Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные системы основные типы

    Основным свойством как глинистых, так и родственных им минералов служит их кристаллохимический характер типичных сетчатых или слоистых структур (см. А. I, 70 и ниже ). Их суспензоиды в воде (или, реже, в других жидких средах) характеризуются взаимодействием больших активных поверхностей частиц с водой вследствие их коллоидных размеров (см. А. III, 180 и ниже). Если содержится небольшое количество воды, то результирующая механически однородная система будет обладать пластичностью, способностью деформироваться и легкой обрабатываемостью, на чем основано использование глин при керамической формовке. С другой стороны, если смесь содержит избыток жидкой воды, то образующаяся в результате жидкая текучая смесь будет характеризоваться удельной текучестью и кажущейся вязкостью, что и определяет методы керамического литья. Электролиты, добавляемые к таким системам, сильно влияют на все эти различные свойства поэтому изучение катионных адсорбций, реакций обмена основаниями и т. д. развивается все шире. Те же реакции определяют также характер почвы и образование глинистых осадков в геологических образованиях. Имея в виду все эти основные факты, в данной работе желательно рассмотреть физико-химический характер систем глина — вода с более обшей точки зрения, независимо от свойств силикагелей и других силикатов коллоидного типа. [c.312]


    Дальнейшие исследования неопровержимо доказывали ошибочность таких взглядов. Становилось все более очевидным, что автоматически перенося представления о лиофобных коллоидах на лиофильные, нельзя объяснить самых основных особенностей поведения полимерных веществ. Эволюция представлений о коллоидных системах различных типов прослежена в ряде книг, например в Кратких очерках по физико-химии полимеров В. А. Каргина и Г. Л. Слонимского Отсылая читателя к этой книге для ознакомления с историей вопроса, необходимо все же и здесь воздать должное Г. Штаудингеру, который в 20-е годы впервые ввел понятие о макромолекуле [c.6]

    Ранее дисперсные системы этих типов лишь бегло рассматривались в курсах коллоидной химии. Многие из них подробно изучаются в рамках других, более узких и преимущественно технических дисциплин, таких, как физическое материаловедение, физика металлов и др. Это связано как с чрезвычайным разнообразием подобных систем, так и с тем, что их свойства, и особенно самые важные — механические, — могут существенно отличаться от свойств систем с жидкой дисперсионной средой, в течение многих лет бывших основным — классическим объектом коллоидной химии. Между тем, изучение как процессов образования подобных систем, так и ряда закономерностей их взаимодействия со средой отвечает общим задачам коллоидной химии. [c.305]

    Еще сравнительно недавно к коллоидным растворам относили и растворы высокомолекулярных веществ (полимеров), например, растворы крахмала, белков и т. д. Однако исследования показали, что растворы полимеров представляют собой истинные растворы, хотя и обладают многими свойствами, сходными со свойствами коллоидных растворов. Молекулы полимеров, как и мицеллы, не проходят через полупроницаемые мембраны типа пергамента и целлофана. Такое сходство объясняется тем, что размеры молекул растворенных полимеров имеют тот же порядок величин, что и размеры коллоидных частиц они значительно превосходят размеры обычных молекул. Этим же объясняется явление рассеивания света (опалесценция) как коллоидными растворами, так и растворами высокомолекулярных веществ. И все же еще раз подчеркнем, что растворы полимеров — это истинные растворы, в которых отсутствует основной признак коллоидной системы — гетерогенность, т. е. наличие поверхности раздела между дисперсной фазой и дисперсионной средой. [c.223]

    Как видно из определения, к коллоидным системам относятся два основных типа систем. Первому типу — гетерогенным высокодисперсным системам — соответствует первый указанный ранее тип укрупнения частиц путем образования трехмерных и двухмерных структур в инертной среде он характеризуется наличием развитой поверхности раздела. [c.13]


    Второй основной тип систем — высокомолекулярные системы — соответствует второму структурному типу укрупнения частиц, ведущему к образованию цепных макромолекул. Они дают при смешении с растворителями молекулярные растворы, подобные обычным растворам низкомолекулярных веществ, но с очень длинными цепными молекулами. Такие растворы относятся к однофазным (гомогенным) системам, как и растворы сахара или мочевины, они образуются самопроизвольно, потому что сам процесс растворения идет с уменьшением свободной энергии и не требует наличия стабилизаторов. Растворы оказываются вполне устойчивыми, независимо от длительности их существования. Они являются молекулярными, термодинамически равновесными и поэтому обратимыми системами. Точно так же обратим, например, 10%-ный раствор сахара при 20° С, всегда обладающий определенными свойствами независимо от пути его получения. Таким образом, ко второму типу коллоидных систем относятся термодинамически обратимые молекулярные гомогенные системы. [c.14]

