Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вращение взаимодействиями

    При более точных вычислениях термодинамических функций, когда учитывается ангармоничность колебаний, нежесткость вращения, взаимодействие колебаний и вращения и другие эффекты, следует использовать более точные методы расчета суммы по состояниям (3 и применять более общие формулы (98.16)—(98.26).  [c.318]

    Имеется немало оснований для предположения, что в простых молекулах с открытыми цепями возможно легкое вращение вокруг простых связей, и оно действительно осуществляется. Так, в этане две метильные группы независимо вращаются вокруг центральной о-связи, давая бесконечное число конформаций молекулы этана. Хотя подобное вращение происходит очень легко, число конформаций не безгранично. Конформации молекул этана незначительно отличаются по своей энергии в соответствии с различным разделением водородных ядер, расположенных у соседних атомов углерода, а также из-за последовательного изменения во время вращения взаимодействия между электронными облаками связей С—Н. Ниже приведены проекции Ньюмена для молекул этана  [c.209]


    При малых расстояниях В необходимо учитывать реальную картину распределения зарядов в молекуле п фактические размеры постоянных или возникающих в ней виртуальных электри-ческих моментов. Вследствие малости расстояния взаимодействие между электрическими моментами (диполями и т. д.) усиливается настолько, что молекулы стремятся ориентироваться параллельно друг другу. Их движение становится сходным с колебаниями вокруг равновесной ориентации. Наступает так называемое заторможенное вращение, ). Взаимодействие приобретает существенно новые черты. [c.83]

    Два атома Н (показаны внизу) стремятся приблизиться друг к другу в момент образования двойной связи. В противоположность этому состояние, соответствующее экзо-форме, значительно меньше деформировано, что компенсирует разность в теплотах образования эндо- и экзо-олефинов. В том случае, если внутреннее напряжение нельзя снять вращением взаимодействующих групп, в качестве основного продукта образуется экзо-олефнн. [c.82]

    Примерно с конца 30-х годов нашего века начался новый этап бурного развития стереохимии органических соединений. Его породила возникшая под влиянием новых фактов необходимость глубокого пересмотра прежних взглядов, в основе которых лежала концепция свободного вращения отдельных частей молекул вокруг ординарных связей при энергетической равноценности состояний, возникающих в ходе такого вращения. В результате этого пересмотра стало ясно, что органическая химия гораздо более объемна , чем думали ранее, что существуют внутримолекулярные взаимодействия, о которых даже не подозревали, что многие изомеры, вполне равноценные по теории Байера, должны, в свете новых представлений, значительно различаться энергетически. Стало ясно, что стереохимия начинается с этана. [c.14]

    Однако все сказанное справедливо лишь при не слишком высоких температурах. В этих условиях несимметричные заместители, например изопропил, располагаются относительно кольца таким образом, чтобы избежать большого, 1,3-взаимодействия с а-Н в положениях 3 и 5 кольца (XV). С ростом температуры увеличивается заселенность менее выгодных конформаций, в том числе и конформаций, возникающих при вращении изопропильной группы вокруг ее связи с кольцом. Следовательно, все чаще встречаются конформации, в которых один или оба метила изопропильной группы направлены ближе к кольцу (XVI) [c.42]

    Условия внутреннего вращения, в значительной степени влияющие на размеры молекулярных цепей, определяются структурой связей и взаимодействием между атомами и группами, являющимися близкими соседями в цепи (разделенными не более, чем несколькими связями). Эти взаимодействия называют взаимодействиями ближнего порядка в отличие от взаимодействий дальнего порядка (объемных эффектов), обусловленных случайным сближением в пространстве структурных единиц, удаленных друг от друга по цепи [2, 3]. [c.31]


    Термодинамическая гибкость цепи и вращение в боковых группах. Существует определенная корреляция между гибкостью изолированной цепи и Тс. Но поскольку одновременно с уменьщением гибкости растет, как правило, и меж-молекулярное взаимодействие, то неясно, влияет ли она в действительности на температуру стеклования полимеров. Увеличение свободы внутреннего вращения в боковых группах понижает Тс, даже если при этом привески становятся все более массивными [2]. [c.44]

