Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Описание н идентификация

    Книга начинается с описания идентификации и разделения различных соединений. В ней подробнейшим образом рассматривается процесс осаждения и приводятся методы получения крупнокристаллических осадков, а также способы их фильтрации и промывки. Оствальд вывел соотношение между числом промывок и соответствующим снижением концентрации примесей [627]. Одиако автор тут же указывает, что на практике это соотношение неприменимо, поскольку в нем не учитывается влияние адсорбции. [c.227]


    Реакция образования семикарбазонов и методы их получения рассматриваются при описании идентификации карбонильных соединений. Эти же методы могут быть применены и для выделения карбонильных соединений из смесей. [c.218]

    Сложные углеводородные системы. Нефтяные фракции представляют собой смеси, состоящие из столь большого числа отдельных соединений, что их идентификация для определения состава системы и вообще для инженерных расчетов практически не имеет смысла. Для описания свойств этих систем, называемых сложными или непрерывными смесями, используются так называемые кривые разгонок, из которых наиболее важными являются кривые истинных температур кипения (ИТК). Если представить, что компоненты, составляющие сложную смесь, отгоняются из нее под постоянным давлением в строгой последовательности, отвечающей их точкам кипения t, непрерывно возрастающим с долей отгона е, то график зависимости t — ей носит название кривой истинных температур кипения. Каждая точка на непрерывной кривой ИТК представляет температуру кипения гипотетического точечного компонента, выкипающего из исходной смеси при данной доле отгона, и поэтому может рассматриваться еще и как точка кривой давления насыщенного пара данного компонента, отвечающая при этой температуре тому постоянному давлению, при котором построена линия ИТК. [c.103]

    В сернистых концентратах из арланской нефти в количестве менее 1 % от всей смеси найдены спирты, которым приписаны только насыщенные циклические структуры без олефиновых связей [664]. Если даже интерпретация полученных масс-спектров была верна, эти спирты не могут считаться нативными в связи с соображениями, высказанными нами при обсуждении фурановых соединений, описанных в той же работе. Сомнения в правильности идентификации классов соединений в этом анализе, на наш-взгляд, не [c.112]

    К стандартным подпрограммам (для библиотек целесообразно использовать термин подпрограмма , так как они обычно включаются в качестве частей в общую программу) можно отнести модули вычисления элементарных функций (тригонометрических, гиперболических и т. д.). Такая библиотека поставляется совместно с ЭВМ и обычно содержится в трансляторах с языков высокого уровня (алгола, фортрана, ПЛ-1). Стандартизацией обычно предусматривается единая форма идентификации и обращения к подпрограммам, фиксированный формализованный способ задания информации об аргументах и результате, единые правила описания алгоритмов и показателей эффективности. Набор таких подпрограмм можно считать установившимся для различных языков программирования. Отличие может быть обусловлено расширением возможностей языка. [c.267]


    Минимальная частичная реализация. Алгоритм построения минимальной реализации, рассмотренный выше, касался динамических систем, для которых заранее точно заданы либо матричная передаточная функция, либо последовательность марковских параметров. Более распространенным случаем является ситуация, когда то и другое точно задать нельзя. В таких случаях обычно на основе анализа входных и выходных сигналов каким-либо приближенным методом конструируется передаточная функция системы например, задается структура передаточной функции, а входящие в нее параметры определяются с помощью стандартных методик идентификации (см. 6.2—6.5). После того как передаточная функция определена, переход к описанию системы в форме канонических уравнений пространства состояний без труда реализуется с помощью алгоритма Хо или любого другого алгоритма построения минимальной реализации динамической системы. Очевидный недостаток такого подхода состоит в том, что структура передаточной функции задается жестко заранее, следовательно, теряется гибкость метода, отсюда точность реализации системы не может быть высокой. В связи с этим возникает необходимость в методе, который позволял бы строить приближенную минимальную реализацию непосредственно по экспериментальным данным так же, как алгоритм Хо позволяет строить точную реализацию для системы с точным заданием последовательности марковских параметров. [c.114]

