Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Крекинг химические превращения

    Под термическими процессами подразумевают процессы химических превращений нефтяного сырья — совокупности реакций крекинга (распада) и уплотнения, осуществляемые термически, то есть без применения катализаторов. Основные параметры термических процессов, влияющие на ассортимент, материальный баланс и качество получаемых продуктов, — качество сырья, давление, температура и продолжительность термолиза.  [c.7]


    I. Использование технологических группировок. Можно, например, считать индивидуальными реагирующими веществами бензиновую фракцию, газ, мазут и т. п. Их превращения позволяют охарактеризовать химические процессы, направленные на изменение молекулярной массы и протекающие при крекинге или гидрокрекинге. Для процессов крекинга нужно, однако [1], учитывать, что при технологической группировке за непревращен-ное сырье принимается фракция с одинаковыми температурами начала и конца кипения (или температурами 10 и 90%-ных отгонов), что и у сырья. На самом деле эта фракция может отличаться от сырья по ряду показателей вследствие химических превращений, приводящих к появлению новых веществ, но выкипающих в тех же пределах, что и сырье. Иными словами, технологическая группировка позволяет учитывать появление новых фракций, но оказывается неудобной при учете влияния условий процесса на качественные показатели продуктов или влияния рециркуляции. [c.92]

    Уже отмечалось, что дезактивация — процесс более медленный, чем крекинг. Можно считать [54], что если максимальное время, необходимое для химического превращения, равно 10 с, то дезактивация протекает в течение 10 —10 с. Это позволяет не использовать нестационарную модель в частных производных, а дополнить стационарное математическое описание уравнениями для изменения констант скоростей со временем (см. табл. Х-7). [c.373]

    Увеличение размеров реакционных устройств для проведения процессов нефтепереработки и нефтехимии может сопровождаться изменением их конструкции (например, изменением устройства для распределения сырья в реакторе и т. д.). Не удается также безгранично уменьшать размеры реактора. Изучение технических процессов крекинга, платформинга и других на одном-двух зернах катализатора в дифференциальном реакторе едва ли возможно, так как для анализа результатов необходимы значительные количества продуктов, а при малых количествах катализатора это требует длительного времени работы. Вследствие этого приходится изучать процесс в интегральном реакторе в условиях, когда физический транспорт может оказывать тормозящее действие на химические превращения. [c.136]

    К этим реакциям относят химические превращения углеводородов с образованием продуктов разложения. При относительно невысоких температурах (400—600°С) молекулярные продукты образуются главным образом путем разрыва одной С—С-связи (крекинг), при повышенных температурах (выше 650—700 °С) число разрываемых С—С-связей на каждую молекулу увеличивается и происходит разрыв по связям С—Н [c.278]


    Теоретические основы. Коксование представляет собой одну из разновидностей термических процессов, и для него характерны те же химические превращения, которые происходят при термическом крекинге (см. раздел 2.2.1). Аналогично влияют на процесс такие факторы, как температура, давление, продолжительность пребывания в реакционной зоне. При коксовании важное место приобретают вопросы получения кокса с заданными показателями, которые решаются путем подготовки сырья и подбора условий коксования с учетом принципов физико-химической механики нефтяных дисперсных систем. [c.93]

    Температура. При температурах ниже 300—340 °С химические превращения незначительны. С повышением температуры от 340 до 400 °С степень превращения углеводородов возрастает при дальнейшем увеличении температуры растет доля реакций крекинга и поликонденсации. Однако поскольку с течением времени отложения кокса на катализаторе увеличиваются, его активность падает. Для сохранения постоянной глубины гидрирования температуру в реакторе повышают, в конце рабочего пробега катализатора она может превышать начальную на 20— 60 °С. [c.239]

    Один и тот же типовой процесс может быть реализован в аппаратах различного вида, которые могут существенно различаться по своим рабочим характеристикам, габаритам, массе. Правильный выбор вида и размеров аппарата для осуществления типового процесса позволяет наиболее рационально организовать всю технологическую последовательность переработки сырья. Для осуществления различных основных процессов в ряде случаев могут быть использованы аппараты, одинаковые по конструкции, например ректификационная колонна и десорбер. Иногда в одном аппарате можно одновременно осуществлять несколько процессов, например в реакторе каталитического крекинга, в котором происходят процессы химического превращения сырья, транспорт катализатора потоком паров, сепарация катализатора из потока паров в циклонах. Следует отметить, что всем типовым процессам сопутствуют гидравлические и теплообменные процессы. [c.12]