    Для получения эластомера, устойчивого к термоокислению, из полимерной цепи необходимо исключить, по возможности, алифатические углеводородные звенья, а для того чтобы материал сохранял эластичность в широком интервале темпера гур, полимерную цепь следует строить из фрагментов, обеспечивающих наиболее свободное вращение вокруг связей в цепи и одновременно не вызывающих увеличения межмолекулярного взаимодействия. Это может быть достигнуто двумя путями. Один из путей — построение полимерной цепи из атомов неорганических элементов, не склонной к распаду по радикальному механизму. Наиболее известным примером такой цепи является силоксановая цепь. [c.501]

    Появившийся в уравнении (X, 37) дополнительный член 1п а всегда включается в выражение для 5др он обусловлен явлением взаимодействия вращения молекулы и спина ядра (см. след. стр.). [c.338]

    Климат зависит не только от взаимодействия солнечного излучения с атмосферой. На него влияют также вращение Земли (вызывающее смену дня и ночи и влияющее на розу ветров), движение вокруг Солнца (вызывающее смену времен года), неравномерное распределение солнечной радиации по земной поверхности (влияющее на розу ветров) и различные термические свойства материалов поверхности Земли. В следующем разделе мы рассмотрим влияние последнего фактора. [c.400]

    Для опытов [30] по взаимодействию углеводородной пленки с кислородом использовали пленку N-гексадекан. Последний был выбран из-за возможности создания равномерной углеводородной пленки на внутренней поверхности трубы и, кроме того, из-за сравнительной простоты его аналитического определения. Поверхность трубы покрывали раствором гексадекана в четыреххлористом углероде. Для испарения растворителя трубу помещали в горячую ванну,, вращением трубы в которой удавалось получать довольно равномерные пленки. [c.74]

    Недостатком метода Кирквуда, отмеченным Я- И. Френкелем, является то обстоятельство, что нельзя совместить представление о вращении молекулы с ее жесткой связью с соседями. Поэтому при рассмотрении ориентации диполей в электрическом поле необходимо учитывать их заторможенность. Очевидно, что эта заторможенность существенно влияет на поляризацию сорбированных молекул, взаимодействующих с молекулами твердого сорбента, подвижность которых значительно меньше подвижности окружающих диполь молекул жидкости. [c.252]

    Отметим, что подобный вывод можно сделать относительно спин-орбитального взаимодействия. О существовании орбитального углового момента электрона говорит простая одноэлектронная схема. Для того чтобы у электрона был орбитальный угловой момент, он должен находиться на вырожденных орбиталях, что позволит ему свободно перемещаться с одной орбитали на другую и при этом вращаться вокруг оси. Рассмотрим, например, и -орбитали металлоцена. Вырожденность этой пары орбиталей допускает вращение вокруг оси и существование углового момента. Все состояния Е и Т при этом характеризуются наличием спин-орбитального взаимодействия, если не считать состояний Е в точечных группах О,, и Т . В этих последних случаях состояния Е составлены из с1 2-у2- и ,2-орбиталей, поэтому электрон не может вращаться вокруг оси. [c.87]

    Механические взаимоотношения между элементами вызываются внешними и внутренними взаимодействиями. К внешним относятся взаимодействия между элементами печной системы, такие как истирание кускового и гранулированного сырья футеровкой, вымывание футеровки раскаленными газами н расплавами, растрескивание и разрушение футеровки из-за ударов перемешивающегося кускового сырья, а также истирание им. К внутренним взаимодействиям относятся деформация футеровки при вращении, местные расплавления, раздавливание Кусковых и гранулированных исходных материалов под действием собственного веса и т. д, [c.68]

    Молекулярность реакции определяется числом молекул одновременно сталкивающихся и приводящих к химическим пре вращениям. Взаимодействия подобного рода носят название эле ментарного акта химического превращения. Как ввдно, молеку лярность реакции, в отличие от порядка, имеет вполне определен ный физический смысл. Например, реакция 2 = 21 — мономоле кулярная, так как в основе ее лежит распад исходного вещества реакция 12+Н2 = 2Н1 — бимолекулярная. Реакция рекомбинации атомов водорода в молекулу с участием третьей частицы является примером тримолекудярной реакции (Н+Н+М =Н2+М). Молекулярность более высокого порядка не встречается, так как одновременное столкновение четырех частиц почти невероятно. [c.11]