    Общие положения. Идентификация математического описания объекта является основным этапом в построении адекватной математической модели процесса и поэтому представляет собой одну из центральных задач в области математического моделирования химико-технологических нроцессов. [c.281]

    Существует много классификаций методов идентификации динамических систем. Нам представляется целесообразным разделить методы идентификации на две большие группы по признаку математического описания той системы, к которой они применяются. К первой группе отнесем все методы идентификации, которые применимы только к линейным системам. Вторую группу составят методы, которые применимы как к линейным, так и к существенно нелинейным системам. [c.286]

    Такая классификация методов идентификации существенно связана с оценкой степени нелинейности объектов. Один из методов оценки степени нелинейности, основанный на понятии дисперсионных отношений, будет рассмотрен ниже (см. 8.2). Здесь лишь отметим, что для различных объектов степень нелинейности может быть различной, и при идентификации необходимо решать вопрос о том, в классе каких операторов (линейных или нелинейных) следует искать оператор конкретного объекта. Очевидно, что для объектов, степень нелинейности которых мала, может быть достаточно описание с помощью линейной модели, так как возникающие при этом погрешности могут лежать в допустимых пределах. [c.287]

    Методы идентификации нелинейных динамических систем ориентированы на форму представления математического описания системы в виде канонических уравнений состояния. В этом случае понятия весовой и передаточной функций утрачивают тот глубокий смысл, который они несут в случае линейных систем [c.288]

    Многие методы идентификации линейных систем ориентированы на форму представления описания системы в виде весовой или передаточной функции. При этом возникает проблема перехода от весовых и передаточных функций к дифференциальным операторам линейных динамических систем. Если для систем с постоянными параметрами этот переход всегда может быть выполнен, то в случае нестационарных систем могут возникнуть дополнительные трудности. [c.288]

    Рассмотрим связь между различными формами представления математического описания объектов идентификации. [c.288]

    В главе приведена общая постановка задачи идентификации, дано понятие о корректно и некорректно поставленных задачах, предложена классификация методов идентификации по признаку математического описания динамической системы, дана связь между различными формами представления функционального оператора для стационарных и нестационарных систем, рас- [c.305]

    Рассмотрим стационарную систему (с постоянными параметрами), не возмущенную до момента =0, на вход которой с момента =0 начинает поступать произвольный входной сигнал и I) (причем и (0)= 0), вызывающий реакцию на выходе у (<). Здесь под задачей идентификации будет подразумеваться определение весовой функции системы К (1). Если функция К ) известна, то это значит, что известно математическое описание объекта в виде интегрального уравнения свертки  [c.307]

    В этой главе рассмотрен ряд характерных примеров использования методов идентификации линейных систем для описания гидродинамической структуры потоков в технологических аппаратах на основе модельных представлений. При описании ФХС с помощью типовых моделей функциональный оператор ФХС обычно состоит из двух частей части, отражающей гидродинамическую структуру потоков в аппарате (как правило, линейная составляющая оператора), и части, отражающей собственно физико-химические превращения в системе (как правило, нелинейная составляющая оператора). Линейная составляющая оператора ФХС, соответствующая так называемому холодному объекту (т. 8. объекту без физико-химических превращений), допускает эффективное решение задач идентификации линейными методами. При этом поведение ФХС отождествляется с поведением такой динамической системы, весовая функция которой совпадает с функцией РВП исследуемого объекта. Такой подход открывает возможность при описании гидродинамической обстановки в технологических аппаратах широко применять метод нанесения пробных возмущений, который в сочетании с общими методами структурного анализа ФХС представляет эффективное средство решения задач системного анализа процессов химической технологии. [c.432]