    Химические реакции, проводимые в присутствии твердых пористых катализаторов (каталитический крекинг, дегидрирование, гидроочистка и др.), характеризуются следующими основными стадиями, определяемыми такими процессами, как химическое превращение и диффузия компонентов к поверхности и в порах [c.375]

    Гидрокрекинг можно рассматривать как сочетание процессов каталитического крекинга исходных веществ и гидрирования ненасыщенных соединений. При гидрокрекинге химическим превращениям подвергаются как углеводороды, так и неуглеводородные соединения, причем в последнем случае гидрогенолиз идет быстрее, что позволяет удалять из сырья гетероатомы в виде Н З, N1 9 и НаО. Легче всего происходит гидрогенолиз серусодержащих соединений, наиболее устойчивы азотсодержащие соединения. Образовавшиеся в результате крекинга осколки исходных соединений, а также содержащиеся в сырье ненасыщенные углеводороды присоединяют водород, образуя соответствующие нафтеновые и парафиновые углеводороды. [c.135]

    Перегонкой можно разделить углеводороды нефти на фракции с большим или меньшим содержанием водорода. На первом этапе развития переработки пефти ограничивались перегонкой ее [3, с. 11] с последующей очисткой светлых нефтепродуктов щелочью и кислотой. Дальнейшее развитие технологии переработки нефти шло от физического процесса перегонки к использованию более сложных химических превращений углеводородов с целью повышения выхода необходимых народному хозяйству нефтепродуктов и придания им требуемых свойств. Применение процессов крекинга [4, с. 9] (термического и каталитического крекинга, коксования) привело к перераспределению водорода сырья с образованием бодее легких жидких и газообразных углеводородов при одновременном [c.11]

    Общее состоит в том, что в установках крекинга различных модификаций происходят практически одни и те же физико-химические превращения веществ, производятся одни и те же продукты, выполняются аналогичные измерения. [c.18]

    Так, например, материальный баланс регенератора установки каталитического крекинга составляется на основе данных по количеству и составу выжигаемого с катализатора кокса, учитывая, что известны реакции горения составных частей кокса (углерод, водород, сера) и коэффициент избытка воздуха. Однако в большинстве случаев при химической переработке нефтяного сырья происходят сложные химические превращения и поэтому материальные балансы надежно могут быть составлены только на основе экспериментальных данных, полученных на промышленных или опытных установках. [c.630]

    Правильная теория должна объяснить не только качественный и количественный состав продуктов крекинга, но также наблюдаемую кинетику процесса. Более того, концентрации активных проводников химического превращения—радикалов, вычисляемые согласно теории, должны соответствовать значениям, находимым для них опытным путем. Поэтому к радикально-цепной теории крекинга предъявляются дополнительные требования в отношении полной интерпретации данных, которые касаются кинетики крекинга алканов. [c.27]


    Основным типом химических превращений при крекинге являются эндотермические реакции разложения. Остальные реакции —полимеризации, алкилирования, ароматизации, деалкилирования, изомеризации и перераспределения водорода — экзотермичны. При проведении процесса на цеолитсодержащих катализаторах роль экзотермических реакций возрастает. Некоторые из них являются первичными, но большинство — вторичными. Рассмотрим [c.44]

    В настоящее время на нефтеперерабатывающих заводах применяют два типа установок каталитического крекинга 1) установки, на которых процесс химического превращения (крекинг сырья) и регенерации катализатора осуществляется в сплошном слое катализатора (катализатор шариковый) 2) установки, на которых те же процессы происходят в псевдоожиженном, или кипящем, слое катализатора (катализатор порошкообразный). [c.276]

    Некоторые направления химических превращений при крекинге нефтяных фракций можно выявить при анализе группового углеводородного состава катализата, т. ё. всей реакционной смесн, выходящей из реактора. [c.104]

    Термические превращения непредельных углеводородов. В сырье для крекинга ненасыщенные углеводороды отсутствуют, но роль их в химии крекинга очень велика, так как они всегда образуются при распаде углеводородов других классов. Для непредельных углеводородов характерно большое разнообразие химических превращений. На примере олефинов особенно легко проследить решающее влияние температуры на направление превращения. Низкие температуры и высокие давления стимулируют реакции уплотнения низкомолекулярных олефинов [c.176]