    Аналогичная картина наблюдается п на других расстояниях от амбразуры горелки при несколько ином соотношении количественных характеристик. Следовательно, меняя направление вращения вихревых потоков и варьируя интенсивность крутки, можно влиять на динамику топочных газов, т. е. на характер движения среды, окружающей указанные вихри. В свою очередь активное воздействие на аэроструктуру индивидуального факела или группы вихревых пламен может оказывать весьма существенное влияние на теплообмен в топочной камере. Скоростные поля закрученных пламен соседних горелочных стройств образуют суммарное поле, профиль которого зависит от интенсивности крутки и от направления вращения взаимодействующих пламен. Так, например, при встречном направлении вращения пламен вершина профиля динамического напора направлена вниз, а при расходящемся направлении вращения пламен, наоборот, вверх. Есть основания полагать, что, ис- [c.155]


    В работе [20] обращалось внимание на то, что величина в значительной мере обусловлена изменением приведенного шмента инерции три вращении. Взаимодействие между атомом во внутреннем роторе и остовом может быть индивидуально выражеш) рядом Фурье как указывает Фэйтли [2], это предположение следует считать подтвердившмся. [c.8]

    Очевидно, электронное движение полосы карбонильной группы при 2960 А напоминает первый из этих типов (г >з). В отсутствие других групп в окружении карбонильной группы электроны последней двигаются по путям, более или менее близким к круговым, так что электрические дипольные моменты стремятся скомпенсироваться. Если карбонильная группа находится в асимметрической молекуле, такой, как камфара, окружение асимметрической молекулы несколько искажает пути, поэтому они в некоторой мере становятся спиральньми и возникает существенный вклад в оптическое вращение. Аналогично электронное движение, ответственное за сильные полосы поглощения, происходит по более или менее прямолинейным путям, и в асимметрической молекуле окружение слегка искажает эти линейные пути, придавая им в некоторой мере спиральный характер и вызывая появление оптического вращения. Взаимодействия между отдельными группами в асимметрической молекуле, искажающие таким образом электронные пути и вызывающие оптическое вращение, называются вицинальным действием. [c.480]

    Молекула может переходить из одной конформации в другую путем внутреннего вращения (по причинам, которые станут ясными далее, это вращение нельзя больше называть свободным). Некоторые конформации обладают минимумами энергии в том смысле, что в какую бы сторону не происходило внутреннее вращение, сумма энергий несвязанных взаимодействий растет, т. е. увеличивается потенциальная энергия молекулы в целом. Все конформации этого типа обладают известной устойчивостью однако минимумы энергии у разных конформаций одной молекулы могут быть неодинаковой глубины, поэтому различаются и их устойчивости. Самую выгодную из таких конформаций какой-либо молекулы часто называют обычной конформацией, или просто конформацией, данной молекулы. Конформации, обладающие максимумами энергии (внутреннее вращение в любую сторону только уменьшает их энергию), неустойчивы. Переходы из одной относительно выгодной конформации в другую путем внутреннего вращения обязательно проходят через конформации с максимумами энергии эти невыгодные конформации часто называют барьерами вращения. Следовательно, можно сказать, что легкость перехода из одной относительно выгодной конформации в другую определяется высотой разделяющих ее барьеров. При вращении одной части молекулы относительно другой ее части вокруг соединяющей их связи происходит поочередное преодоление ряда барье- [c.16]

    В заключение следует предупредить читателя, что при всех достоинствах конформационной теории ее не следует считать венцом развития стереохимии. В частности, барьер внутреннего вращения этана, рассчитанный с использованием значений энергии классических ван-дер-ваальсовых сил, составил всего 3—4 кДж/моль, тогда как по термодинамическим данным 13 кДж/моль. Следовательно, существуют какие-то неизвестные взаимодействия, которые пока нельзя учесть и даже назвать. Правда, выдвинут ряд идей и расчетов на их основе [23, с. 14—16], но вопрос все же нельзя считать решенным. Однако и сегодня конформационная теория уже может много дать теории катализа, надо только почаще обращаться к такой возможности. [c.18]