    Резко различаясь по природе устойчивости, оба основных типа коллоидных систем имеют много общего в свойствах, обусловленных размерами и формой частиц, и в разнообразных свойствах, не зависящих от наличия поверхности раздела. Изменения химического строения частиц и состава среды создают многочисленные переходы между коллоидными системами. [c.25]

    Основные типы связи влаги с дисперсной фазой в гидрофильных коллоидных системах. Различные исследователи намечают ряд форм связи влаги с материалом. Наиболее рациональная классификация форм связи влаги с материалом (см. вклейку) предложена П. А. Ребиндером. В основу этой классификации положена энергия связи влаги с веществом или с его поверхностью как внешней, так и внутренней — в случае капиллярно-пористых или высокодисперсных (коллоидных) материалов. В отношении гидрофильных коллоидно-дисперсных систем можно в первом приближении особо отметить следующие формы связи влаги в этих системах. [c.353]

    Обобщить эволюцию развития ГА-техники следует так основной принцип системы создание нестационарного потока жидкос ти — зародившись от сирен акустических газовых и пальцевых дезинтеграторов, в дальнейшем усиливается в направлении придания большей роли механическому воздействию, что привело к элиминации акустической компоненты и появлению нового подкласса коллоидных мельниц — роликовых РПА — тупиковая ветвь ГА-техники. Использование того же принципа, но с увеличением роли механического воздействия без ущерба акустической компоненте привело к созданию целого ряда конструкций с видоизмененными рабочими органами, что повлекло за собой появление новых функций аппарата, в том числе, усиление ГА-воздействия. От этого направления родился новый тип машин — осевые, который продолжил самостоятельное развитие. Направление развития конструкций, усиливающих кавитационную активность, представляет собой наиболее перспективное направление в ГА-технике. [c.45]

    Покрытия из латексов. Латексы представляют собой коллоидно-химические системы, в которых основное вещество в виде отдельных частиц диспергировано в воде. Латексный материал поступает с завода-изготовителя в виде двух композиций А и 3 или П и 3, готовых к применению (индекс А или П означает — адгезионная или промежуточная, 3 — защитная композиция). Растворять латексы органическими растворителями любого типа запрещается. [c.164]

    В этом смысле коллоидные дисперсные системы являются необратимыми системами. Таковы основные черты первого типа коллоидных систем, которые характеризуются, по Пескову, как гетерогенные высокодисперсные системы, обладающие агрегативной устойчивостью только в присутствии стабилизатора. [c.15]

    Таковы основные черты первого типа коллоидных систем, которые характеризуются, по Пескову, как гетерогенные высокодисперсные системы, обладающие агрегативной устойчивостью только в присутствии стабилизатора. [c.14]

    Некоторые авторы [5] полагают, что захват маточника кристаллами, растущими в неравновесных условиях, является основной причиной соосаждения, однако при этом не исключают возможность образования в системах ограниченных истинных твердых растворов, а также растворов коллоидного типа. [c.46]

    Такие распространенные в технике неполярные ж 1Дкости, как масла и топлива, нередко содержат загрязнения в виде твердых минеральных или органических частиц и особенно часто содержат воду. Вода вследствие солюбилизации или эмульгирования прочно удерживается маслом и топливом - создается коллоидная система типа жидкость—жидкость, которую необходимо разрушить, чтобы осуществить кондиционирование основного продукта. [c.17]

    С другой стороны, образование твердых тел с характерными для них механическими свойствами также теснейшим обрааом. связано.,а процессами, изучаемыми современной коллоидной химией в виде проблемы структурообразования в дисперсных системах (суспензиях) и растворах высокомолекулярных соединений. Большое значение здесь имеют оба основных типа структур. Первый тип — это коагуляционные структуры (пространственные сетки), возникающие вследствие беспорядочного сцепления мельчайших частичек дисперсной фазы или макромолекул через тонкие прослойки данной среды, и кристаллизационно-конденсационные структуры, образующиеся в результате непосредственного срастанЯя кристалликов с образованием поликристаллического твердого тела Второй тип — образование химических связей (поперечных мостиков), как при вулканизации линейных полимеров типа каучуков или в пространственных полимерах, например, в студнях кремнекислоты. [c.211]