    Подводя итог рассмотрению химических превращений углеводородов различного строения при температурах крекинга и пиролиза, можно сделать вывод, что при деструктивной переработке нефтяного сырья должны осуществляться следующие основные реакции распад, деалкилирование, дегидрирование, полимеризация, циклизация непредельных, дециклизация нафтенов, [c.181]

    Основными процессами химического превращения продуктов первичной переработки нефти являются термический и каталитический крекинг, пиролиз, каталитический риформинг и гидрокрекинг, гидроочистка нефтепродуктов от серусодержащих соединений. [c.12]

    Учет химических превращений, происходящих при каталитическом крекинге, сложен и требует знания углеводородного состава исходных и конечных продуктов. [c.95]

    Коллоидно-химические представления при рассмотрении физических и физико-химических превращений нефтяного сырья позволяют в некоторых случаях достичь оригинальных результатов при анализе и теоретическом обосновании аномалий, выявленных в ходе экспериментальных исследований, а также при совершенствовании существующих и разработке новых процессов и видов продуктов с заданными функциональными свойствами. Особый интерес при этом представляют процессы переработки и продукты высокомолекулярной составляющей нефти. К подобным процессам можно отнести уже упоминавшиеся ранее вакуумную перегонку мазута, различные виды термического крекинга нефтяного остаточного сырья, производство битумов и т.п. Как правило, интенсификация указанных процессов связана с внешними воздействиями на сырье. Другим, не менее важным направлением является исправление качества конечных продуктов переработки, создание товарной продукции на базе промежуточных и побочных фракций нефтеперерабатывающих установок. [c.239]

    Нефтеперерабатывающую промышленность можно рассматривать как крупнейшую по масштабам производства отрасль химической технологии. В настоящее время почти вся нефть, добываемая в различных странах мира, подвергается тем или иным процессам переработки. Для получения товарных продуктов, по выходу и качеству соответствующих требованиям современного рынка, необходимы глубокие химические превращения, позволяющие достигнуть максимального выхода ценных продуктов, в частности высокооктановых бензинов. Так, в США около 45% перерабатываемой нефти подвергают каталитическому крекингу и около 20% бензиновых фракций — каталитическому риформингу. Значительное вытеснение термических процессов крекинга и риформинга каталитическими процессами за период около 20 лет убедительно доказывает высокую экономичность и эффективность каталитических процессов. [c.168]

    Ввиду того что потребность в бензине с каждым годом возрастает, широкое применение нашли процессы, при помощи которых более тяжелые нефтяные фракции (керосиновые, соляровые дистилляты и др.) превращают в бензин. Одним из первых таких процессов был термический крекинг, который осуществляется в двух видах крекинг в паро-жидкостной и паровой фа-зах. Первый проводят при сравнительно низких температурах (390—500°С) и весьма высоком давлении [(12—50) 10 Па], для того чтобы часть вещества оставалась в жидкой фазе. При этом стремятся получить больший выход бензина и меньший — газа. Крекинг в паровой фазе осуществляется при более высоких температурах (500—600° С) и несколько меньшем давлении. О химических превращениях углеводородов при термическом разложении говорилось выше. Бензин крекинга отличается от бензина прямой перегонки повышенным содержанием непредельных углеводородов. [c.56]

    Для объяснения на6. 1юдаемых эффектов была построена математическая модель, основанная на принципах механики многофазных сред и описывающая гидродинамические процессы с учетом физико-химических превращений, происхо-дящ11х в райзере лифт-реактора каталитического крекинга при подаче восстанавливающего агента [4.38, 4.39]. Результаты численного решеипя показывают (рнс. 4.4), что существующий в реальных условиях характер течения в райзере реакюра не обеспечивает необходимое перемешивание подаваемого топливного газа с катализатором над областью ввода катализатора в райзер. Это приводит, согласно полученным [c.123]

    Пиролиз, крекинг и дегидрирование различных нефтяных фракций приводят к получению сложных смесей, содержащих практически все известные углеводороды парафиновые, олефиновые, диеновые, ацетиленовые. Из этих смесей ректификацией легко выделяются фракции углеводородов с определенным числом углеродных атомов, в частности фракции С4 и С5. Выделение более узких фракций и индивидуальных углеводородов осуществить значительно труднее, так как компоненты этих фракций имеют весьма близкие температуры кипения. Для их разделения наряду с обычной ректификацией приходится прибегать к использованию экстракции, азеотропной и экстрактивной ректификации, (емосорбции и некоторым способам, связанным с химическим превращением разделяемых компонентов. [c.664]