    Вращение метильных групп этана будет свободным только и толг случае, когда можно пренебречь взаимодействиями атомов водорода разных групп СНд. Этот случай осуществляется при температурах значительно выше комнатной, когда энергия, приходящаяся на в])ащеиие вокруг связи С—С, превосходит величину тормозящего потенциала. При более низких температурах аффект взаимодействия атомов водорода полностью проявится, и ориентировка, схематически изображенная па рис. 3 а, окажется предпочтительной перед ориентировкой 3 б из-за отталкивания атомов водорода верхней группы СНз (центры атомов изображены кружками) и нижней, расположенной под плоскостью рис. 3 (пунктирные кружки большего диаметра). [c.190]

    Работа асинхронного двигателя основана на взаимодействии электромагнитного поля обмотки 5 статора и токов, индуктируемых в роторе 2. При прохождении трехфазного переменного тока по обмотке статора двигателя создается вращающееся магнитное поле, которое пересекает обмотку ротора и индуктирует в ней переменный ток. Возникшие в обмотке ротора токи взаимодействуют с вращающимся магнитным полем статора, и ротор приходит во вращательное движение в сторону вращения поля статора. При этом ротор отстает от магнитного поля статора, т. е. вращается не в такт, асинхронно с полем, поэтому и двигатели называются асин-хропнымн. [c.75]

    Если ротор синхронного электродвигателя имеет, кроме полюсов возбуждения, еще и короткозамкнутую асинхронную обмотку, то осуществляют так называемый асинхронный пуск сипхрон-Hoi o двигателя. Прн включении напряжения трехфазного тока в обмотку статора синхронного двигателя возникает вращающееся магнитное поле, которое индуктирует токи в пусковой короткозамкнутой обмотке ротора. Эти токи, взаимодействуя с вращающимся полем статора, приводят ротор во вращение. При достижеиин ротором необходимого числа оборотов включают в его обмотку постоянный ток. Во время работы синхронного электродвигателя поршневых машин индуктированные токи в пусковой обмотке уменьшают колебательные движения ротора. [c.77]

    Образование из эпокисей каучукоподобных полимеров связано с раскрытием напряженных окисных циклов под влиянием каталитических агентов и соединением в линейные цепи. Структурной особенностью этих каучуков является присутствие в основной полимерной цепи простых эфирных групп, придающих линейной молекуле большую гибкость [4]. Этот эффект обусловлен, по-видимому, низким потенциалом барьера вращения по связи углерод — кислород. В то же время полярность эфирного кислорода и наличие в цепи внутренних диполей должны привести к усилению межмолекулярных взаимодействий и повышению плотности энергии молекулярной когезии [1, 5, 6]. В результате подвижность цепей и свойства полимеров будет определяться сложным сухммар-ным эффектом двух противоположно действующих факторов [1, 6]. Отсутствие ненасыщенных связей в основной цепи придает эпоксидным каучукам значительную стойкость к действию тепла, кислорода, озона и других агентов по сравнению с непредельными каучуками, полученными на основе диеновых мономеров. [c.574]

    Спектры поглощения растворов и веществ в жидком и твердом состояниях. Энергия межмолекулярного взаимодействия в конденсированном состоянии больше энергии вращения молекул. Молекулы не могут совершать полные обороты и вращательные полосы в спектрах не наблюдаются. Вместе с этим полосы поглощения, связанные с изменением энергии колебательного движения и электронного возбужде-1П1Я молекул, становятся более широкими. [c.21]

    Поэтому другие сообщения [623] о некоторой небольшой оптической индукции при присоединении СС12 в присутствии оптически активных аминов Р при К = Е1, РЬ и Н = Ме, Е1 (схема 3.10) были встречены сдержанно. Несмотря на то что Макоша рассмотрел предположения о появлении интермедиата типа О, который представляет собой илид, образованный при взаимодействии карбена с атомом азота, и показал [433], что его образование невозможно, данные этой работы игнорируются в некоторых более поздних исследованиях, и такие структуры все еще используются. [623] для объяснения хода реакции. Для того чтобы твердо установить, возможна ли оптическая индукция подобного типа, была проведена реакция с хлороформом и концентрированным раствором гидроксида натрия в присутствии (5)-(+)-К,К-диметилфенилэтиламина. Перегнанный продукт реакции действительно обладал небольшим оптическим вращением, которое, однако, исчезало при тщательной очистке [843, 1697]. [c.106]