    Как видно из определения, к коллоидным системам относятся два основных типа систем. Первому типу — гетерогенным высокодисперсным системам — соответствует первый указанный ранее тип укрупнения частиц путем образования трехмерных и двухмерных структур в инертной среде он характеризуется наличием развитой поверхности раздела. Условие высокодисперсности отделяет коллоидные системы от грубых, быстро оседаюпщх суспензий и порошков с низкой кинетической устойчивостью. Ввиду наличия частиц со свободной поверхностной энергией, коллоидные дисперсные системы являются термодинамически неустойчивыми, потому что стремление этой энергии к уменьшению приводит к агрегации частиц (см. четвертую главу). Частицы не слипаются, т. е. оказываются агрега-тивно устойчивыми лишь при условии, что на их поверхности за счет свободной поверхностной энергии адсорбируются молекулы или ионы третьего компонента системы или стабилизатора. Однако агрегативная устойчивость этих частиц имеет индуцированный характер, и по истечении достаточного промежутка времени (путем рекристаллизации и др.) процесс слипания неизбежно наступает. В этом смысле коллоидные дисперсные системы являются необратимыми системами. Таковы основные черты первого типа коллоидных систем, которые характеризуются, по Пескову, как гетерогенные высокодисперсные системы, обладающие агрегативной устойчивостью только в присутствии стабилизатора. [c.15]

    Отрицательный заряд на поверхности кремнезема может измениться на противоположный в результате адсорбции на поверхности избыточного количества вещества, обладающего положительным зарядом. Обращение зарядов в коллоидных системах давно известно, но концентрированный кремнеземный золь такого типа с частицами, обладающими положительным зарядом на поверхности, впервые был выделен Александером и Болтом [424]. Авторы определили, что покрытия оксидами поливалентных металлов могут быть нанесены на всю поверхность частиц и обеспечить максимальную устойчивость золя. Сюда относятся оксиды трех- и четырехвалентных металлов, наиример алюминия, хрома, галлия, титана и циркония. Предпочтение следует отдать золю с содержанием 26 % кремнезема и 4 % АЬОз, в котором положительно заряженные частицы сопровождаются нротивоионами — хлорид-ионами. Для изготовления такого продукта подкисленный золь кремнезема смешивали с основной солью металла, содержавшей чрезвычайно небольшие коллоидные частицы оксида металла, которые [c.564]

    Как видно из определения, к коллоидным системам относятся два основных типа систем. Первому типу — гетерогенным высокодисперсным системам — соответствует первый указанный ранее тип укрупнения частиц путем образования трехмерных и двухмерных структур в инертной среде он характеризуется наличием развитой поверхности раздела. Условие высокодисперсности отделяет коллоидные системы от грубых, быстро оседающих суспензий и порошков с низкой кинетической устойчивостью. Ввиду наличия частиц со свободной поверхностной энергией, коллоидные дисперсные системы являются термодинамически неустойчивыми, потому что стремление этой энергии к уменьшению приводит к агрегации частиц (см. четвертую главу). Частицы не слипаются, т. е. оказываются агрегативно устойчивыми лишь при условии, что на их поверхности за счет свободной поверхностной энергии адсорбируются молекулы или ионы третьего компонента системы или стабилизатора. Однако агрегативная устойчивость этих частиц имеет индуцированный характер, и по истечении достаточного промежутка времени (путем рекристаллизации и др.) процесс слипания неизбежно наступает. [c.15]

    Стабильность микроэмульсий рассматривается в термодинамическом и динамическом аспектах. Сначала с помощью статистического термодинамического подхода показано, что в отличие от обычных эмульсий микроэмульсии могут считаться стабильными с термодинамической точки зрения. Получено выражение для свободной энергии образования микроэмульсий, которое позволяет описать превращение одного типа микроэмульсии в другой, а также разделение фаз. Дано теоретическое обоснование нескольких основных типов многофазных систем 1) микроэмульсия в равновесии с микроэмульсией м/в 2) микроэмульсия в равновесии с микроэмульсией в/м и 3) разбавленная микроэмульсия в/м в равновесии с разбавленной микроэмульсией м/в. Аналогичные многофазные системы были ранее обнаружены экспериментально Винзором, а также Хили и сотр. Полученные соотношения позволяют объяснить низкие значения свободной энергии поверхности раздела между двумя микроэмульсионными фазами, находящимися в равновесии. Затем выведено уравнение переноса для концентрированных коллоидных систем. С помощью этого уравнения описаны условия, при которых система стабильна или нестабильна по отношению к малым возмущениям, а также получена информация о временах эволюции систем. Такой динамический подход позволил определить характерные времена круйных перестроек нестабильных систем. [c.440]

