Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальта синтез

    Образование углерод-углеродных связей через интермедиаты, содержащие переходные металлы, изучено относительно хорошо, однако использованию переходных металлов в синтезе гетероциклических соединений было уделено гораздо меньше внимания. Так, за последние годы появилось только два обзора, посвященных этой теме [1]. В связи с ростом потребности в новых гетероциклических соединениях, особенно в фармацевтических препаратах и химических средствах защиты растений, использование соединений переходных металлов для их получения, возможно, имело бы определенные преимущества по сравнению с традиционными методами (более мягкие условия реакций, ббльшая селективность, более доступные исходные соединения). К настоящему времени уже разработаны интересные новые способы синтеза известных соединений, катализируемые переходными металлами. Одним из примеров, который может иметь промышленное значение, является катализируемый кобальтом синтез пиридинов из ацетиленов и нитрилов [2]. [c.143]


    Процесс не полностью соответствует этой реакции, так как в продуктах реакции присутствует всегда наряду с углекислотой также и некоторое количество воды, т. е. в известной мере имеется и реакция, которая протекает на кобальтовом катализаторе [1]. При работе на кобальтовом катализаторе получается вместе с водой также и некоторое количество углекислоты. Железо в условиях синтеза значительно меиее активно в отношении гидрирования, чем кобальт, поэтому продукты синтеза над железным катализатором значительно богаче олефинами и уменьшено метанообразование. [c.67]

    В течение длительного времени изучались возможности использования вместо кобальта в качестве основного металла для катализатора значительно более дешевого железа. Фишер и сотрудники с 1937 г. пытались вернуться к иопользованию желеэа, с которым были ими начаты работы по синтезу. [c.68]

    П р, и г о т о в л е н и е катализатора. Приготовление катализатора представляет собой один из наиболее сложных и важных участков в общей технологической схеме завода синтеза. Исходными материалами являются кобальт, окись магния, окись тория и кизельгур. Все исходные продукты должны быть очень чистыми и в них допускается лишь самое минимальное количество железа и кальция. Поэтому при приготовлении катализатора используют преимущественно конденсат [c.83]

    Переработка отработанного катализатора. Приготовленный описанным выше способом катализатор используют для синтеза. Когда активность катализатора снизится, его подвергают промежуточной регенерации непосредственно в реакторах, о чем будет идти речь ниже. После этого катализатор работает еще в течение некоторого времени и затем его опять регенерируют. После неоднократного повторения этой операции активность катализатора настолько падает, что промежуточная регенерация в реакторах уже не дает достаточного эффекта. Тогда катализатор выгружают из реактора и перерабатывают с разделением на исходные составляющие, которые затем вновь используют для приготовления катализатора. Само собой понятно, что при такой переработке регенерируют лишь кобальт и торий [27]. [c.85]

    Это отчетливо видно также из табл. 33, в которой приведены выходы отдельных фракций, получаемых при синтезе над кобальт-ториевым катализатором, в зависимости от давления [53]. [c.107]

    Выход продуктов синтеза (в г/нм ) над кобальт-ториевым катализатором при различных давлениях [c.108]

    В то время как при синтезе под низким давлением в качестве катализатора можно использовать не только кобальт, но и никель, при синтезе под средним давлением никель применять недопустимо в силу образования летучего карбонила никеля. Кобальт при температуре 180° не образует карбонила даже при давлении 50 ат. [c.110]


    Попытки подбора катализатора синтеза углеводородов каталитическим восстановлением окиси углерода на основе более дешевых и менее дефицитных катализаторов, чем кобальт и никель, предпринимались уже давно. Было установлено, что для этой цели имеется возможность использования железных катализаторов, приготовленных определенными методами. [c.112]

    Способы приготовления и составы катализаторов сильно отличались. Синтез велся в одну ступень без циркуляции. Температура синтеза 200° и максимальная 225°, да вление 10 ат, состав синтез-газа 1,25 Нг 1,0 СО с 12% инертных компонентов. Объемная скорость составляла 105—ПО объемов на объем катализатора в час, т. е. была примерно такой же, как и при синтезе над кобальтовым Катализатором. Использованные для испытаний катализаторы могут быть разделены на катализаторы на носителе и на катализаторы без носителя. Катализаторы первого типа аналогичны кобальтовым с той разницей, что на носитель, например кизельгур, наносится вместо кобальта железо. Они имеют значительно меньший насыпной вес, чем катализаторы без носителя. [c.113]

