Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод определения аммиака и соединений аммиака

    Над развитием метода определения азота в соединениях, разделенных на газохроматографической колонке, работали несколько исследователей, Коулсон [49] разработал для решения этой задачи специальный кулонометрический детектор, который регистрировал только аммиак. Аналогичный метод был разработан Мартиным [50], который для количественного определения аммиака использовал специальный автоматический титратор. В описанных методах определяли только содержание азота. С/Н-отношения не измеряли. [c.206]


    Метод определения. К кислому раствору прибавляют достаточное количество комплексона и после соответствующего разбавления вводят 2 г карбоната аммония. Затем на холоду подщелачивают аммиаком до появления запаха. Гидроокись титана количественно выделяется в течение 30—40 мин. в виде легко отделяемого фильтрованием осадка. Присутствие комплексона помогает осаждению. Титан образует с комплексоном малоустойчивый комплекс, что позволяет, не гидролизуя его, при нейтрализации раствора удовлетворительно перевести бериллий и уран в комплексные соединения с карбонатом аммония. Выделенная гидроокись титана обычно не содержит адсорбированных катионов. В фильтрате можно определить бериллий (или уран) после упаривания раствора почти до 1/4 объема и кипячения с соляной кислотой—повторным осаждением аммиаком. Уран можно также определить осаждением оксином по Бергу [78]. [c.97]

    В литературе описан ряд других методов определения аммиака или азота в различных азотсодержащих соединениях обычно после переведения азота в аммонийную форму. Среди других методов определения азота необходимо назвать следующие. [c.26]

    Метод определения аммиака и соединений аммиака [c.192]

    Как указывалось выше, нитраты мои(ио определять после восстановления до нитритов или аммиака, используя методы определения этих соединений азота. [c.97]

    Описанный ниже метод определения удобен при наличии в пробе, наряду с ацетиленовым соединением, альдегидов. В предыдущих методах альдегиды являлись серьезной помехой вследствие их восстанавливающего действия на ион серебра. В предлагаемом методе для устранения азотной кислоты, образующейся при реакции нитрата серебра с ацетиленовым соединением, вместо аммиака пользуются ацетатом натрия. В среде ацетата альдегиды взаимодействуют с ионом серебра намного медленнее. [c.381]

    Анализ смесей. Методы исследования простых соединений не могут быть с уверенностью применены к анализу смесей. Много затруднений вызывают вещества, которые препятствуют осаждению или замедляют его. Вещества, вызывающие нежелательные побочные явления и реакции, должны быть предварительно удалены. Наибольшие затруднения возникают потому, что многие из применяемых реакций не приводят к полному разделению ионов. Так, кремневая кислота не может быть полностью отделена от бора выпариванием досуха кислых растворов и последующим обезвоживанием ионы цинка при осаждении сероводородом частично осаждаются с ионами меди, ноны кобальта—вместе с ионами олова (IV) и т. д. Осадок гидроокиси алюминия удерживает ионы меди и цинка даже после повторного переосаждения аммиаком. Фосфат магния увлекает в осадок ионы щелочных металлов. Успех зависит в значительной степени от того, с какой тщательностью был подготовлен раствор к анализу. Эту подготовку нельзя выполнить по определенным заранее сделанным предписаниям. Каждый случай должен быть обдуман и рассмотрен особо. [c.287]


    Методы определения влаги по точке росы успешно применяются для анализа воздуха, азота, водорода, кислорода, монооксида углерода, диоксида углерода, метана, аргона и неона. Следует учесть, что вызывающие коррозию газы, такие как хлористый водород и сероводород, могут разъедать металлические поверхности. Кроме того, на зеркале для наблюдения точки росы могут конденсироваться, помимо воды, и другие соединения, например тяжелые углеводороды, смазочные масла и аммиак. Приборы для [c.574]

    Из методов определения азота в органических соединениях наиболее распространены газометрический (микрометод Дюма) и определение в виде аммиака (микрометод Кьельдаля). Метод Кьельдаля наиболее удобен для массовых определений и особенно для определения азота в водных растворах. В этом разделе рассматриваются приборы, работа которых основана на этом методе. [c.248]