    Огромное большинство консистентных смазочных материалов приготовляется путем загущения минеральных масел нефтяного происхождения различными мылами. Получающиеся при этом коллоидные системы, при прочих равных условиях, резко отличаются по споим физико-химическим свойствам в зависимости от природы аниона и катиона, образующих данное мыло. До использования в промышленности окисленных углеводородов нефтяного происхождения для получения загустителей применялись исключительно жиры животного и растительного нроисхождеиия, представляющие собой, как известно, глицериды высокомолекулярных предельных и непредельных кислот с углеродной цепью нормального строения. Мы.ла указанных кислот образуют с минеральными маслами устойчивые коллоидные системы. Между тем мыла кислот циклического строения (т. е. нафтеновых) образуют с минеральными маслами неустойчивые системы. При решении вопроса о замене натуральных жиров в технике кислотами, получаемыми окислением нефтяных углеводородов, естественно было предположить, что наиболее перспективным сырьем явится парафин, как содержащий предельные углеводороды. Действительно, рядом исследований [2] установлено,что карбоновые кислоты, содержащиеся в окисленном парафине, относятся к типу предельных кислот, в основном нормального строения. Окисленный парафин содержит в своем составе все кислоты, от муравьиной до арахиновой, и, кроме того, значительное количество эфирокислот, а также ряд нейтральных соединений спиртов, кетонов, лактидов и др. Однако, как это будет показано ниже, подобная сложная смесь является вполне полноценным заменителем в производстве консистентных смазок высокомолекулярных кислот, получаемых при расщеплении натуральных жиров. Другим перснективным сырьем для целей окисления является [c.185]

    Для разделения компонентов водной коллоидной системы в ней перемешивают пузырьки воздуха, к которым прилипают гидрофобные частицы, тогда как гидрофильные частицы остаются в водной фазе. Отделив пену от водной фазы, получают продукт, обогащенный гидрофобными частицами. Различия в поверх-ностнььх свойствах разделяемых частиц создают путем введения специальных реагентов собирателей (или коллекторов), регуляторов (активаторов или депрессоров), пенообразователей и флокулянтов. Основные типы флотационных реагентов приведены в табл. 8. [c.113]

    Неокисленные битумы имеют более высокое содержание ароматических углеводородов, меньшее содержание парафино-нафтеновых углеводородов и асфальтенов. Неокисленные битумы и полимеры СБС имеют большое сродство и поэтому в большей степени совместимы. Это первая причина лучшей совместимости. Вторая - повышенное содержание асфальтенов в составе битумов приводит к стерическим затруднениям при совмещении, причем сами асфальтены в процессе растворения не участвуют, а более высокое содержание асфальтенов характерно как раз для окисленных битумов. И третье. Исследование коллоидной структуры битумов методом малоуглового рассеяния рентгеновских лучей показало, что в составе окисленных битумов содержится 30-31% мелких коллоидных частиц размером до 16 А и 69-70% крупных коллоидных образований с размерами до 440 А. Такой битум, представленный в основном грубодисперсными частицами, можно отнести к системам типа золь-гель . Неокисленный битум содержит 85-86% частиц с размерами 9-10 А и лишь 12-13% частиц с размерами до 405 А. Такую коллоидную систему можно отнести к типу золь . В мелкодисперсной системе заметно выше скорости диффузии растворителя в полимер, процессы набухания проходят быстрее, растворение более полное. [c.39]

    Концентрированные и коллоидные растворы полимеров при достаточно большой концентрации способны образовывать студни. Студнем (гелем) называют систему полимер-растворитель, лишенную текучести, но способную к большим обратимым деформациям, представляющую собой сплошную пространственную сетку, связанную межмолекулярными связями и удерживающую в себе растворитель. Основное отличие студней от концентрированных растворов связано с различием типов сетки. Сетки в растворах имеют флукгуационный характер, а в студнях они устойчивы. Студень уже не является термодинамически равновесной системой он из- [c.168]

    Эффективность процесса эмульгирования, которая определяет и устойчивость полученной эмульсии, зависит в основном от характера и интенсивности механического воздействия и от способа введения эмульгатора в эмульгируемую систему. Механическое воздействие вызывает диспергирование внутренней фазы на отдельные небольшие глобулы, так что чем ниже поверхностное натяжение на границе эмульгируемых фаз, тем меньше затрачивается работы на этот процесс. Действие коллоидных мельниц и гомогенизаторов разных типов сводится к созданию в жидкой среде наибольших сдвиговых усилий, облегчающих образование мелких однородных глобул. В системах с очень низким значением междуфазного поверхностного натяжения эмульгирование может происходить самопроизвольно без воздействия извне. В этом случае смешение фаз происходит благодаря конвекционным токам, вызываемым диффузией и небольшими местными разностями температур. Так, раствор пальмитиновой кислоты в парафиновом масле высокой степени очистки, будучи влит в водный раствор едкого натра, образует эмульсию самопроизвольно. На поверхности раздела фаз мыло, действующее как эмульгатор, образуется in situ и благодаря теплоте реакции и диффузии фазы смешиваются, образуя эмульсию [57]. Но при вливании парафинового масла в водный раствор пальмитата натрия самопроизвольного эмульгирования не происходит. Среди систем с очень низким междуфазным натяжением отмечено много других аналогичных примеров самопроизвольного эмульгирования [58]. Однако в большинстве случаев для образования эмульсий требуется механическое диспергирование, которое может быть осуществлено разными способами, от перемешивания вручную до использования сложных механических приспособлений. Один из наиболее эффективных методов образования змульсий заключается в одновременном пропускании обеих жидкостей [c.342]

    Современное развитие полимерной науки и технологии подтвердило справедливость коллоидно-химического подхода к полимерным системам, основанного на определении, данном П. А. Ребиндером [1] согласно которому коллоидная химия — раздел физической химии в котором рассматриваются процессы образования дисперсных систем а также их характерные свойства, связанные в основном с поверх ностными явлениями на границах раздела фаз в этих системах. Учиты вая всевозможные типы коллоидных систем в высокомолекулярных соединениях, П. А. Ребиндер отмечал, что коллоидная химия как учение о дисперсных, т. е. микрогетерогенных двух- или многофазных системах тесно соприкасается с физикохимией высокомолекулярных соединений [2]. Проблемы, решаемые в настоящ,ее время коллоидной химией полимеров, весьма разнообразны [3]. Исходя из общих позиций, к коллоидной химии полимеров следует отнести все проблемы физической химии полимеров, при описании которых вклад, определяемый поверхностными эффектами и поверхностными свойствами, существенно преобладает над вкладом объемных свойств. Это — проблемы межфазных и поверхностных явлений в полимерах [4,5], оказывающих [c.180]

    Поступление, распределение и выведение из организма. Основной путь поступления РЗЭ в организм человека — ингаляционный распределение различных РЗЭ в тканях организма неодинаково. Более легкие из них в значительном количестве откладываются в печени, более тяжелые накапливаются в костной ткани. Часть РЗЭ задерживается в легких, где приводит к развитию воспалительных явлений типа десквамативной пневмонии, образованию гранулематозных узелков во всех долях, а позднее в периваскулярных и перибронхиальных зонах прикорневых отделов легких. Остальные, незадержанные элементы быстро проникают через мембраны альвеол в кровь. Здесь ионы РЗЭ связываются с а- и р-глобулинами плазмы и в виде коллоидных частиц или белковых комплексов попадают в кровяное русло, захватываются клетками ретикуло-эндотели-альной системы и разносятся по всему организму, откладываясь в печени, костной ткани и почках. Элементы от Ьа до 5т [c.259]

    Размер отдельных частиц кодцебиется от нескольких мил- лиметров до частиц коллоидной и молекулярной степени дис-персноста. Однако основную массу нефтешлама представляют мелкие фракции песчаньк или илистых частиц размером 25- ОО мкм с примесью небольшого количества отдельных вело- он, частичек растительного происхождения и др. Тонкие суспензии и эмульсии задерживаются на флотационных установках, при этом образуется дисперсная система типа пены. [c.7]

    Взаимная растворимость полимеров и свойства однофазных смесей определяются изменением термодинамич. параметров системы при смешении. Свойства двухфазных смесей связаны с коллоидно-химич. закономерностями процесса их взаимодиспергирования и зависят в основном от технологии смешения и типа выбранных ингредиентов (вулканизующих агентов, нанолнителей, пластификаторов и др.), а не от взаимной растворимости полимеров. [c.217]

    Фогт приводит много ярких примеров диоперсои-дов расслаивания, называемых в металлургии штейнами . К ним принадлежат все гетерогенные системы, начиная от очень тонкодисперсных систем, обнаруживаемых только под ультрамикроскопом, и кончая довольно крупнозернистыми суспензиями. При этом в основной силикатной массе содержатся, в частности, сульфиды железа, кобальта, свинца, цинка, меди и серебра. В шлаках этого типа сульфид. елеза присутствует не в виде крупнокристаллического пирротина , а в очень тонкодисперсном состоянии, чем, как уже указывалось, обусловливается образование окрашенных в интенсивный черный цвет непрозрачных стекол, напоминающих обсидиан". Образуются также капли большого размера, диаметром 2—10 ц, суспензированные в силикатном расплаве, Расплав-эмульсия расслаивается при температурах около 1170°С. Эти стекловидные сульфидные камни аналогичны золотым рубиновым стеклам (см. А. Ill, 84 и ниже). (Подобные явления также наблюдаются в шлаках при рафинировании меди красный цвет шлаков обусловлен тоякодисперсной окисью одновалентной меди. Это соединение (идентичное куприту) находится в действительно коллоидном состоянии и его нельзя различить под микроскопом. [c.923]

    Вместе с тем развитие современной коллоидной химии позволило установить основные закономерности п механизм структурообразования в дисперсных системах. Использование этих результатов совместно с физич. представлениями о процессах кристаллизации и образоваппя новых фаз позволило наметить оригинальные фпзико-химич. пути создания новых материалов типа САП, керметов и ситаллов, отличающихся высокой прочностью п жаропрочностью. [c.213]

    Для интенсификации процесса коагуляции часто в обрабатываемую воду вводят специальные вещества — флокул янты. Сущность процесса флокуляции состоит в том, что агрегация коллоидных частиц в этом случае происходит не только непосредственно, но и через молекулы флокулянта. В качестве флокулянтов используются неорганические или органические высокомолекулярные соединения активная крем-некислота, полиакриламид и др. Так, молекула полиакриламида диссоциирует и по кислотному, и по основному тину в зависимости от pH. В изоэлектрическом состоянии степень диссоциации полиакриламида по обоим типам одинакова. Однако несмотря на наличие у молекулы полиакриламида одновременно положительно и отрицательно заряженных ионогенных групп в целом она электронейтральна. Ионогенные группы молекул полиакриламида сорбируют различные частицы, образуя крупные структурированные системы. Следует заметить, что флокуляция не заменяет процесс коагуляции, а лишь углубляет и интенсифицирует его. [c.45]

    Рассматривая гидрогенизированный жир как механическую смесь глицеридов различной степени насыщения (см. об этом ниже), мы вправе заинтересоваться тем, что представляет собой эта система вблизи температуры кристаллизации наиболее высокоплавких компонентов (насыщенных глицеридов). Легко понять, что подобная система состоит в основном из жидких ненасыщенных глицеридов, в среде которых распределены отдельные насыщенные глицериды, образующие кристаллическую взвесь. Возможно, что аномалия вязкости обусловлена образованием круппых ассоциатов насыщенных глицеридов. Если некоторое количество подобной фазы (насыщенных глицеридов) в виде взвеси распределено в жидкости, то мы получаем систему грубо коллоидного типа, проявляющую уже заметную аномалию вязкости. [c.79]

    Органодисперсии (дисперсии полимеров в органических жидкостях) в зависимости от сродства жидкой фазы к полимеру могут быть лиофобньши или дисперсиями переходного типа. Примером первых является спиртовая суспензия фторопласта-4, вторых — дисперсия поливинилхлорида в смеси бутилацетата и ксилола. Эти системы получают в основном диспергированием полимеро в жидкой среде — в коллоидных и шаровых мельницах, на вальцах и т. д. [c.142]


Смотреть страницы где упоминается термин Коллоидные системы основные типы: [c.193]    [c.38]    [c.27]    [c.11]    [c.27]    [c.175]    [c.36]    [c.148]    [c.269]    [c.133]    [c.137]    [c.300]    [c.322]    [c.2]   
Коллоидная химия (1959) -- [ c.15 , c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Системы коллоидные



© 2025 chem21.info Реклама на сайте