    Карбонилы d-элементов (табл. 49) — жидкости или кристаллические вещества, хорошо растворимые в органических растворителях. Как и СО, они чрезвычайно токсичны. Термическим разложением карбонилов получают чистейшие металлы. Кроме того, их используют в химическом синтезе. Карбонилы металлов синтезируют различными способами. Никель, железо и кобальт Н посредственно реагируют с оксидом углерода (II), давая карбонилы. Обычно же их получают восстановлением соответствующих солей или комплексов металлов в присутствии СО. [c.552]

    Никель в нулевой степени окисления образует тетракарбонил N (00)4. В обычных условиях — это бесцветная жидкость (т. пл. — 19,3°С, т. кип. 43°С). Его получают действием СО на порошок никеля при 60—80°С. При 180°С карбонил никеля разлагается, что используется для получения чистого никеля и его покрытий на металлах. N (00)4 применяется также в органическом синтезе в качестве катализатора. Легкость образования N (00)4 используется для разделения никеля и кобальта, так как для получения карбонила кобальта требуются более высокие температура и давление. Так как к тому же летучесть Со2(СО)8 меньше, чем N ( 0)4, разгонкой их смесей удается достичь высокой степени разделения N и Со. [c.609]

    Интересно отметить, что в процессах синтеза углеводородов из оксида углерода и водорода, являющихся обратными по отношению к лроцессам конверсии, наибольшее распространение нашли именно кс.тализаторы на основе никеля, кобальта и железа. Причем, на никеле преимущественно протекают реакции синтеза метана, а не его гомологов или олефинов. На способности никеля катализировать реакции метанирования основан процесс доочистки газов паровой конверсии от следов оксида углерода. [c.162]

    В большинстве публикаций приводятся данные по насыщению активности при определенных концентрациях металлов. В то же время эти сведения не однозначны относительно содержания металлов, при котором происходит насыщение активности. Оптимальными называются значения содержания металлов на оксиде алюминия, находящиеся в широких пределах - от 0,2 до 25% каждого. Соотношение кобальта (никеля) к молибдену от 0,25 До 5 [67]. Возрастание активности с увеличением содержания кобальта или никеля объясняется модификацией структуры Мо8, способствующей образованию активных центров. За пределами оптимума кобальт начинает блокировать активные центры. Естественно, количественно такая картина будет определяться многими факторами синтеза катализаторов и даже методом его оценки. [c.101]

    Представляется правдоподобным, что в присутствии синтез-газа восстановление кобальта (II) в металлический кобальт проходит одновременно с образованием карбонила, вовлекая в превращение окись углерода  [c.290]

    В заводской практике оксосинтез обычно осуществляется в виде двухступенчатого процесса первая ступень состоит в синтезе альдегида, во второй стадии н идкий продукт освобождается от карбонилов кобальта, а затем гидрируется над неподвижным слоем твердого катализатора гидрогенизации. Полученные спирты затем фракционируются. Для эффективной гидрогенизации альдегидов во второй стадии процесса необходимо, обеспечить удаление окиси углерода, так как в ее присутствии катализаторы гидрогенизации отравляются. [c.291]

    Растворитель, содержащий карбонилы кобальта, в смеси с этиленом и синтез-газом (СО На 1 1) поступает в реактор карбонилирования. Газожидкостная смесь предварительно проходит подогреватель, где нагревается до температуры 140—150 С.. Снятие тепла экзотермической реакции может быть осуществлено-либо за счет ввода холодного рециркулята непосредственно в реактор, либо отводом тепла через стенку путем использования части реакционного объема для теплообменника, вмонтированного внутрь реактора карбонилирования. [c.53]


    Полученная в колоннах синтеза смесь продуктов реакции после охлаждения и отделения от циркуляционного газа дросселируется до атмосферного давления и направляется в сборники отделения фильтрации. Освобожденные от синтез-газа и пропана продукты карбонилирования вместе с катализатором подаются в низ колонн гидрирования. Катализатором служит металлический кобальт, осажденный на кизельгур. [c.69]

    В реактор карбонилирования также подается раствор нафтената кобальта и синтез-газ. В реакторе нафтенат достаточно быстро переходит в карбонил кобальта, что обеспечивает успешное проведение реакции. [c.117]

    Еще одним вариантом катализируемого кобальтом синтеза пиридинов является одностадийный синтез конденсированных пиридинов (47) соолигомеризацией диинов (46) с различными нитрилами [34] [схема (4.40)]. Реакция протекает с хорошим выходом и прекрасной селективностью в присутствии промыщ-ленного катализатора [Со(СО)2 (т] -С5Н5)]. [c.157]