    Для сужения неоднородно-уширенных линий используют метод согласования восприимчивостей, в котором для уменьшения Ах пространство между частицами заполняют инертной жидкостью (не смешивающейся с водой и слабо взаимодействующей с поверхностью, например ССЦ) [613], или метод вращения под магическим углом со скоростью Vrot Avhet [614]. Неоднородное уширение может также уменьшаться или сниматься полностью вследствие интенсивного диффузионного движения молекул воды [614]. Это происходит, если размер магнитных неоднородностей меньше по порядку величины, чем / УO/(Avhet) 1 мкм. [c.238]

    Одновременный выход в 1965 г. монографий Конформационный анализ , о которой мы уже упоминали, и Конформационная теория М. Ханака ознаменовал окончательное становление конформационного анали за. Традиции, зачастую не воспринимаемые сознательно, нередко определяют использование теоретических концепций и терминологии. Термин конформация появился в органической химии, и поэтому конформационный анализфассматривался главным образом как раздел последней. Однако после развития их органиками конформационные представления перехми и в другие разделы ХИМИИ. Термин конформация стал широко использоваться и в химической физике. Подобное проникновение очень характерно для науки второй половины XX в., отличительной чертой которой стала взаимосвязь и пересечение различных областей знания. Однако следуёт отметить, что собственно конформационному анализу взаимодействие с химической физикой сослужило в одном отношении дурную службу. Как известно, химики нередко склонны к излишнему пиетету по отношению к работе физиков. Многочисленные публикации по внутреннему вращению, появившиеся во время становления конформационного анализа, повлияли на восприятие конфор ма-циоинои изомерии, причём установилась обусловленная психологическими причинами традиция связывать [c.129]

    Если молекула обладает неспаренным электроном, дипольный эффект передается через пространство и ощущается исследуемым ядром. Когда д-фактор изотропен, дипольные эффекты усредняются до нуля вследствие быстрого вращения молекулы в поле. Это явление рассматривалось в главе, посвященной ЭПР, где было показано, что этот же самый эффект приводит к дипольному вкладу в сверхтонкое взаимодействие, который усредняется до нуля в растворе. В тех случаях, когда д-фактор анизотропен, величина дипольного вклада в магнитное поле на интересующем нас ядре, обусловленная плотностью неспаренного электрона на металле, зависит от ориентации молекулы относительно поля. Поскольку для разных ориентаций д-фактор имеет различные значения, этот пространственный вклад не должен усредняться до нуля в результате быстрого вращения молекулы. Таким образом, те же самые эффекты, которые приводят к анизотропии д-фактора, дают и псевдокон-тактный вклад. Этот псевдоконтактный эффект, связанный с влиянием через пространство, можно сопоставить с анизотропным вкладом соседнего атома, рассмотренным в гл. 8. который, как было показано, зависит от разности в для различных ориентаций. То же самое справедливо для Применяя уравнение (12.8), мы рассматриваем систему, в которой Д% меняется симбатно Ад [2]. Часть гамильтониана, описывающая псевдоконтактный вклад, аналогична гамильтониану дипольного взаимодействия, рассмотренному в гл. 9. [c.171]

    Структура жидких углеводородов определяется энергетическими возможностями их молекул, причем существует три варианта жидкого состояния длинноцепных углеводородов i[8] полная свобода вращения молекул жидкости при температуре, близкой к температуре кипения состояние, при котором возможно движение отдельных звеньев цепи псевдокристаллическое состояние при приближении к температуре кристаллизации. Переход углеводородов из жидкого состояния в твердое (кристаллизация) и из твердого в жидкое (плавление) определяется характером сил межмолекулярного взаимодействия. Длинноцепные углеводороды, к ко-которым относятся нормальные (начиная с ie) и слаборазветв-ленные парафиновые, нафтеновые и ароматические углеводороды с длинными алкильными цепями, являются неполярными или слабополярными веществами, поэтому взаимодействие между их молекулами происходит в основном за счет аддитивных дисперсионных сил. Длинноцепные углеводороды характеризуются неравномерным распределением сил межмолекулярного взаимодействия. У таких углеводородов наиболее сильно развиты дисперсионные силы, направленные перпендикулярно оси цепи нормальнога строения, что обусловливает их возможность к сближению при понижении температуры, когда тепловое движение молекул умень-щается. При переходе из жидкого состояния в твердое и наоборот площадь поперечного сечения алкильных цепей изменяется. Увеличение площади поперечного сечения молекул при плавлении обусловлено их вращением вокруг связей углерод — углерод, в результате чего молекула может занимать больший объем [8]. Когда эффективное поперёчное сечение молекул превышает допустимое силами межмолекулярного, притяжения, вещество плавится. При одном и том же числе атомов углерода в молекуле наиболее высокой температурой плавления обладают парафины нормального строения, имеющие возможность дисперсионного взаимодействия между всеми атомами углерода соседних молекул. Наличие в-молекуле разветвлений или циклов понижает возможность их ориентировки, так как межмолекулярные силы взаимодействия в этом случае проявляются в основном в цепях нормального строения,, что приводит к резкому снижению температуры плавления. [c.119]