    Термин смолисто-асфальтеновые вещества правильно отражает ие только общие св011ства этих двух ва кнейших групп высокомолекулярных соединений нефти, иб и количественные соотношения пх в сырых нефтях, природных асфальтах, в остаточных нефтепродуктах (лгазуты, гудроны) и да ке в таких остаточных нефтепродуктах, претерпевших глубокие химические превращения, как окисленный битум и гудроны и,) остатков тер.мического и каталитического крекинга. В сырых нефтях и в тяжелых остатках от прямой перегонки нефтей отношения смолы асфальтепы, как правило, колеблются в пределах от 9 1 до 7 3, а в окисленных битумах и тяжелых крекинг-остатках — от 7 3 до 1 1. Следовательно, понятие смоли-сто-асфальтеновые вещества правильно отражает качественное и количественное положения этих высокомолекулярных составляющих нефтей и нефтепродуктов и ему поэтому, безусловно, должно быть отдано предпочтение перед таким менее удачным термином, как асфальтово-смолистые вещества, нередко применяемом в нефтяной литературе. [c.434]

    Очевидно, что метод ускорения, примененный для анализа вопроса о кинетических закономерностях крекинга алканов в присутствии добавок с двойными функцияим, может найти более широкое применение в химической кинетике как общий прием решения задач о скорости сложных химических превращений. Разобранные на примере крекинга алканов кинетические закономерности модшо распространить на любые [c.39]

    Но если принять, что состав продуктов обычного и полностью заторможенного крекинга одинаковый, то из представления о крекинге, как совокупности цепной и молекулярной реакций, следует, что различные механизмы превращения исходных веществ в одинаковых условиях могут реально давать одни и те же продукты. Кроме того, кинетика остаточной реакции молекулярной перегруппировки и ради-кально-цепной части крекинга совпадают по форме, хотя коэффициенты А я В приобретают различные значения. В последнем нет ничего удивительного, так как исследовате-, ли давно привыкли к такой ситуации в кинетике, при которой с данной суммарной скоростью превращения могут быть сопоставлены несколько механизмов. Однако всегда молчаливо предполагалось, что реальным является только один из виртуальных механизмов. Самое удивительное здесь состоит в том, что при возникновении определенных продуктов долж но учитывать сосуществование нескольких равноправных путей образования их из одних и тех же исходных веществ. Это означало бы, что при объяснении результатов некоторого химического превращения мы должны исходить из принципа суперпозиции механизмов. [c.43]

    Исследование кинетики и термодинамики радикальных реакций имеет важное научное и практическое значение и является актуальным ввиду того, что многие химические превращения (крекинг, полимеризация, окисление и др.) протекают с участием радикалов или, как принято говорить,, по радикально-цепному механизму. Изучение физикохимических свойств радикалов и установление связи между их строением и реакционной способностью необходимо для вылсненил механизма названных превращений и решения задач автоматизации и оптимального управления химическим производством. [c.5]

    Большое распространение имеют кондер[сационные методы формирования НДС. Образование дисперсных частиц принципиально возможно как в результате физических превращений (кипение, конденсация, экстракция, кристаллизация и др.), так и химических превращений (крекинг, полимеризация, поликоы- [c.65]

    Из данных, приведенных в табл. 18, следует, что остаточное содержанпе серы и степень обессеривания дизельного топлива в зависимости от количества добавки проходит через экстремум, хотя и маловыраженный. Повышение температуры и количества добавки (до 3%мас.) увеличивает степень обессеривания дизельного топлива, в результате чего снижается остаточное содержание серы в нем, или при сохранении остаточного содержания серы в дизельном топливе можно повыснть производительность установки. Стимулирование химических превращений на стадии физических превращений может быть реализовано и при осу" ществлении каталитических процессов. Сырьем каталитических процессов являются бензиновые и дизельные фракции, вакуумные дистилляты и мазуты, существенно различающиеся по содержанию ПАВ естественного происхождения, а следовательно, и по склонности к образованию НДС в условиях процесса. Естественными ПАВ в сырье каталитического крекинга являются карбоновые кислоты, содержание которых в керосиновой фракции может достигать десятых долей процента и увеличиваться (до 1,0%) по. мере перехода к более тяжелым фракциям. Поверхностно-активными свойствами обладают полициклические ароматические углеводороды, смолы и асфальтены, которые могут содержаться в сырье каталитического крекинга. [c.157]