    Так, например, опыт практической реализации задач оценки переменных состояния и идентификации химико-технологических процессов с применением фильтров Калмана [9, 10, 12] позволил обнаружить ряд существенных ограничений данного подхода к решению этих задач в области химической технологии. К источникам таких ограничений можно, например, отнести форму представления математического описания системы в виде дифференциальных операторов и их конечно-разностных аппроксимаций при численных операциях. Реализация математических моделей в такой форме на ЦВМ с применением методов формальной алгебры в условиях большого уровня помех и грубых начальных оценок параметров состояния часто связана с плохой обусловленностью матриц, а отсюда и с неустойчивостью, плохой сходимостью вычислительных процедур. [c.474]

    Построение математического описания сложного химико-технологического процесса с позиций системного анализа включает три этапа качественный анализ структуры физико-химической системы (ФХС) синтез структуры функционального оператора системы идентификация и оценка параметров системы по экспериментальным данным. [c.3]

    Исходя из блочного представления математической модели элемента технологической схемы, описание явлений, характеризующих перенос и распределение субстанции по координатам и по времени и базирующихся на фундаментальных законах гидромеханики многокомпонентных многофазных систем, составляет основу будущей модели. Учет реального распределения температур, концентраций компонентов и связанных с ними свойств, например плотности, вязкости и т. д., по пространственным координатам аппарата и во времени позволяет оценивать степень достижения равновесности тепломассопереноса, химического превращения, т. е. эффективность конкретного аппарата. Описание гидродинамической структуры потоков основано на модельных представлениях о гидродинамической обстановке в аппарате, использующих ряд идеализированных типовых моделей. Аппарат такого представления достаточно развит для однофазных потоков, разработаны и методы идентификации параметров отдельных моделей применительно к реальным условиям протекания процесса. Математическое описание типовых моделей структуры потоков приведено в табл. 2.1. [c.84]

    Число описанных в литературе металлических солей ароматических сульфокислот довольно значительно. Свойства отдельных солей не представляют особого интереса для химиков-органиков и поэтому они здесь не рассматриваются. За немногими исключениями эти соли хорошо растворимы в воде и выделяются из концентрированных растворов в виде кристаллической массы, причем кристаллы нередко представляют собой гидраты. Сухие соли не имеют постоянной температуры плавления и таким образом непригодны для идентификации сульфокислот. [c.199]

    Для второго издания курс подвергся ряду изменений и дополнений. Более подробно рассмотрены основы метода электронного парамагнитного резонанса (3>ПР), приведены примеры идентификации свободных радикалов по спектрам ЭПР. В гл. И1 переработан 2, посвященный теории абсолютных скоростей реакций существенные изменения, касающиеся влияния диэлектрической постоянной на скорость реакции, внесены в 11, трактующий вопросы роли среды в элементарном акте химического превращения в 12 рассмотрение кинетического изотопного эффекта дополнено методом определения констант скоростей по изменению изотопного состава в ходе процесса. Изложение вопроса о кинетике химических реакций, состоящих из нескольких элементарных стадий (гл. VI), дополнено описанием нового способа определения числа линейно независимых дифференциальных уравнений, описывающих кинетику процесса. [c.5]

    Информационная база дефектных участков трубопровода содержит сведения, полученные как методами внутритрубной дефектоскопии, так и путем наружного контроля. В этом блоке накапливаются и анализируются статистические данные об идентификации дефектов, о погрешностях методов измерения и приборов. Данные формируются в виде таблиц по каждому трубопроводу с информационными полями, которые содержат графические файлы с изображениями дефектов и их описаний. [c.104]

    Таким образом, для полного описания и идентификации электронных спектров многокомпонентных углеводородных смесей необходимо и доста точно три параметра I) вероятность светопоглощения Р, 2) фактор интенсив ности 2 и 3) фактор тонкой структуры ТС. В таблице 4.1 приведены результа ты расчета этих параметров для электронных спектров в диапазоне 300-800 нл ряда типичных углеводородных смесей -- нефтей, нефтепродуктов и полимеров. [c.87]