    Вокруг липни простых ковалентных связей в многоатомных молекулах может происходить вращение одной части молекулы относительно другой (рнс. 15), вызываемое тепловым движением молекул. Это вращение большей частью не бывает свободным, а испытывает те или другие стеснения вследствие взаимодействия частей молекулы, несущих заряды, нли по другим причинам, частью еще невыясненным. Принято говорить, что в этих случаях происходит торможение вращения и что суи ествует некоторый энергетический барьер, тормозящий его. Так, для 1,2-дихлорэтана вели- чина энергетического барьера составляет около 5 ккал. Можно представить себе два характерных промежуточных состояния молекулы дихлорэтана при вращении одной части ее относительно другой первое положение (рис. 16, а), когда атомы хлора находятся в наиболее близком друг к другу положении (цис-форма), и второе, про-гивоположное положение (рис. 16,6), когда спи наиболее удалены друг от друга (транс-форма). [c.74]

    Как показал Лондон (1930) на основе квантовой механики, мгновенные диполи, возникающие в атомах и молекулах при вращении электронов, тоже вызывают взаимное притяжение молекул. Взаимное колебание атомов в молекулах и взаимные столкновения молекул вызывают частые сближения нх между собой. Быстрые вращения электронов в атомах (и молекулах) в этих условиях вызывают в них быстро сменяющиеся (т. е. коротко периодические) возмущения. Вращение электронов в атомах происходит с гораздо больщей частотой, чем колебания атомов в молекуле (и тем более, чем частота столкновений самих молекул). Поэтому сближение атомов отражается на движении электронов в атомах движение электронов в обоих атомах начинает совершаться в такт, ибо это отвечает меньшему запасу энергии системы и обусловлиг вает взаимное притяжение молекул. Такое взаимодействие называется дисперсионным. (Название произошло от того, что количественная теория взаимодействия тесно связана с теорией дисперсии света.) Энергия дисперсионного взаимодействия дисп. не зависит от температуры и обратно пропорциональна шестой степени расстояния между молекулами. [c.88]

    Переходы между термами различной симметрии обычно вызываются таким движепием яд( р, которое искажает симметрию гамильтониана электронов,— например, вращением молекулярной оси в случае двух атомов илн вращением плоскости системы трех атомов, В этом случае матричный элемент взаимодействия ( , 2 порядка вращательного кванта. Тогда для скоростей, отвечающих температуре 1000 К и средним атомным массам р, 10 при разности наклоноп термов AF 2 эв/А, на основании (9.12) получим [c.61]

    Суммарный эффект этих двух поправок таков, что, например, для молекул, содержащих атомы водорода (быстрое вращение, малая приведенная масса ц), л оказывается заметно мепьше л,, и соответствующее этому уменьшение параметра 0 в (14.2) обусловливает сильное возрастание вероятности несмотря на малую долю предпочтительных конфигураций. Например, для столкновения НС1 с Аг эффективная масса fi оказывается равной (в зависимости от выбора потенциала взаимодействия) 3 или 4 вместо приведенной массы [X = 19. При подстановке в параметр OJT) l> вместо величины х вероятность дезактивации НС1 (у = 1) нри столкпов(Ч[иях с Аг попадает в полосу модели SSH (см. рис. 19). [c.88]


Смотреть страницы где упоминается термин Вращение взаимодействиями: [c.154]    [c.198]    [c.34]    [c.60]    [c.130]    [c.77]    [c.483]    [c.5]    [c.19]    [c.235]    [c.81]    [c.70]    [c.83]    [c.89]   
ЯМР в одном и двух измерениях (1990) -- [ c.54 ]




ПОИСК







© 2025 chem21.info Реклама на сайте