Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворитель влияние на механизм полимеризации

    На самом деле в процессе титрования степень набухания выделившихся частиц может изменяться, так как она зависит от состава смеси растворитель — осадитель. Кроме того, возможны агрегация и коагуляция частиц. Поэтому мутность обычно зависит от условий проведения эксперимента от скорости добавления осадителя, объема добавляемых порций, скорости перемешивания раствора и др. Ни при какой практически приемлемой скорости титрования процесс не удается провести равновесно. Тем не менее воспроизводимые результаты можно получить, если добавлять осадитель медленно, непрерывно, строго одинаковым способом, поддерживая и все остальные условия постоянными. В таком варианте метод Турбидиметрического титрования широко используется для качественной Характеристики ММР. Ценной особенностью метода является его быстрота и возможность работы с очень малыми количествами полимера. Метод оказывается полезным, в частности, при подборе систем растворитель — осадитель для препаративного фракционирования, при оценке изменений, происшедших в полимере под влиянием внешних воздействий (тепла, света, механических напряжений и др.), для качественной оценки ММР, иногда достаточной при изучении механизма полимеризации и т. д. [c.96]


    В общем случае, если не учитывать специфического влияния растворителя, радиационно-химическую полимеризацию стирола, по-видимому, можно рассматривать при помощи механизма, который был предложен на основании данных, полученных при изучении свободно-радикальной полимеризации, инициированной обычными средствами. Из данных о совместной полимеризации независима были получены доказательства свободно-радикальной природы радиационно-химической полимеризации [31, 32]. Строение радикальных осколков, инициирующих полимерные цепи, конечно, зависит от природы растворителя строение таких осколков, образующихся при радиационно-химической полимеризации чистого стирола, неизвестно. [c.83]

    Кербер [95] исследовал влияние кислорода на полимеризацию акрилонитрила с инициатором (азо-бис-изобутиронитрилом АБН) в различных растворителях при 40 и 50°. Предложен ряд реакций, характеризующих механизм полимеризации акрилонитрила в присутствии кислорода  [c.141]

    Подробно исследовались механизм и кинетика полимеризации стирола в различных растворителях, влияние природы растворителей, концентрации инициаторов и других факторов на процесс полимеризации [423, 1590—1615]. [c.273]

    Двадцать пять лет тому назад соединение, образующееся при полимеризации акрилонитрила, рассматривали как любопытный лабораторный продукт, непригодный для переработки, — нерастворимый в обычных органических растворителях, не плавящийся и не поддающийся формованию. Важным моментом явилось открытие того факта, что полиакрилонитрил может растворяться в сильно полярных растворителях. В результате для определения природы химических сил, обусловливающих инертность полиакрилонитрила, стало возможным исследовать как растворы, так и частицы различной формы, полученные из растворов полиакрилонитрила. Однако до СИХ пор полностью не выяснили природу этих сил. Различные лаборатории не смогли согласовать своей точки зрения относительно свойств разбавленных растворов. Кроме того, диапазон изменений в молекулярной структуре полимера ограничен, и это затрудняет установление связи между структурой и химическими свойствами. Несмотря на большое число исследований, посвященных полимеризации акрилонитрила, и общее качественное объяснение феноменологических особенностей процесса, различные лаборатории продолжают детальные количественные исследования. Результаты количественных исследований очень важны, поскольку свойства полимера зависят от условий полимеризации. Цель данной главы состоит в том, чтобы дать обзор современных представлений о строении твердого полиакрилонитрила, механизме полимеризации акрилонитрила, сополимеризации его с другими мономерами и влиянии сомономера на свойства полимеров, полученных на основе акрилонитрила. [c.351]


    Полимеризация по ионному механизму протекает при очень низких температурах (от О до —120°). Характер растворителя оказывает существенное влияние на скорость реакции и степень полимеризации получаемого полимера при увеличении диэлектрической постоянной растворителя возрастает скорость полимеризации и [c.56]

    При полимеризации в растворе исходный мономер и образующийся полимер находятся в жидкой фазе в виде раствора в органическом растворителе. Этот способ используют для проведения радикальной, ионной и ионно-координационной полимеризации. Выбор растворителя и его влияние на скорость процесса и молекулярно-массовое распределение получаемых полимеров определяется в первую очередь механизмом полимеризации. [c.64]