    Некоторые сложности возникают при установлении подлинности суммарных препаратов, где нередко наличие большого количества пятен (ТСХ) или пиков (ГЖХ, ВЭЖХ) неизвестных вешеств, что исключает использование стандартов (неизвестно, какие вешества ответственны за биологическую активность). Один из способов решения этой проблемы—указывать, что на хроматограмме должно быть столько-то пятен (или пиков). Так проведена идентификация облепихового масла методом ТСХ в ВФС 42-2032-90 Гипозоль А ), Более общий подход, который применяется в настоящее время в нормативных документах ведущих фармацевтических фирм, во многом аналогичен уже описанной идентификации с помощью ИКС. Он состоит в сравнении испытуемого и некоторого стандартного препарата, хроматограммы которых записываются параллельно, а в качестве иллюстрации приводится стандартная хроматограмма. На хроматограммах испытуемого и стандартного препаратов должно при этом быть одинаковое количество пиков (при таком подходе обычно применяется ГЖХ или ВЭЖХ) с одинаковыми временами или объемами удерживания. Главная трудность здесь — получение стандартного препарата. [c.462]

    Идентификация миллиграммовых или еще меньших количеств актинидных соединений общепринятыми методами химического анализа обычно не представляется возможной. Большинство идентификаций проведено рентгеноструктурным анализом. Подробное описание идентификации субмнкрограммовых проб С С1з и СГгОз приведено Грином [18]. [c.101]

    При решении задач управления применяются модели идентификации. а для их математического описания используются лишь зависимости выходных величин от входаых. Понятие идентификации позволяет абстрагироваться от внутренних связей и помогает изучать поведение системы, т.е. её реакцию на различные внешние возмущения. [c.11]

    Концепция системных исследований ГА-техники и технологии предполагает создание некоторого алгоритма интеллектуальной деятельности, который включает три аспекта, составляющие суть системотехнических исследований [220] первый — идентификация ГА-технологии как объекта, принадлежащего obokjti-ности сложных систем, т. е. выявление присущих исследуемому объекту образующих систему (эмерджентных) свойств второй — приложение к ГА-технологии системного подхода как совокупности системных и методологических приемов описания этого объекта и третий — оформление позитивных результатов в виде алгоритма принятия и выработки решений при конструировании и создании ГА-техники для конкретных процессов. [c.9]

    Задача таким образом частично разрешена, и можно считать, что хшюгя нефти обладает как физическими, так и химическими средствами отделения и идентификации углеводородов, вполне достаточными для точных исследований. Описание этих методоЁ изложено в главе 1 этой книги. [c.235]

    Системы машинной обработки информации при идентификации структуры пористых сред. Трудности эффективного описания процессов в пористых средах связаны с построением адекватной модели пористой среды, с созданием надежных и, по возможности, автод1атизированных методов идентификации параметров моделей пористых сред. [c.125]

    Постановка задачи идентификации. Процесс адсорбции реагентов на катализаторах принято рассматривать протекающим в 4 стадии диффузия в объеме газовой фазы диффузия из объема газа к внешней поверхности катализатора диффузия внутри пор катализатора диффузия из объема поры к внутренней поверхности (обратимая адсорбция на активных центрах [56, 57]). Такому упро-щеннохму механизму соответствует математическое описание процесса адсорбции в зернах катализатора, модель пористой структуры которого предлагается квазигомогенной, в следующем виде  [c.212]

    Газовая хроматография по праву считается самым эффективным и универсальным способом фракционирования органических соединений. Подобно другим микрохроматографическим методам, она обеспечивает не только четкое разделение, но и групповую, а часто и индивидуальную идентификацию компонентов смеси. Описанию различных аспектов газовой хроматографии и ее результатов посвящена обпшрнейшая литература [159—162 и др.], поэтому мы ограничимся лишь упоминанием некоторых воа юж-ностей метода, оказавших наибольшее влияние на исследования ГАС из нефтей и других природных объектов. [c.21]