    Действие окиси углерода и водорода на а-олефины с образованием соединений, содержанщх оксогруппу [149], привело к разработке (1938—1940 гг.) метода синтеза альдегидов и первичных алифатических спиртов. Получение альдегидов прямо из олефиновых углеводородов заключается в каталитическом действии в присутствии карбонила кобальта синтез-газа на а-олефины. Этот метод много раз видоизменялся, и в настоящее время различные промышленные его варианты применяются на множестве заводов для получения масляного альдегида и бутилового спирта из пропилена, а также амиловых, октиловых, дециловых и тридециловых альдегидов из н-бутиленов, гептенов и соответственно из три- и тетрамеров пропилена. [c.457]

    Каталитический синтез N-замещенных аминокислот осуществляют карбонилированием смеси N-ал кил аминов и алифатических альдегидов. К,М-Диметилглицин получают из диметиламина и формальдегида при 150—200° С и давлении 800—1000 атм в присутствии НС1 [1181]. С карбонилом кобальта синтез протекает при 110—150° С и давлении 200 атм, причем вместо амина можно использовать амиды [1182]. Комплексы Pd la с N,N-диaлкил-аллиламином поглощают СО при 25° С и атмосферном давлении с образованием N,N-диaлкил аминокисл от [870]. [c.119]

    Отсюда следует, что кислород окиси углерода выделяется в виде воды. Формально синтез но Фишеру-Троншу с кобальтовым катализатором является синтезом олефинов, так как можно принять, что образующиеся промежуточные метиленовые группы затем полимеризуются. Так как, однако кобальт в условиях синтеза (200% нормальное или низкое давление) действует как активный катализатор гидрирования, то большая часть олефинов насыщается до парафинов. [c.27]

    Так как железо для гидрирования в условиях синтеза (320, 25 ат) значительно монее активно, чем кобальт, то продукты синтеза Фишера-Тронша с железным катализатором содержат значительно больше олефинов. [c.27]

    Большая трудность при проведении синтеза но Фишеру-Тропшу с кобальтовым катализатором состоит в том, что на 1 синтез-газа развивается приблизительно 600—700 ккал тепла, которое должно быть отведено, потому что температура катализатора должна поддерживаться с точностью до 1°. Промышленный катализатор на кобальтовой основе содержит на 100 частей кобальта 5 частей окиси тория, 8 частей окиси магния и 200 частей кизельгура. Катализатор отличается чрезвычайно низкой теплопроводностью и поэтому проблема отвода тепла становится особенно трудной. Контактная камера установки Фишера-Тропша, вмещающая 10 кобальтового катализатора, может из-за плохого отвода тепла пропустить лишь 1000 синтез-газа в час. Требуемая поверхность охлаждения для 1000 синтез-газа составляет около 3000 м . Из 1 газа получают 165 —175 г целевых углеводородов. В настоящее время современные установки синтеза Фишера-Тропша работают только с железным катализатором, состоящим практически только пз железа и обладающим значительно лучшей теплопроводностью. [c.27]

    Вместо кобальта или железа в качестве каталитически активных металлов можно использовать также никель и рутений, однако промышленного значения они не получили. С технической точки зрения в настоящее время наибольший интерес представляют катализаторы иа основе железа, хотя вначале катализаторами синтеза по Финчеру—Тропшу являлись исключительно кобальтовые катализаторы. [c.66]

    Во время второй мировой войны вследствие дефицита кобальта над проблемой замены кобальта, на железо в синтезе Фишера — Тропша работали многие фирмы. В 1943 г. исследования продвинулись настолько, что на заводе в Шварцхайде были проведены трехмесячные промышленного масштаба испытания шести различных катализаторов на основе железа с целью выбора катализатора с наибольшей удельной производительностью. Испытания велись в условиях синтеза среднего давления на кобальтовом катализаторе с тем, чтобы была обеспечена возможность прямого перехода с кобальтового катализатора на железный без изменения условий синтеза. Результаты этих опытов, имевших большое значение для последующей разработки процесса, будут подробно изложены в последующем. [c.68]

    Катализатор синтеза по Фишеру— Тропшу состоит из кобальта, активированного окисями тория и магния и нанесенного на кизельгур. [c.83]