    При проведении полимеризации в растворе облегчается отвод тепла и улучшается массообмен вследствие интенсивного перемешивания. Получаемый полимер более однороден по молекулярной массе. В зависимости от механизма полимеризации (радикального или ионного) проведение процесса в растворе оказывает различное влияние на процесс. При радикальной полимеризации снижается молекулярная масса полимера вследствие передачи цепи на растворитель. При ионной полимеризации природа растворителя может влиять на закономерности процесса, а также на структуру и другие свойства полимера. [c.540]

    АПМ определяется различными факторами (природой переходного металла, алкильных групп, растворителя), влияние которых должно явиться объектом дальнейших исследований. Поскольку во многих, если не в большинстве, случаях распад АПМ сопровождается очень малым выходом свободных радикалов, изучение механизма их образования требует весьма чувствительных методов исследования. Своеобразным и высокочувствительным индикатором является реакция радикальной нолимеризации. В самом деле, на образование одной макромолекулы со степенью полимеризации 1000 требуется всего 1 или (при рекомбинационном обрыве) 2 свободных радикала. Отсюда следует, что чувствительность обнаружения радикалов по продукту полимеризации оказывается повышенной в 500—1000 раз по сравнению с продуктом обыкновенного химического превраш ения. [c.211]

    Изучение процессов радиационной сополимеризации позволяет решить вопрос не только о принадлежности данной реакции к ионному или радикальному типу, но и разграничить в спорных случаях катионный и анионный процессы. Выше бьша показана принципиальная возможность образования катионных и анионных активных центров, выбор между определяющей ролью которых не вызывает затруднений применительно к мономерам, отличающимся высокой селективностью в интересующем нас отношении. Так, для полимеризации триоксана и изобутилена всегда бесспорен катионный механизм, а для полимеризации акрилонитрила и нитроэтилена помимо радикального только анионный. Иначе обстоит дело со стиролом. В предшествующем изложении мы ограничивались утверждением о катионной природе процессов его полимеризации во всех случаях, которые можно было с достаточным основанием отнести к ионному типу. Вместе с тем, за исключением примера существенного влияния аммиака на скорость полимеризации стирола, аргументы в пользу именно катионного типа этих процессов приведены не были. В частности, эффекты, обусловленные присутствием воды, отнюдь не являются основанием для предпочтительного выбора одного из возможных ионных механизмов полимеризации. Можно руководствоваться чувствительностью процесса к природе реакционной среды. Как и в обычных ионных системах, радиационной анионной полимеризации благоприятствуют электронодонорные растворители (амины, диметилформамид), а катионной — галогеналкилы (хлористый метилен, дихлорэтан и др.). С этой точки зрения интерпретация данных, приведенных на рис. 1-5, оправдана. [c.238]

    В работе показано, что полимеризация фосфонитрилхлорида в отсутствие растворителя является радикальным процессом, который начинается при нагревании. По скорости и зависимости от температуры этот процесс совершенно аналогичен полимеризации в растворе, активируемой кислородом. Небольшие добавки растворителя препятствуют дальнейшей термической полимеризации. В работе обсуждается механизм реакции, происходящей в три стадии начальная стадия, рост цепи, обрыв цепи. Такав механизм полимеризации как в твердом, так и в жидком состоянии. В связи с этим необходимо существенно пересмотреть описанное ранее влияние кислорода на процесс полимеризации. [c.227]

    Параллелизм влияния растворителя и способного к комплексо-образованию катализатора с аналогичными влияниями на крипто-ионные реакции позволяет в подобных случаях сделать однозначный вывод относительно ионного механизма полимеризации. При радикальной полимеризации диэлектрическая постоянная растворителя не имеет значения. [c.555]


    При изучении влияния растворителя на скорость разложения перекиси бензоила был обнаружен взрывной характер ее взаимодействия с третичными ароматическими аминами. В среде мономера при небольших концентрациях инициирующих компонентов, взятых в стехиометрических количествах, эта реакция может быть использована для инициирования полимеризации при комнатной температуре. Для объяснения механизма ее действия Хорнером предложена следующая схема [131  [c.211]

    Можно полагать, что в дальнейшем кинетика еще глубже будет проникать в механизм процессов радикальной полимеризации. По-видимому, вслед за изучением влияния растворителей на повестку дня встанут вопросы об участии в процессах радикальной полимеризации стенок сосуда с тем, чтобы поведение инициаторов, реагентов—мономеров, ускорителей и ингибиторов, а также растворителей и стенок рассматривать не порознь, а во взаимодействии. [c.86]