    Здесь приведены выдержки из правил описания алгоритмов в языке ИНЯЗАЛ, более полно изложенных в работе [35]. Для идентификации материала принята нумерация пунктов этой работы, причем большинство правил опущено. Оставлены лишь наиболее общие пункты и данные, упрощающие ознакомление с алгоритмами. [c.326]

    Общую постановку задачи идентификации поясняет рис. 5.1. Химико-технологический процесс характеризуется и-мерным вектором состояний х=(хг, Х2,. . ., г-мерпым вектором управлений и=(ц1, 1 2,. . ., иУ, т-мерным вектором наблюдений У=( и Уг, -1 Уя) (по числу измерительных приборов), причем на показания измерительных приборов накладывается как собственный приборный шум V ( ), так и шум объекта w ( )- Математическое описание процесса представляется в канонической или нормальной форме уравнений состояния [c.281]

    Решение задачи идентификации модели нелинейного химико-технологического процесса [10]. Построение адекватной модели технологического процесса предполагает адекватное отражение гидродинамической структуры потоков в аппарате и адек-кватное описание кинетики процесса. В настоящее время решение первой задачи сводится в основном к обработке кривых отклика системы на типовое (импульсное, ступенчатое, гармоническое) или произвольное (детерминированное, случайное) возмущение по концентрации индикатора в потоке с использованием методов теории линейных систем автоматического регулирования. Эти методы, подробно рассмотренные выше, ограничиваются линейным случаем и не пригодны для решения нелинейных задач. Решение задачи идентификации линейных кинетических уравнений не представляет математических трудностей и ограничивается в основном использованием аппарата линейной алгебры. [c.461]

    В этой главе были рассмотрены некоторые методы идентификации нелинейных систем. Естественно, поиск оптимального оператора объекта обычно стремятся вьшолннть в классе линейных операторов методами идентификации линейных систем. Однако это оправдано в тех случаях, когда степень нелинейности исследуемой системы достаточно мала и погрепшости идентификации лежат в допустимых пределах. Если же степень нелинейности значительна, то ограничиться линейным описанием объекта, как правило, не представляется возможным, и задача идентификации решается в классе нелинейных операторов. [c.493]

    Для оценки возможных упрощений могут быть приняты во внимание погрешности функций времени частотных характеристик идентификации параметров в передаточных функциях. Для упрощения математических моделей могут быть использованы методы теории чувствительности, описанные в гл. VIII. При переходе от отдельного аппарата к технологической установке появляются дополнительные возможности упрощения моделей. [c.301]

    Метод химической ионизации состоит в образовании ионов под действием других ионов, генерируемых в отдельной камере. При химической ионизации положительных ионов генерируемые ионы представляют собой доноры протонов, которые при столкновении с молекулами анализируемых веществ отдают )1м протон, образуя при этом псевдомолекулярные ионы (М+Н)+- По последним можно устанавливать молекулярную массу компонентов в смеси. Аналогично происходит образование отрицательных ионов с акцепторами протонов (С1 , ОН- и др.). Анионная химическая ионизация (с 0Н ) была применена для анализа 17 образцов нефтей с целью идентификации их месторождений. Для описания конкретной нефти бралось 30 характеристичных пиков (для сокращения процесса анализа) [204]. Химическая ионизация с положительными ионами позволяет определить тип азотсодержащих соединений в нефтях [205]. Недостатком метода является его малая эффективность для определения полной структуры или даже элементов структуры компонентов ввиду малой степени фрагментации, отсутствию данных по закономерностям химической ионизации многих классов соединений, встречающихся в нефтях. Однако сочетание этого метода с другими методами масс-спектрометрии может дать полезные сведения для анализа нефтей. Например, распад ионов, полученных при химической ионизации смеси углеводородов и серусодержащнх соединений с выделением частицы 5Н (масса 33) был применен при анализе на приборе ударной активации [206]. [c.136]