    Схема химических превращений при крекинге углеводородов но Саханен (12а) [c.226]

    Процессы крекинга аключаются в первую очередь в превращении пара-финоиых углеводородов либо как таковых, либо в виде алкильных заместителей нафтеновых или ароматических циклов. Процессы получения крекинг-бенуиггов закономерно сопровождаются образованием газообразных алифатических углеводородов, так называемых крекинг-газов, которые состоят из смесей олефинов и нарафинов и являются важнейшим сырьем для промышленности органического синтеза. Поэтому следует поближе познакомиться с этими процессами и с химическими превращениями, лежащими в их основе. [c.224]

    Глубина переработки нефти и воздействия на нее в значительной степени влияют на количество ПМЦ [125], содержащихся в исходной нефти. Эта величина в относительных единицах для прямогонных остатков от мазута до асфальта составляет от 25 до 92, для остатков, подвергшихся химическим превращениям (крекинг-остатки, окисленные битумы), — 100-250, для нефтяных коксов — 3000. Предполагается [126], что это связано с различной склонностью к рекомбинации свободных связей углерода в различных высокомолекулярных соединениях. При этом в кристаллитах кокса свободные радикалы исчезают труднее. Высокомолекулярные соединения характеризуются наличием большого количества свободных радикалов, которые образуются и могут сттабильно существовать при высоких температурах. [c.115]

    В процессе карбонизации вследствие протекания параллельных, последовательных и параллельно-последовательных реакций (расщепление, гидрирование, дегидрирование, изомеризация, алкилирование, деалкили-рование, полимеризация, поликонденсация и т.д.) происходят изменения состава, молекулярной структуры и ММР нефтяных систем в направлении накопления полициклических углеводородов и гетероатомных органических соединений с ароматичностью, возрастающей по мере увеличения глубины превращения исходного материала. Источником накопления ароматических молекулярных структур прежде всего являются ароматические структуры исходного материала, а затем уже продукты химических превращений алифатических и ациклических молекулярных структур. Это подтверждается результатами исследования состава и молекулярной структуры дистиллятных и остаточных продуктов термического крекинга [41...43,45], коксования [34...37,40...45,60,63,64], пиролиза [79...84], каталитического крекинга [43,45,64] и других процессов [84] деструктивной пере- [c.18]

    Какие химические превращения могут происходить при крекинге с радикалами пентилом и изопентилом [c.49]

    Развивающаяся с каждым годом авиация, автомобильная и тракторная промышленность требуют с каждым годом все большего количества бензина. Поэтому для увеличения выхода бензина некоторые фракции прямой перегонки и мазут подвергают вторичной переработке, связанной с частичным разложением (деструкцией) углеводородов. В этом случае речь идет о химических методах переработки нефти, которые основаны на глубоких химических превращениях углеводородов под влиянием температуры, давления и катализаторов. Среди этих методов особое значение получили различные виды крекинга (от англ. to kra k — расщеплять). С помощью крекинга получают из высококипящих нефтяных фракций (керосин, соляровые масла, мазут) низкокипящие. Например, выход бензина из сырой нефти при крекинге нефтепродуктов повышается почти в три раза. [c.56]

    Название процесса дано по технологическому принц1/-ту. Отметим, что и при одностадийном (в технологическом понимании) дегидрировании первой химической стадией по-прежнему является образование олефина из. парафина следовательно, и в этом процессе протекают те же побочные реакции, что и при последовательном дегидрировании парафина в олефин и олефина в диен крекинг, реакция превращення диена, реакция изомеризации. [c.72]

    Очищенные нефтяные масла практически пе содержат нестойких непредельных соединений, и поэтому при хранении, в отличие от крекинг-продуктов, они достаточно стабильны. Иначе обстоит дело в рабочих условиях, когда нефтяные масла подвергаются воздействию кислорода воздуха при повышенных температурах и каталитическом влиянии материала смазываемых машин и механизмов. В этих условиях все углеводородные компоненты масла и тем более смолистые вещества в той или иной степени могут вступать в реакции окисления. Направление и скорость окисления и дальнейших сложных химических превращений компонентов масла зависит от химического состава масла, условий эксплуатации и главным образом от температуры. С точки зрения химического состава наиболее стабильными являются масла, не содержащие в заметных количествах смолистых сернистых и кислородных соединений и состоящие в основном из смеси малоциклических нафтеновых, ароматических и смешанных (гибридных) нафтеново-ароматических углеводородов с длинными боковыми цепями предельного характера. С точки зрения условий эксплуатации наиболее быстро и глубоко протекают всевозможные реакции окисления и уплотнения на сильно нагретых (200—300° С)-деталях поршневой группы двигателей внутреннего сгорания и воздушных компрессоров. Турбинные и трансформаторные масла нагреваются в условиях эксйлуатации только до 60—80 С, однако их стабильность должна быть также очень высока, учитывая весьма длительный срок эксплуатации единовременной загрузки этих масел. [c.193]