    Влияние растворителя на скорость ионной полимеризации А. обусловлено изменением диэлектрич. проницаемости среды и специфич. сольватацией активного центра. Характер этих изменений, по-видимому, аналогичен закономерностям, наблюдаемым при ионной полимеризации виниловых соединений. Поскольку А. по своим свойствам значительно отличаются друг от друга (особенно это касается двух первых членов гомологич. ряда), кинетика и механизм их полимеризации даже на одинаковых каталитич. системах существенно различаются. [c.46]

    Применение метода, его достоинства и недостатки. П. в р. широко используют в лабораторной практике для изучения кинетич. закономерностей и механизма полимеризации. При этом процесс ведут в разб. р-рах мономеров до небольших глубин превращения, чтобы пзбен<ать усложняющего влияния высоких концентраций нолимера на кинетику процесса (см. также Гелъ-эффект, Полимеризация в массе). Влияние природы растворителя на механизм процесса зависит от природы возбудителя полимеризации и мономера. Обычно выбирают растворители, химически нейтральные по отношению к мономеру, однако их физико-химич. свойства могут в значительной степени влиять на кине- [c.453]

    НИИ процессов, идущих в твердом состоянии. Например, в кристаллическую решетку мономера не могут быть включены молекулы сополимеризующихся мономеров, растворителей и ингибиторов, поэтому нельзя изучить влияние молекул этих веществ н а скорость полимеризации и молекулярный вес для оценки радикального или ионного механизма цепной реакции. Некоторые исследователи отмечали, что обычные ингибиторы полимеризации не препятствуют полимеризации замороженных мономеров [9, 27, 100, 105], но такого рода наблюдения вряд ли о чем-либо говорят, если ингибитор образует отдельную фазу. Характерно, что обычные ингибиторы радикалов действуют лишь тогда, когда мономер, по-видимому, присутствует в аморфном состоянии [16]. Кислород заметным образом не влияет на полимеризацию большинства мономеров в кристаллах (за исключением, по-видимому, винил-стеарата), но это не исключает и механизма радикальной полимеризации, так как кристаллическая решетка препятствует диффузии кислорода [5, 37]. В некоторых случаях было показано, что скорость полимеризации резко падает при температуре плавления мономера [16, 9, 27а] этот факт интерпретировали иногда как свидетельство изменения механизма реакции (имея в виду ионный процесс в твердом состоянии). Однако этот факт можно объяснить также резким уменьшением длины кинетической цепи в жидком состоянии по аналогии с цепной реакцией разложения необлученного хлористого холина в кристаллическом состоянии и в растворе соответственно [74] (см. предыдущий раздел). В случае акриламида спектр электронного парамагнитного резонанса показывает, что полимеризующийся кристалл имеет постоянную концентрацию радикалов [1, 1а, 8, 37, 86] и что количество радикалов приблизительно равно числу полимерных цепей [37, 86]. Это означает, что взаимодействия радикала с радикалом в твердом состоянии маловероятны, но это не решает вопроса о механизме полимеризации, так как при инициировании, по-видимому, образуется ион-радикал, который затем может присоединить мономер либо по радикальному, либо по ионному механизму [37]. При инициировании методом молекулярных пучков возникают, вероятно, частицы вида [c.255]

    Было исследовано влияние различных катализаторов а также различных растворителей) на механизм гомо- и сополимеризации. При полимеризации эквимолярной смеси двух мономеров А и Б в течение короткого начального периода могут образовываться продукты различного состава в зависимости от характера процесса (катионный, анионный или радикальный)  [c.135]

    Исследование механизма полимеризации метиленкетона показало, что метилизопропенилкетон образует при нормальной температуре в среде N2 продукт со степенью полимеризации около 1400, при облучении же ртутной лампой средняя степень полимеризации 480. Даже высокополимерные продукты сначала очень сильно набухают, а затем растворяются в органических растворителях. Эго подтверждает, что характерная для большинства ацетоно-форм-альдегидных смол нерастворимость обусловлена не только полимеризацией, а происходящим в данном случае процессом конденсации, вызывающим образование сетчатой структуры. Добавка 5пС1 превращает метилизопропенилкетон в черную дегтеобразную массу отбеливающие земли не оказывают заметного влияния [c.261]

    Радикальная и ионная полимеризация различаются не только наличием или отсутствием влияния полярных растворителей на скорость полимеризации, но и тем, что антиоксиданты (фенолы, хиноны и т. д.) и молекулярный кислород не замедляют ионную полимеризацию, а, наоборот, ускоряют ее. В то же время такой инициатор радикальной полимеризации, как перекись бензоила, скорее тормозит, чем ускоряет процесс ионной полимеризации. Оба типа реакций полимеризации имеют различный механизм—в одном случае происходит цепная реакция, инициируемая свободными радикалами, в другом — криптоионная реакция (по терминологии Меервейна). [c.59]

    Целью настоящей работы являлась попытка собрать воедино те факты и представления из области альфиновой полимеризации, которые имеют отнощение к роли поверхности. В статье описывается влияние на процесс различных компонентов реагента, их относительных количеств, вероятного характера связи между ними. Сам процесс полимеризации интерпретируется как чисто поверхностное явление, причем активной оказывается ли1иь определенная часть поверхности. Зародившись в одном месте, цепи не могут затем распространяться на другие участки поверхности или переходить в объем растворителя наоборот, развитие их происходит в месте зарождения. В соответствии с тем, что известно для других катализаторов, альфин может быть нанесен на некоторую каталитически неактивную поверхность он может быть отравлен введением различных солей или ионов. Весьма характерная особенность альфина — активность лишь по отношению к исключительно малому числу мономеров — иллюстрируется ниже на ряде примеров. В заключение рассматривается возможный механизм полимеризации на поверхности. [c.836]

    Эффективность инициатора (ДАМК) принимали равной 0,60. Для учета влияния растворителя на кинетику полимеризации был использован механизм, предложенный Хенрици — Оливе и Оливе (см. выше). Авторы сравнили данные нескольких публикаций и пришли к выводу, что для расчета конверсии и МВР безразлично, проводить ли коррекцию по константе скорости роста или обрыва. Для [c.132]

    Цуда полагал, что растворитель может влиять на механизм полимеризации, увеличивая диэлектрическую проницаемость среды, а также подвергаясь радиолизу с образованием катализатора типа Фриделя — Крафтса. Так, хлористый метилен может разлагаться с выделением НС1, который затем будет инициировать катионную полимеризацию, чем объясняется наличие хлора в цепи полимера. Другие алкилгалогеииды могут распадаться аналогично, но давать более слабые кислоты, являющиеся менее эффективными катализаторами Фриделя — Крафтса. Имеется указание на то, что акрилонитрил захватывает электроны с образованием анионов, снижая, таким образом, скорость катионной реакции при высоком содержании акрилонитрила. Цуда [66[ заключил, что главным фактором, определяющим механизм полимеризации, является ионная реакционная способность мономера, а растворители только влияют на скорость роста уже образовавшихся ионов. Очевидно, для определения влияния среды на механизм полимеризации необходимы дополнительные исследования. [c.539]

    Позднее представления о направляющей роли конформации образующейся молекулярной цепи в процессе полимеризации были перенесены на винильные мономеры. С этой позиции рассматривается влияние природы растворителя и температуры на стереоспецифичность полимеризации винильных соединений. Так, было показано, что полимеризация стирола в присутствии трифенилметилкалия в бензоле приводит к образованию атактического полистирола, а с тем же катализатором в гексане получается стереорегулярный полимер. С позиции так называемой спиральной полимеризации это объясняется большей устойчивостью спиральной конформации растущих макромолекул полистирола в плохом по сравнению с бензолом растворителе — гексане. Аналогичным образом объясняются образование стереорегулярного полистирола при полимеризации в присутствии бутиллития при —30 °С в среде углеводородов и отсутствие стереоспецифичности при полимеризации стирола с этим катализатором при более высокой температуре. Такое новое направление в изучении механизма стереоспецифической полимеризации является чрезвычайно интересным, хотя для создания стройной концепции еще мало экспериментальных данных. [c.93]

    Как видно, при проведении реакции полимеризации изобутилена в потоке определяющими являются размеры зоны реакции, начальная концентрация мономера, исходная температура раствора мономера (количество вводимого катализатора с растворителем мало, и его температура не оказывает заметного влияния на температуру реагирующей системы ш входе в реактор), скорость движения реагирующего потока и его турбулизация в месте смешения растворов катализатора и мономера, суммарная концентрация катализатора или брут-то-глубина превращения мономера, температура кипения, зависящая от химической природы растворителя и давления в реакторе, соотношение коэффициентов массо- и теплопередачи, налйчие устройств, позволяющих создать анизотропный механизм теплопередачи, использование зонной многоступенчатой подачи катализатора и/или мономера и др.[2, 7-28.  [c.304]

    Закономерности, которые наблюдались при экстракции ионных ассоциатов, имеют место и прп извлечении по ионообменному механизму (конкурируюш,ее действие некоторых анионов, высаливающее действие катионов и влияние природы разбавителя). Степень извлечения растет с повышением молекулярного веса амина, однако селективность при этом падает (более подробно по этому вопросу см. [435, 436)). При использовании разбавителей с низкими значениями диэлектрической проницаемости (бензол, толуол, ксилол, хлороформ, четыреххлористый углерод, октан и др.) при больших концентрациях извлекаемого элемента в фазе растворителя протекают процессы ассоциации. Чем выше молекулярный вес амина и ниже значение диэлектрической проницаемости (е) разбавителя, тем в большей степени протекают процессы полимеризации (вплоть до мицеллярно-коллоидного состояния) [437, 677, 680, 1063]. Растворимость ассоциатов анионов с аминами падает по мере возрастания молекулярного веса неполярных разбавителей. Повышение температуры или добавление полярных разбавителей повышает растворимость. Практически для всех аминов влияние анионов на экстракцию ассоциатов перренат-иона уменьшается в ряду IO4 > J Вг N0 " 1 . Более подробно о механизмах экстракции см. в [48, 588, 1023 и др.), [c.201]

    Реакции сополимеризации могут протекать как по радикальному, так и по ионному механизму. При ионной сополимеризации на константы сополимеризации оказывает влияние природа катализатора и растворителя. Поэтому сополимеры, получаемые из одних и тех же сомономеров при одинаковом исходном соотношении в присутствии разных катализаторов, имеют разный химический состав. Так, сополимер стирола и акрилоиитрила, синтезированный в присутствии перекиси бензоила, содержит 58% стирольных звеньев. Вместе с тем при анионной сополимеризации на катализаторе СеНбМдВг содержание в макромолекулах звеньев стирола составляет 1%, а при катионной полимеризации в присутствии ЗпСЦ-99%. [c.55]

    Давно известно, что такие эфиры, как диэтиловый, являются отличными растворителями для реакции Гриньяра и для синтеза натрийорганических соединений. Циклические эфиры, как, например, 1,4-диоксан и ТГФ, также гч-ляются превосходными растворителями для различных ионных реакций, причем были отмечены особые свойства подобных циклических эфиров в процессе образования натрий-нафталинового комплекса при анионной полимеризации в присутствии этого комплекса с образованием "живущих" полимеров [ 25 - 27], при растворении металлического калия [ 28] и т.д. Кроме того, в 50-х годах было обнаружено, что линейные полиэфиры, называемые "глима-ми", например моноглим (1,2-диметоксиэтан) и диглим (диметиловый эфир диэтиленгликоля) [29], синтезированные в 1925 г., являются еще более подходящими растворителями, чем ТГФ. С тех пор как многие химики заинтересовались механизмом действия таких полярных апротонных растворителей с эфирными звеньями с точки зрения как теории растворов, так и теории реакций, прояснились различные явления, касающиеся растворения, ионизации и и влияния растворителя на скорость реакции [30 - 35]. [c.24]

    Полимеризация в растворе (лаковый способ) проводится в жидкой фазе (раствор в органическом растворителе) по радикальному, ионному и ионно-координационному механизмам При радикальной полимеризации природа растворителя оказывает влияние на скорость реакции передачи цепи на молекулу растворителя, а следовательно, влияет и на молекулярную массу полимера Степень полимеризации также зависит от концентрации мономера в слабоконцеитрированных растворах она снижается [c.39]

    Влияние полярности среды на механизм взаимодействия га-логенводородов с непасыщенпыми соединениями ярко проявляется при сопоставлении условий, необходимых для развития полимеризации, с условиями обычной реакции гидрогалогенирования. По существу, присоединение НС1 пли НВг к стиролу в отсутствие растворителя или в углеводородной среде моделирует реакции инициирования и обрыва катионной полимеризации  [c.324]

    Конечно, такой эффект возможен независимо от того, является ли X специфическим ингибитором или произвольным инертным веществом. Насколько существенны влияния подобного рода, показывают данные Шапиро, полученные нри твердофазной полимеризации акрилопитрила. Столь различные по своей природе вещества, как бензохинон и толуол, вызывают в этом случае при равной концентрации (около 5%) примерно одинаковое замедление процесса [26]. Другой путь выяснения механизма — измерение констант сополимеризации — может привести к убедительным результатам только при условии изоморфизма обоих мономеров. Однако изоморфные пары мономеров встречаются редко (например, трибутилвинилфосфонийбромид—трибутилвинилфосфо-ниййодид [22] и акриламид—пропионамид [15]). Только недавно эту трудность удалось обойти с помощью остроумного приема — сополимеризации в твердом стеклообразном состоянии раствора двух мономеров в инертном растворителе [27]. Использование в качестве растворителя парафинового масла позволило создать гомогенный твердый раствор стирола и метилметакрилата и изучить процесс их сополимеризации при —78°. Измеренные таким способом константы сополимеризации совпали с соответствующими величинами для радикальной полимеризации в жидкости. Вполне возможно, что данный метод окажется плодотворным и для других мономерных пар. Отметим попутно, что отношения констант к 1к2, установленные в тех же условиях при гомополимеризации стирола и метилметакрилата (33.8 и 4.1 соответственно), примерно в 1000 раз меньше значений, экстраполированных к —78° из литературных данных по радикальной полимеризации жидких мономеров. Это дает представление о том, насколько резко падает скорость обрыва нри переходе от жидкой фазы к твердой. [c.465]

    Таким образом, приведенные выше данные четко свидетельствуют о том,, что как межмолекулярное взаимодействие цепей, так и образуемые при этом морфологические структуры весьма чувствительны к связыванию цепей между собой, т. е. к их сшиванию. Детальный механизм этого влияния в настоящее время еще не установлен, однако можно думать, что возмущающее действие узлов сетки должно в первую очередь сказываться на конформациях ближайших атомов, т. е. на первичной молекулярной структуре цепи. Такого рода работы только начинают развиваться, однако один пример влияния сетки на конформацию некоторых групп в настоящее время уже известен [188]. При исследовании ИК-спектров сетчатых полимеров, полученных радикальной полимеризацией диметакрилата триэтиленгликоля (ТГМ-3) было установлено, что в спектре этих полимеров наблюдается только один поворотный изомер группы —С(0)—О—С — т эакс-конформер, а полоса цис-изомера вообще отсутствует, тогда как в линейном аналоге этого сетчатого полимера — атактическом полиметилметакрилате — эта группа существует в двух конформациях в более устойчивой цис- и менее устойчивой транс-конформации. Следует отметить, что такая ситуация, характеризующаяся единственно возможной формой реализации поворотной изомерии сложноэфирной группы в исследованном сетчатом полимере, наблюдается при различных условиях его образования (температура, добавки различных растворителей), т. е. это явление связано именно с сетчатым характером полимера и не зависит от способа получения сетки. [c.156]

    В обрыве полимерных цепей могут также играть роль процессы перехода электронов между свободными радикалами и катионами некоторых металлов. На полимеризацию виниловых мономеров в неводных растворителях (например в ]У,7У -диметилформамиде) оказывают значительное влияние различные неорганические соли [130а]. Предполагается следующий механизм такого влияния  [c.213]

    Одним пз актуальнейших вопросов современной кинетики реакций в жидкой фазе является вопрос о характере влияния растворителя на кинетику и механизм протекающих в нем реакций. Поэтому представляется целесообразным изучение кинетики одних и тех же реакций не только в различных ииднв1 дуальиь Х растворителях, но н в смесях двух растворителей. Такие исследования могут быть полезны и для решения практических задач, в особенности в области полимеризационных процессов очень часто полимеризацию проводят в смеси растворителей, одним нз которых является сам мономер. [c.272]


Смотреть страницы где упоминается термин Растворитель влияние на механизм полимеризации: [c.187]    [c.447]    [c.204]    [c.132]    [c.226]    [c.237]    [c.220]    [c.359]    [c.187]    [c.56]    [c.339]    [c.417]    [c.452]    [c.251]    [c.343]   
Гетероциклические соединения и полимеры на их основе (1970) -- [ c.195 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние механизма полимеризации

Механизмы полимеризации растворитель

Полимеризация влияние



© 2025 chem21.info Реклама на сайте