    Кольбель и Энгельгардт [36] указывают, что по карбидной теории температура синтеза на железных катализаторах должна бго1ть намного ниже, чем на кобальтовых, так как железо обладает значительно большей склонностью к образованию карбидов, чем кобальт. Фактически наблюдается обратное. Они считают, что в ходе реакции образуются продукты присоединения окиси углерода к металлу, которые могут рассматриваться как карбонилы. [c.88]

    Как уже упоминалось, все германские промышленные установки синтеза по Фишеру — Тропшу в 1938—1944 гг. работали на кобальт-киэельгуровом катализаторе, активированном окисями тория и магния. Состав катализатора (в % вес.) 30 кобальта (металл), 2,5 M.gO, 1,5ТЬ02 и 66 кизельгура. Все установки работали по технологическим схемам, разработанным фирмой Рурхеми А. Г. при нормальном и среднем (10 ат) давлениях. В последующем кратко описывается технология синтеза при нормальном давлении. [c.89]

    В нормальную работу реактор вводят очень осторожно. При пуске реактора температуру катализатора медленно доводят до 100°, потом подают синтез-газ с расходом не более 500 м /час. После этого температуру увеличивают приме,р но на 10° в час, пока яри 150—160° не начнется реакция, о чем судят по выделению тепла. При 165° реактор выдерживают около 30 час. и затем медленно повышают температуру до 180°. Одновременно увеличивают до 1000 м 1час нодачу газа (примерно 1000 м 1час газа на 1 г кобальта). [c.91]

    Ниже приведены основные показатели работы промышленной двухступенчатой установки синтеза Фишера—Тропша на заводе Рурхеми А. Г. в Хольтене под нормальным давлением на кобальт-кизельгу-ровом катализаторе, активированном окислами тория и магния [49]. [c.92]

    Переходные металлы являются активными катализаторами в подавляющем большинстве окислительно — восстановительных реакций. Железо, например, является классическим ката/шзатором синтеза аммиака. Кобальт, никель, медь и металлы ш атиновой группы проявляют высокую активность в процессах гидрирования и дегидрирования, а также окисления. Серебро является практически единственным катализатором парциального окисления (например, этилена до его окиси). [c.93]

    Однако из всего многообразия изучешхых систем в конечном итоге отдается предпочтение в настоящее время значительно меньшему числу элементов и их сочетанию - это кобальт, никель, молибден, реже вольфрам, платина, ванадий, железо. Выбор подобных элементов определяется многими факторами, положительно характеризующими их мак с позиций их электронной структуры, так и свойств их солей и соединений, определяющих и технологичность операций создания катализатора, и применимость в практике созданной каталитической системы. Итак, круг элементов, используемых в синтезе катализатора гидрообессеривания нефтяных остатков, значительно сузился. [c.94]

    Исследования в области каталитического гидрирования окиси углерода в течение первой половины XX в. развивались все более и более быстрыми темпами. Первыми вехами на пути этих исследований двились работы Сабатье и Сандерана [24] по синтезу метана на никелевых катализаторах и открытие Баденской анилиновой и содовой фабрикой [4] реакции между водородом и окисью углерода. В результате этой реакции образовывался жидкий продукт, содержавший спирты, альдегиды, кстоны, жирные кислоты и некоторое количество насыш енных и ненасыщенных алифатических углеводородов. Она протекала при давлениях 100—200 ат и температурах 300—400° в присутствии окисей кобальта и осмия, активированных щелочью и нанесенных на асбест . Последующие исследования привели к разработке в 1923—1925 гг. промышленного синтеза метанола. Начиная с 1923 г. и до настоящего времени, проводятся обширные работы по изучению процесса Фишера-Тропша в лабораторном и полузаводском масштабах. [c.519]

    II 400—450 обработанное щелочью железо может быть катализатором для синтеза продукта, подобного полученному в лабораториях Баденской анплиновой и содовой фабрики при использовании подщелоченного кобальта. Они нашли также, что при снижении давления со 100—150 ат до 7 ат доля углеводородов в продукте реакции значительно возрастает, а доля кислородсодержащих соединений соответственно падает. Однако произнодительность катализатора при синтезе под давлением 7 ат резко сния ается. Эти наблюдения послужили исходным толчком для интенсивных поисков катализаторов, более активных в синтезе при невысоких давлениях. Большинство катализаторов, испытанных Фишером и Троп-шем в 1925—1930 гг., обладали низкой активностью и были нестабильны [c.519]