    Таким образом, под термином деструктив1Н0Й гидрогениза.ции объединены показанные вьше, а также в разделе,. посвященном крекингу нефтепродуктов, химические превращения и вза.имо-действия органических соединений с водородом, происходящие, как правило, в приоутств,ии каталитических веществ при высоких температурах и давлениях. [c.263]

    Исследование парамагнетизма различных нефтяных остатков н дистиллятных продуктов [29] показало, что ЭПР (в относительных единицах) для иарафинистых выделений процесса коксования равен 8 для остатков прямогонного происхождения от мазута до асфальта — от 25 до 91 для остатков, подвергнутых химическим превращениям (крекинг-остатки, окисленные битумы),— 100—250. Как и следовало ожидать, наибольшим парамагнетизмом обладают нефтяные коксы (2000—6800). Это можно объяснить тем, что свободные связи углерода в различных высокомолекулярных углеводородах обладают неодинаковой способностью к рекомбинации. В кристаллитах кокса (в связи с их малой подвижностью и стери-ческими затруднениями) свободные радикалы исчезают медленно, что и обусловливает их повышенный парамагнетизм и реакционную способность. [c.52]

    Схема реакторного блока современной установки каталитического крекинга приведена на рис. 28. Нагретое сырье после гидроочистки смешивается с рециркулятом и водяным паром и подается в узел смешения 2 прямоточного лифта-реактора I. Сырье контактирует с регенерированным горячим катализатором в прямотоке, где происходят его испарение и основная стадия химического превращения. Продукты реакции вместе с катализатором поступают в отстойную зону 8 реактора 7, играющую роль бункера-сепаратора. После отделения от продуктов реакции основной массы катализатора газы и перегретые пары углеводородов с водяным паром проходят циклоны и направляются в ректификационную колонну 10 для разделения. Отстоявшаяся катализаторная масса поступает в отпарную зону 9 реактора, где нефтяные пары десорбцией водяным паром отделяются с поверхности катализатора. Далее закоксо-ванный катализатор по наклонному катализаторопрово-ду поступает в регенератор 4, где в псевдоожиженном слое происходит выжиг кокса. В низ регенератора подают воздух, который может предварительно нагреваться в топке 3. Дымовые газы с верха регенератора через систему циклонов направляются в электрофильтры 6 и котел-утилизатор 5. Регенерированный катализатор поступает в узел смешения с сырьем. Продукты реакции в виде перегретых паров направляются в нижнюю часть ректификационной колонны, где в результате контакта с орошением происходит снятие тепла перегрева и улавливание части катализатора, унесенного из реактора. Далее газы, водяные пары и пары продуктов реакции поступают в концентрационную часть колонны на ректификацию, а остаток выводится из нижней части колонны. Образующийся шлам с низа колонны [c.76]

    Нагревание (англ. heating) — процесс подвода тепла к среде для повышения ее температуры, изменения агрегатного состояния или химических превращений. Нагревание широко применяется в промышленности, в частности, в нефтепереработке нефть (сырье) на установках обессоливания и обезвоживания нагревают до температуры 140—160 °С, при атмосферной перегонке — до 300 — 360 °С, при вакуумной перегонке мазута — до 380 — 420 °С. В условиях вторичных процессов сырье нагревают до более высоких температур на установках термического крекинга — до 520 — 540 °С, на установках коксования — до 510 — 520 °С, на установках каталитического крекинга до 460 — 560 °С, на установках каталитического риформинга — до 480 — 540 °С, в процессах пиролиза и конверсии углеводородных газов — до 750 — 900 °С, при производстве технического углерода — до 1300 — 1550 °С. [c.112]


Смотреть страницы где упоминается термин Крекинг химические превращения: [c.341]    [c.540]    [c.5]    [c.52]    [c.146]    [c.71]   
Органическая химия (2002) -- [ c.248 ]




ПОИСК





Смотрите так же термины и статьи:

Превращения химические



© 2025 chem21.info Реклама на сайте