    Ввиду термической лабильности высокомолекулярных азотистых соединений определение общего азота должно проводиться либо непосредственно в сырой нефти, либо в остатках, полученных с применением низкотемпературных методов ее разделения. Азот при полном разрушении азотистых органических соединений может выделяться в виде аммиака, окислов азота, дициана и элементного азота. Образование этих веществ зависит от способа разрушения и от характера связи азота в молекулах. Например, при сжигании продукта в присутствии концентрированной серной кислоты азот выделяется в виде аммиака. Окисление твердыми Окислителями в токе инертного газа приводит в основном к образованию элементного азота. [c.45]

    Применение колориметрического метода для анализа многих технических материалов нередко встречает затруднения в связи с наличием в растворе посторонних окрашенных соединений. Например, при определении ряда компонентов в стали испытуемый раствор сам бывает несколько окрашен вследствие присутствия железа, никеля, хрома и др. При определении аммиака в природной воде измерение окраски желтого продукта реакции иногда дает неточный результат вследствие наличия в воде гу-миновых соединений, окрашивающих воду в желтый цвет. Если собственная окраска испытуемого раствора не слишком интенсивна, то ее влияние можно с достаточной точностью устранить применением простого прибора — компаратора. [c.183]

    Как уже отмечалось, особенно оправданно применение реакционно-хроматографических методов при анализе реакционноспособных лабильных соединений. Содержание хлористого водорода в смеси с ацетиленом и 1,1-дихлорметаном [46] определяли по диоксиду углерода, образующемуся при реакции хлористого водорода с гидрокарбонатом натрия. Березкина с сотр. [50] предложили реакционный метод определения следов аммиака. Метод основан на предварительном концентрировании аммиака слабокислым раствором серной кислоты, окислении аммиака в щелочном растворе гипобромитом калия и газохроматографическом определении выделившегося азота. Предел обнаружения — 5-10 г аммиака в сконцентрированном растворе при 500 мл ана- [c.236]

    За последние пятьдесят лет в области развития методов определения элементов и выяснения теоретических основ аналитических методов достигнуты крупные успехи. Многие элементы как сами но себе, так и в простейших соединениях могут быть определены с большой точностью. Однако приходится сознаться, что для анализа более или менее сложных смесей, в которых обычно встречаются элементы, до сих пор еще не выработано методов, на точность и правильность которых можно было бы вполне положиться, т. е., иными словами, методы разделения элементов в основном остаются до сих пор неизменными, а новейшие методы их определения в отношении селективных возможностей мало чем отличаются от старых. Так, например, известны точные условия для определения алюминия путем осаждения его аммиаком, но перед аналитиком все же стоит задача отделить сначала алюминий от тех разнообразных элементов, в смеси с которыми он обычно встречается и которые также осаждаются аммиаком. [c.21]

    Метод Кьельдаля нашел широкое применение благодаря простоте проведения анализа и возможности выполнения серийных анализов. Это едва ли не единственный метод определения азота в природных соединениях, в которых азот находится в форме амино- или имино-группы. При анализе таких веществ он дает очень хороише результаты. Метод Кьельдаля имеет преимущество перед методами Дюма и Тер-Мейлена еще и в том, что позволяет очень точно определять азот при низком его содержании, когда анализируемое вещество имеется в количестве нескольких граммов. Кроме того, при анализе этим методом не нужна сложная аппаратура, можно применять реагенты обычной степени чистоты и одновременно исследовать 30—50 образцов. При использовании прибора Вагнера — Парнаса с автоматической разгрузкой перегонку с паром можно выполнить за 5—8 мин. Чувствительность определения аммиака можно повысить, если использовать вместо титрования спект-рофотометрию. Поскольку метод определения азота по далю в настоящее время полностью автоматизирован, он буде [c.334]


    Определение аммиака методом отгонки. Сначала собирают прибор для отгонки аммиака. Он состоит из круглодонной перегонной колбы, холодильника и приемника. Колбу закрывают пробкой с отверстием, в которое вставлена изогнутая стеклянная трубка для соединения колбы с холодильником. Стеклянная трубка посредине имеет расширение с кап-леуловителем. Каплеуловитель задерживает брызги раствора едкого натра, которые без кап-леуловителя могли бы при кипении попасть вместе с аммиаком в приемник. Нижний конец холодильника соединен со стеклянной насадкой, конец которой погружен в раствор кислоты в приемнике. Вся установка показана на рис. 82. Для более равномерного кипения жидко ти в колбу помещают стеклянные шарики или капилляры .  [c.342]

    Отгонка аммиака используется в широко известном методе определения азота в органических соединениях по Кьельдалю. В простейшем варианте этого метода пробу обрабатывают при нагревании концентрированной серной кислотой в присутствии солей ртути (катализатор), в результате чего органические соединения окисляются до СО2 и Н2О, а азот переходит в ЫН4Н504. После охлаждения к остатку добавляют раствор щелочи и отгоняют ЫНз в отмеренный объем титрованного раствора кислоты, а затем определяют избыток кислоты, не вошедшей в реакцию с аммиаком, и рассчитывают массу азота в пробе по формуле обратного титрования. Методом Кьельдаля можно определять азот в аминах, аминокислотах, алкалоидах и многих других азотсодержащих соединениях. Некоторые соединения можно проанализировать по методу Кьельдаля только после предварительного разложения или восстановления хлоридом олова (И) или цинковой пылью (азотсоединения, производные гидразина и т. д.) [c.215]

    Перспективным методом определения значений этой составляющей является сопоставление данных структурного исследования соединений рентгенографическим и нейтронографическим методами первый дает положение центра тяжести электронного облака в молекуле, а второй — атомных ядер. Этим методом проведен расчет Цнеп атома азота в аммиаке и гексаметилентетрамине. Получено 1,0 D. [c.30]

    Первым полярограмму кетимина получил Зуман [6], показавший, что при растворении ацетона в аммонийно-аммиачном буфере восстанавливается имин. Предельный ток при этом соответствовал равновесной концентрации в объеме раствора. Вместо аммиака Зуман предложил затем менее летучие первичные амины. Им же были обнаружены и первые ограничения — бензофепон ж ацетоуксусный эфир определить таким образом не удалось [7]. Так появился очень простой и удобный метод определения карбонильных соединений, детали которого разрабатываются до сих пор [8—13]. Этот метод позволяет обнаруживать также алифатические амины 112, 14, 15]. [c.42]

    Несмотря на то что обычные методы определения аммиака основаны на реакции Несслера или на отгонке и титровании кислотой, в случае низких его концентраций можно использовать также некоторые цветные реакции. Так, в растворах гидроокиси натрия аммиак реагирует с хлоридом нитробензолдиазония (раствор Риглера), образуя красное соединение 02НСбН4Ы = Н0МН4,которое представляет собой аммонийную соль м-нитрофенилнитроз-амина. [c.300]

    Мар [894] предложил метод, основанный на осаждении висмута в виде [ г(NHз)g][BiBГg] и определении в этом соединении аммиака отгонкой. [c.216]

    Ион кобальта (II) характеризуется способностью образовывать растворимые комплексные соединения в избытке аммиака, экстрагирующиеся органическими растворителями комплексные соединения с роданид-ионом. Селективными реактивами, позволяющими определять кобальт в присутствии других элементов (меди, никеля, железа), являются оксинитрозосоедпнения. В зависимостп от содерл<ания кобальта в анализируемом объекте (оно колеблется от десятых долей до десятков процентов) применяют титриметрические, фотометрические, полярографические и атомно-абсорбционные методы. Сравнительно редко прибегают к гравиметрическим п люминесцентным методам определения содержания кобальта. [c.68]

    Наиболее распространенным методом определения азота в нефтях и нефтяных фракциях является классический метод Къельдаля, который заключается в разложении азотистых соединений в серной кислоте до солей аммония и ацидиметрическом титровании аммиака, вцце-ляпцегося цри обработке реакционной массы щелочью. Этот метод широко используется ддя анализов различных продуктов, содержащих более азота, в том числе и ддя анализа нефтепродуктов. [c.122]

    Фотоколориметрический метод определения фосфора в ферромолибдене [89] основан на образовании желтого фосфорномолибденового комплекса и последующем восстановлении его тиомочевиной до синего фосфорномолибденового комплекса. Фосфор предварительно выделяют аммиаком с Fe(OH)g и окисляют соединения фосфора до Р04 раствором КМПО4. [c.134]