    Гидрирование окиси углерода с образованием спиртов и углеводородов выше Gj представляет собой относительно медленную каталитическую реакцию. Андерсон [27с] рассчитал, что молекула окиси углерода живет на поверхности кобальтового катализатора около 5 мин., прежде чем она прореагирует. Все активные катализаторы синтеза содерн ат железо, иикель, кобальт или рутений в качестве основного гидрирующего компонента. Эти четыре металла в условиях синтеза медленно, но с измеримой скоростью образуют карбонилы металлов, что, по-видимому, имеет определенное значение. Оптимальная температура синтеза для никеля и кобальта находится в пределах 170—205°, для железа 200—325° и для рутения 160—225°. Допустимое максимальное давление для синтеза на никелевых катализаторах составляет примерно 1 ат, на кобальтовых — около 20 ат. При более высоком давлении активность этих катализаторов резко падает (по мере повышения давления). Железные катализаторы, приготовляемые плавлением магнетита, проявляют активность под давлением 20—100 ат i, в то время как осажденные железные катализаторы выше 20 ат ослабевают I27d]. Рутениевые катализаторы относительно неактивны при давлении ниже 100 ат, но их активность быстро растет по мере его повышения до 300 ат [27е]. При оптимальных давлениях (О—1 ат для Ni 1—20 ат для Go, 1—20 ат для осажденных Fe-катализаторов, 20—100 ат для плавленых Fe-катализаторов и 100—300 ат для Ьи) коэффициент давления (показатель п в уравнении скорость = коистат та х давление") составляет около 0—0,5 для Ni и Go и близок к единице для Fe и Ru. [c.521]

    Прежние исследовательские работы Фишера и его сотрудников, а также немецких промышленных исследовательских лабораторий [27 к], ограничивались разработкой процессов с применением кобальтовых катализаторов в реакторах со стационарным слоем катализатора. В связи с относительно узким интервалом рабочих температур при синтезе на кобальтовых катализаторах, не говоря уже о высокой стоимости и дефицитности кобальта, начиная с 1943 г., основное внимание было обращено на изучение возможности промышленного применения железных катализаторов. Исследовательские работы по использованию кобальтовых катализаторов фактически прекратились, если не считать небольшого количества патентов, касающихся применения флюид-техники к процессу синтеза иад кобальтовыми катализаторами [10, 18, 23]. Однако основные технологические проблемы, возникающие при осуществлении процесса синтеза на кобальтовых катализаторах, сохранились и при применении железных катализаторов. Высокая экзотермичность реакции и необходимость быстрого отвода выделяющегося тепла во избежание нежела- [c.526]

    Как реация гидроформилирования, так и последующая гидрогенизация п situ идут в таких условиях, при которых карбонильные соединения кобальта являются сравнительно устойчивыми. Эти условия включают присутствие кобальта в виде соли или в виде свежевосстановленного металла, температуру в пределах 75—200° и давление синтез-газа от 100 до 300 ат. Целесообразно назвать такие условия режимом реакции оксосинтеза. [c.287]

    Накапливаются факты, показывающие, что эффективным катализатором в оксосинтезах является гидрокарбонил кобальта. Хотя можно написать прямое образование гидрокарбоиила из кобальта и синтез-газа, однако более вероятно, что образование гидрокарбонила проходит через промежуточную стадию образования дикобальтоктакарбонила  [c.290]

    Легкость образования дикобальтоктакарбонила варьирует в зависимости от источника кобальта, поэтому весьма вероятно, что во многих реакциях оксосинтеза, в которых кобальт не вводится в виде карбонилов, медленно идущей ступенью реакции является синтез карбонилов in situ. Так, например, гидроформилирование октена-1 при давлении синтез-газа (IHg 1 (D) 200—300 am в углеводородном растворителе в присутствии суспензии ацетата кобальта в бензоле в качестве катализатора требует температуры 150—160°. Однако, если кобальт вводить в той же концентрации в виде дикобальтоктакарбонила, реакция идет очень быстро при 115-125°. [c.290]

    Из шести атомов кобальта с нулевой валентностью в карбониле четыре включаются в моновалентный анион, а два дают катион Со " . Так как часть дикобальтоктакарбонила окисляется за счет другой части, эта реакция называется реакцией гомомолекулярного диспропорционирования. Попытки выделить комплексную соль кобальта (11) карбонилкобальта окончились неудачей, так как процесс сопровождается частичной потерей метанола [5]. При использовании в оксосинтезах метанола образующиеся альдегиды частично превращаются в ацетали. Однако метанол и этанол используются в качестве растворителей в реакциях гидрогенизации, относящихся к оксосинтезам [16], вследствие наибольшей скорости реакции в присутствии этих растворителей. Очень вероятно, что соли, подобные [Со(Х)в] [Со(СО) ]2, под действием синтез-газа под давлением легче других солей кобальта превращаются в дикобальтоктакарбонил и кобальт-гидрокарбонил. Изучение скорости абсорбции синтез-газа различными типами солей кобальта должно бы иметь большую ценность. [c.291]