    Использование жидкостной хроматографии обычно приводит к разделению соединений по классам с дальнейшей идентификацией индивидуальных компонентов в смеси с помощью-масс-спек-трометрии по пикам молекулярных ионов. В работах [215, 218— 220] даны примеры успешного применения метода для анализа нефтяных фракций. Комбинированием газовой и жидкостной хроматографии и масс-спектрометрии проведена идентификация поли-ядерных аренов и бензохинолинов [215]. Описан прибор, сочетающий хроматограф и масс-спектрометр с ионизацией продуктами распада [221]. [c.138]

    Гваякол- и креозотсульфокпслоты дают с обычныхми алкалоидами, в том числе с морфином и кодеином, аморфные соли [20]. В литературе описан способ очистки сульфокислот осаждением их н-проппл- и циклогексиламином, а также ароматическими аминами [21]. Многие сульфокислоты дают с бензил- [22] или тт-хлор-бензилтиуронппхлоридом [23] кристаллические соли, являюш иеся прекрасным средством для их идентификации. Сульфокислоты легко получаются из большинства углеводородов и поэтому для идентификации последних указанные солп более удобны, чем какие-либо другпе производные. [c.200]

    Чтобы понять основы экспериментального метода, который используется при подобных исследованиях, в дальнейшем будет дано краткое описание ЭПР. Затем будут последовательно обсуждены реакции свободных радикалов, их идентификация и концентрация свободных механорадикалов. [c.157]

    В.В.Кафаровым и И.Н.Дороховым сформулированы основы стратегии системного анализа ХТП введено понятие физико-химической системы (ФХС) как совокупности детерминированно-стохастаческих эффектов и явлений различной природы, происходящих в рабочем объеме агтарата разработана общая методология математического моделирования ХТП как сложных ФХС с использованием топологического принципа формализации, который позволяет изучить комплекс составляющих данный процесс элементов и явлений, автоматизировать все процедуры построения математического описания ХТП проанализированы различные методы построения функциональных операторов (моделей) ФХС и идентификации их параметров рассмотрены задачи системного анализа основных процессов химической технологии (массовой кристаллизации из растворов и газовой фазы, измельчения и смешения сыпучих материалов, сушки, экстракции, ректификации, гетерогенного катализа, полимеризации). [c.12]

    Реально процесс полимеризации этилена в трубчатом реакторе при разлрршых типах инициирования описывается системой из более, чем 30 дифференциальных уравнений в частных производных. Непреодолимые трудности при составлении такого описания начинаются уже на стадии идентификации коэффициентов модели, при определении коэффициентов диффузии. Экспериментальное нахождение этих коэффициентов невозможно, а определить их в результате решения задачи идентификации нереально из-за сложности процесса даже в аксиальном направлении. [c.185]

    Как будет ясно из дальнейшего изложения, все последующее развитие исследования окисления углеводородов не смогло выдвинуть иного объяснения для происхождения отрицательного температурного коэффициента, чем то, которое содержится в описанных выше попытках Уббелодэ и Льюиса и Эльбе. Действительно, для всех таких объяснений, имеющихся в литературе вплоть до наших дней, общим является то, что для промежуточного продукта с ростом температуры все больше увеличивается вероятность вступления в реакцию либо продолжения цепи, либо неценного превращения в конечные продукты и все меньшей становится вероятность вступления в реакцию разветвления. Поэтому в вопросе отрицательного температурного коэффициента задачей, вставшей перед исследователями уже в середине 30-х годов, являлась, во-первых, идентификация химической природы разветвляющего агента в процессе окисления углеводородов, а во-вторых, вскрытие механизма самого акта разветвления. [c.84]


Смотреть страницы где упоминается термин Описание н идентификация: [c.514]    [c.307]    [c.43]    [c.10]    [c.252]    [c.275]   
Смотреть главы в:

Руководство к практическим занятиям по микробиологии Изд.3 -> Описание н идентификация




ПОИСК







© 2024 chem21.info Реклама на сайте