    Применение методов, основанных на измерении рассеяния света, достаточно ограничено прежде всего потому, что на измеряемый сигнал сильно влияет размер частиц. Поэтому необходимо строгое соблюдение идентичности условий построения градуировочного графика и анализа исследуемого раствора. Можно сказать, что и нефелометрия, и турбоди-метрия могут быть полезными для селективных аналитических реакций, в результате которых образуется твердое соединение. Описаны методики определения аммиака иодидом ртути (реактив Несслера), фосфата в виде малорастворимого соединения с молибденом и стрихнином, сульфата бария с пределами обнаружения десятые-сотые доли мшфограмма в миллилитре и др. [c.317]

    Гравиметрические методы анализа могут быть основаны на реакции воды с карбидом кальция (см. гл. 2). Второва [358] предложила следующий метод определения влаги в бутадиене. Пробу конденсируют в ампулу, содержащую 0,1 г тонкоизмельченного карбида кальция. Ампулу запаивают и интенсивно встряхивают при охлаждении в течение 5—10 мин. Затем ампулу вскрывают и испаряют ее содержимое. Образующиеся пары пропускают через колонку для очистки газа с реактивом Илосвая [193] — раствором комплексного соединения меди с аммиаком и гидроксиламином (например, раствор 0,75 г u l2 3H20 1,5 г хлорида аммония, [c.185]

    Устройство и работа прибора. Принцип метода определения аммонийного азота заключается в титровании точного раствора кислоты раствором образовавшегося аммиака и дотитро-вании избытка аммиака тем же раствором кислоты при совмещении операций отгона и титрования. Прибор (рис. 155) состоит из реакционного сосуда 1, барботера 3, стойки и двух электродов. Реакционный сосуд 1 представляет собой удлиненный стеклянный цилиндр, снабженный воронкой с барботажной трубкой, суженной книзу и доходящей до дна сосуда. Внизу сосуда имеется кран 2, вверху — газоотводная трубка. Сосуд снабжен термостатирующей рубашкой с тремя отводами, для обогрева которой служат титановые электроды 13. Барботер 3 снабжен спускным краном 21 п двухходовым краном 4, соединенным с водоструйным насосом. В центре барботера проходит приемная барботажная трубка, суженная у дна сосуда и имеющая вверху горловину для бюретки 5 с пробкой 6. Боковой отвод барботера 3 соединяется с реакционным сосудом 1 при помощи шланга. Снаружи барботер имеет водяную рубашку с двумя отводами. Реакционный сосуд 1 и барботер 3 с помощью муфты 8, ленточного держателя 9, зажима 10 и деталей ленточного зажима 16, 17, 18, 19 крепятся к стойке 7. Бюретка 5 и верхний отвод реакционного сосуда 1 фиксируется держателем И, закрепленным в муфте 8. На торцевой поверхности основания находится гайка заземления 12, [c.251]

    Для определения микроколичества азота в нефтепродуктах предложено несколько методов, основанных на получении аммиака путем высокотемпературного каталитического гидрирования азотистых соединений ли разложением их по Кьельдалю. Методы гидрирования, разработанные Ванкат и Гатсис (1), а затем К инг и Флулконер (2), е получили распространения. Первый — потому что для выполнения анализа требуется сравнительно сложная аппаратура высокого давления. Анализ же по методу Кинга сложен в исполнении и пригоден лишь для бензинов, вы-кипаюш их до 230°С. [c.61]

    Образование синей окраски при взаимодействии аммиака с фенолом и гипохлоритом натрия было впервые отмечено Бертело в 1859 г. реакция время от времени исследовалась в течение последних 50 лет [171]. Преимуществом фенол-гипохлоритной реакции является образование истинного раствора окрашенного соединения. Чувствительность этой реакции близка к чувствительности реакции Несслера. Прямое фотометрическое определенде аммиака без дистилляции или аэрации невозможно [32, 149]. Ионы железа, хрома и двухвалентного марганца катализируют реакцию, в то время как ионы меди [149] и окислители, как, например, персульфат [32], подавляют развитие окраски. Некоторые аминокислоты [125, 149] и никотин [61] также влияют на чувствительность реагента. Температура влияет на воспроизводимость окраски [61]. Метод применяли для определения аммиака в водах кок-со-бензольного производства [60] и биологических объектах [32, 48, 116, 125, 126, 149, 171, 178]. Аналогичная реакция с применением тимола и гипобромита натрия с последующей эфирной или ксилольной экстракцией была предложена для фотометрического определения азота [c.93]

    К преимупгествам пиридин-пиразолонового экстракционного метода относится его высокая чувствительность (0,025 мг/л аммиака) и возможность обойтись без дистилляции. Недостатками являются ограниченная устойчивость реагента, неподчинение растворов закону Бера и необходимость экстрагирования окрашенного соединения четыреххлористым углеродом. Метод применялся для определения аммиака в воде и сточных водах [100, 101]. [c.94]

    Эта глава посвящена таким классам соединений, которые содержат функциональные группы с насыщенным атомом углерода рассматривается их структура, номенклатура, реакции и методы определения структуры. Эти классы можно рассматривать как производные простЕлх неорганических соединений (например, галогеноводородных кислот, воды, сероводорода или аммиака), получающиеся при замещении водорода углеводородными группами. В образующихся при этом веществах появляются свойства как неорганических соединений, так и углеводородов, рассмотренных в предыдуо],ей главе. [c.46]

    В химии аминокислот используется много других аналитических способов. Определение азота по Къелъдалю дает содержание всего азота в белке или белковом гидролизате. При. этом определении органическое соединение разлагается путем, нагревания со смесью концентрированной серной кислоты и катализаторов, таких, как двуокись селена. Образующиеся аммонийные соли превращаются в аммиак, который отгоняют и титруют. Общее содержание азота заметно меняется в зависимости от характера аминокислот в белке. Количество азота, присутствующего в виде первичных аминогрупп, определяется по методу Ван-Слайка. Неизвестное вещество обрабатывают азотистой кислотой и измеряют объем выделяющегося азота. [c.539]

    Осаждение аммиакрм одна из самых обычных операций, применя- емых в анализе. Она проводится либо для определения осажденного соединения, весовым nj OM, либо для совместного отделения двух или -нескольких металлов от других металлов. Если эта операция выпол-ш ется для количественного весовОго определения, то ей должно предшествовать выделение кремнекислоты и отделение элементов группы сероводорода некоторые из, этих элементов также более или менее полно осаждаются аммиаком. Вследствие того, что предварительно удалить всю, кремнекислоту обыч ным методом невозможно, оставшееся небольшое, количество ее увлекается осадком гидроокисей, и эту кремнекислоту следует выделить и определить, как указано в разделе Кремний (стр. 955). Число металлов, осаждаемых аммиаком, очень велико. Ск>да входят алюминий, железо (III), хром, таллий, галлий, индий, редкозе- [c.102]

    Из колориметрических методов определения меди чаще других применяют два метода аммиачный и диэтилдитиокарбаматный Первый из них относительно мало Чувствителен и пригоден больше всего для определения меди в количествах нескольких миллиграммов. При его применении должны отсутствовать органические вещества и элементы, образующие осадки или окрашен 1ые растворы при добавлении избытка аммиака. Полученный аммиачный раствор нельзя фильтровать через бумажный фильтр, потому что медь в таких растворах вступает в соединение с примесями, присутствующими в целлюлозе, или восстанавливается ими, [c.293]

    Многие комчлексные аммиакаты растворимы в воде, однако известны и очень плохо растворимые соединения. Связь аммиака с платиновыми металлами очень прочна, поэтому к растворам комплексных аммиакатов не применимы обычные методы определения платиновых металлов. Например, из аммиачных растворов платина не осаждается сероводородом, а органическими восстановителями выделяется лишь частично. Поэтому при анализе никогда не следует вводить в раствор аммиак, в частности, нельзя пользоваться им для нейтрализации растворов. [c.56]


Смотреть страницы где упоминается термин Метод определения аммиака и соединений аммиака: [c.109]    [c.76]    [c.228]    [c.39]    [c.6]    [c.110]    [c.37]    [c.563]    [c.208]    [c.170]    [c.167]    [c.274]    [c.167]   
Смотреть главы в:

Количественный ультрамикроанализ -> Метод определения аммиака и соединений аммиака




ПОИСК





Смотрите так же термины и статьи:

Аммиак определение

Аммиак соединения

Другой метод определения аммиака и соединений аммиака

Соединение определение



© 2024 chem21.info Реклама на сайте