    Эта температура обычно лежит в пределах 110—140°, при этих условиях следует вносить кобальт в виде дикобальтоктакарбонила. По мере повышения рабочей температуры возрастает тенденция к восстановлению альдегидов в спирты при 185°, достаточно продолжительном времени контакта, и при наличии достаточного количества синтез-газа все альдегиды будут полностью восстановлены. Следует, конечно, помнить, что скорость рсех реакций сильно растет с ростом температуры, это относится также [c.292]

    Естественно, что у каждого структурного изомера могут быть изомеры по положению двойной связи. Наличие двойной связи делает также возможной цис-транс-шгожерто. Сырьевая смесь, взятая даже в довольно узких температурных пределах кипения, очень сложна, о составе ее сообщений не имеется. Свежее сырье смешивается с рециркулирующим продуктом и добавляется нафтенат кобальта в таком количестве, чтобы приходилось около 0,2% кобальта на общую загрузку сырья. Раствор прокачивается через подогреватель в реактор, где жидкость движется вверх в прямотоке с синтез-газом. Реактор наполняется инертным материалом типа колец Рашига и др. В реакторе поддерживаются температура около 175° и давление синтез-газа (IHj I O) 200 am. По выходе продукта из реактора давление снижается до атмосферного, затем продукт нагревается до 150° в присутствии отпаривающего газа (обычно водорода) для разрушения всего карбонила. Освобождаемый от кобальта продукт затем гидрогенизуется, в результате получается смесь октиловых спиртов. Этот процесс мало отличается от известного, но фактически он не нашел заводского использования в Германии [17]. Смесь спиртов g очень полезна в производстве пластификаторов. Окисление спиртов дает смесь кислот С 8, называемых изооктиловыми кислотами, которые представляют интерес для применения в военном деле. Состав смеси g пока точно неизвестен. Возможно, в ней содержится до двенадцати изомерных спиртов. Видимо, значительную часть составляет 3,5-диметилгексанол, получаемый из 2,4-диметилпентена-1. Другие спирты, присутствующие в относительно больших количествах — 4,5-диметил- и 3,4-диметилгек-санолы, 3- и 4-метилгентанолы. Очень возможно, что удастся найти условия превращения олефинов в спирты реакцией в одну ступень. [c.296]

    В случае получения н-пропанола осуществляется гидрирование пропионового альдегида. Приготовление карбонилов кобальта при работе по триадной схеме производится в катализерах, заполненных насадкой-пемзой с осажденным на ней кобальтом. В катализер направляется растворитель для смыва карбонилов кобальта, образующихся при температуре 150—180° С и давлении синтез-газа 150—300 ат. При этих условиях кобальтизации целесообразно применять газы с повышенной концентрацией окиси углерода. [c.53]

    Оксо-синтез—реакция между олефинами, водородом и окисью углерода, проводимая с целью получения окисленных соединений, главным образом альдегидов, которые впоследствии можно гидрировать в спирты. При этом применяются температура 150—205 °С и давление 150—300 ат катализатором служит кобальт (в первоначальном процессе использовали твердый катализатор Фишера— Тропша). Активным агентом является дикобальтоктакарбонил [Со(С04) з. в установке с неподвижным слоем твердого катализатора сырьем может Служить жидкий гептен, который подается с объемной скоростью 0,4 ч . В случае применения пасты ее прокачивают через реактор с объемной скоростью 1,3—3 тогда как объемная скорость газа составляет 250 Катализатором является 2,5%-ный нафтенат кобальта на носителе. Порядок величины константы скорости реакции в жидкой фазе к= =0,02—0,07 мин при температуре 110 °С и давлении около 200 ат. В настоящее время опубликованы обзоры по оксо-синте- [c.330]


Смотреть страницы где упоминается термин Кобальта синтез: [c.215]    [c.67]    [c.166]    [c.163]    [c.288]   
Лабораторные работы по химии комплексных соединений (1964) -- [ c.0 ]

Лабораторные работы по химии комплексных соединений Издание 2 (1972) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте