются излучения с высокой энергией у лучи, рентгеновские лучи, быстрые электроны. Облучение мономера соответствующими источниками энергии вызывает появление активных частиц — ионов и свободных радикалов, которые возбуждают процесс нолимеризации. В этом смысле радиационное инициирование является универсальным методом в зависимости от условий эксперимента (температура, среда) и природы мономера полимеризация может протекать избирательно по радикальному, катионному или анионному механизму. Возможно также параллельное течение радикальных и ионных реакций. В настоящей главе мы остановимся на факторах, определяющих механизм полимеризации при радиационном ишщиирований, и сосредоточимся главным образом на полимеризации в твердом теле. Эти процессы, представляющие большой интерес, реализуются главным образом при применении радиационного инициирования. [c.443]

    В ряде работ исследована кинетика и механизм полимеризации стирола с использованием кривых ММР, построенных методом ГПХ. В частности, была изучена инициированная у-из-лучением полимеризация стирола и выяснено влияние температуры и присутствия в реакционной смеси воды и метанола на ВИД/ кривой распределения [3—6]. На рис. 49.2 схематически показано изменение профилей хроматограмм радиационно-по-лимеризованного стирола при изменении условий синтеза. [c.282]

    Применение метода, его достоинства и недостатки. П. в р. широко используют в лабораторной практике для изучения кинетич. закономерностей и механизма полимеризации. При этом процесс ведут в разб. р-рах мономеров до небольших глубин превращения, чтобы пзбен<ать усложняющего влияния высоких концентраций нолимера на кинетику процесса (см. также Гелъ-эффект, Полимеризация в массе). Влияние природы растворителя на механизм процесса зависит от природы возбудителя полимеризации и мономера. Обычно выбирают растворители, химически нейтральные по отношению к мономеру, однако их физико-химич. свойства могут в значительной степени влиять на кине- [c.453]

    Дальнейших исследований требует механизм полимеризации комплексно связашгах мономеров. Не вызывает сомнений существование ориентационного влияния, реализуемого вследствие образования комплексов. Однако нерешенными остаются вопросы об истинной структуре п геометрии таких комплексов, [c.263]

    Дж. Ф. Макмагон, Ч. Беднарс, Э. Соломон. Полимеризация олефинов как процесс нефтепереработки. Роль полимербензина как высокооктанового компонента автомобильных топлив и методы его производства. Механизм полимеризации и общее описание процесса. Свойства фосфорной кислоты — важнейшего катализатора промышленных процессов. Влияние параметров процесса. Срок службы катализатора, регулирование и контроль процесса. Экономика полимеризации. Применение процессов полимеризации для получения нефтехимических полупродуктов (тример и тетрамер пропилена). [c.391]

    НИИ процессов, идущих в твердом состоянии. Например, в кристаллическую решетку мономера не могут быть включены молекулы сополимеризующихся мономеров, растворителей и ингибиторов, поэтому нельзя изучить влияние молекул этих веществ н а скорость полимеризации и молекулярный вес для оценки радикального или ионного механизма цепной реакции. Некоторые исследователи отмечали, что обычные ингибиторы полимеризации не препятствуют полимеризации замороженных мономеров [9, 27, 100, 105], но такого рода наблюдения вряд ли о чем-либо говорят, если ингибитор образует отдельную фазу. Характерно, что обычные ингибиторы радикалов действуют лишь тогда, когда мономер, по-видимому, присутствует в аморфном состоянии [16]. Кислород заметным образом не влияет на полимеризацию большинства мономеров в кристаллах (за исключением, по-видимому, винил-стеарата), но это не исключает и механизма радикальной полимеризации, так как кристаллическая решетка препятствует диффузии кислорода [5, 37]. В некоторых случаях было показано, что скорость полимеризации резко падает при температуре плавления мономера [16, 9, 27а] этот факт интерпретировали иногда как свидетельство изменения механизма реакции (имея в виду ионный процесс в твердом состоянии). Однако этот факт можно объяснить также резким уменьшением длины кинетической цепи в жидком состоянии по аналогии с цепной реакцией разложения необлученного хлористого холина в кристаллическом состоянии и в растворе соответственно [74] (см. предыдущий раздел). В случае акриламида спектр электронного парамагнитного резонанса показывает, что полимеризующийся кристалл имеет постоянную концентрацию радикалов [1, 1а, 8, 37, 86] и что количество радикалов приблизительно равно числу полимерных цепей [37, 86]. Это означает, что взаимодействия радикала с радикалом в твердом состоянии маловероятны, но это не решает вопроса о механизме полимеризации, так как при инициировании, по-видимому, образуется ион-радикал, который затем может присоединить мономер либо по радикальному, либо по ионному механизму [37]. При инициировании методом молекулярных пучков возникают, вероятно, частицы вида [c.255]


Смотреть страницы где упоминается термин Влияние механизма полимеризации: [c.114]    [c.317]    [c.319]    [c.148]    [c.187]    [c.355]    [c.381]    [c.440]    [c.447]    [c.186]    [c.43]    [c.204]    [c.75]   
Смотреть главы в:

Кинетический метод в синтезе полимеров -> Влияние механизма полимеризации




ПОИСК





Смотрите так же термины и статьи:

Влияние природы мономера и типа каталитической системы на механизм полимеризации полярных винильных мономеров

Влияние специфики структурообразования на механизм процесса полимеризации олигоэфиров

Влияние функциональных групп мономеров на механизм полимеризации в системах с соединениями переходных металлов

Исследование механизма роста цепи при полимеризации винильных мономеров Влияние температуры полимеризации на конфигурацию

Механизмы полимеризации влияние добавок

Полимеризация влияние

Растворитель влияние на механизм полимеризации

Уоллинг (США). Влияние высоких давлений на элементарные реакции полимеризации по свободно-радикальному механизму



© 2025 chem21.info Реклама на сайте