Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий соединения его как катализаторы при

    Эффективны два типа катализаторов кислого характера безводные соли галоидоводородных кислот типа Фриделя — Крафтса и кислоты, способные к переносу протона. В качестве примеров катализаторов первого типа можно привести хлористый алюминий, бромистый алюминий, хлористый цирконий и фтористый бор газообразный хлористый водород используется в качестве промотора этих катализаторов. Серная кислота и жидкий фтористый водород являются главными катализаторами второго типа. Как соли галоидоводородных кислот, так и переносящие протоны кислоты переходят в нижние слой или осадки , которые представляют собой комплексы, получающиеся в результате соединения катализаторов [c.304]


    Результаты крекинга декалина, содержащего 0,11% азота в виде различных соединений Катализатор — окись алюминия — окись циркония — окись кремния атмосферное давление, объемная скорость 13,7 моль л час, температура 500°, время опыта 1 час. [c.420]

    Применение. Соединения вольфрама и молибдена применяют в металлургии для производства специальных сталей. Кроме того, молибдаты используют в качестве катализаторов некоторые соли вольфрама и циркония — для изготовления художественных красок хлористый цирконий — как катализатор полимеризации этилена и пропилена азотнокислый торий — для изготовления газокалильных сеток, [c.34]

    Хорошо известна каталитическая активность цеолитов и различных алюмосиликатов [190, 191, 280], а также таких типичных неорганических ионитов, как окись алюминия, гидратированная двуокись циркония, кремнезема, окись магния [281]. Связь между каталитическими и ионообменными свойствами у рассматриваемых соединений несомненно существует, хотя однозначных представлений об этой связи в настоящее время нет. Есть данные об успешном применении в катализе а-фосфата циркония [282], катализаторов на основе сложных систем окислов [283]. [c.202]

    Термодинамические расчеты показывают, что при низких температурах свободная энергия реакций отрицательна [517]. В отсутствии какого-либо катализатора и при атмосферном давлении прибавление изобутана к изобутилену термодинамически возможно при температурах вплоть до 260° С [518]. Реакция легко проходит при комнатной температуре с высоким выходом в присутствии соединений типа Фридель — Крафтса и сильных кислот (хлорид хрома, четыреххлористый цирконий [519], три-фтористый бор [520], серная кислота [521—526], фтористоводородная кислота [527]). Так как реакция сопровождается умень- [c.126]

    Роль кислородсодержащих соединений изучена относительно мало. Однако показано что уменьшение удельной поверхности катализатора гидрокрекинга Р1 на алюмосиликате, модифицированного цирконием, не коррелирует ни с интенсивностью отложения кокса (выжигаемого при регенерации), ни со структурой применяемого сырья и содержанием в нем азота (в виде пиридина) или серы (в виде тиофена). Уменьшение удельной поверхности коррелирует только с содержанием в сырье кислородсодержащих соединений. На основании этого был сделан вывод, что причиной уменьшения [c.322]

    В присутствии катализаторов (соединений вольфрама, молибдена, циркония, тантала, железа и некоторых других элементов) скорость реакции резко возрастает. Зависимость скорости указанной реакции от концентрации реагирующих веществ в присутствии молибдена выражается уравнением [c.312]


    БОРИДЫ — соединения бора с металлами образуются при высоких температурах. Имеют повышенную твердость. Стойкость против истирания и коррозионную стойкость. 5. никеля используют как катализатор. Б. хрома, циркония, Титана, ниобия и тантала, благодаря их тугоплавкости, применяют для изготовления деталей реактивных двигателей, лопаток газовых турбин и др. Б. лантана, церия и бария используют в электронных приборах. Поверхностным борированием резко повышается твердость, стойкость к срабатыванию и коррозионная стойкость изделий из стали, молибдена, вольфрама и др. [c.46]

    М. Открытие К. Циглером и со-КАТАЛитические трудниками (Институт Макса СИСТЕМЫ Планка, ФРГ) нового класса НА ОСНОВЕ каталитических систем полиме-ЧЕТЫРЕХХЛОРИСТОГО ризации этилена при низком ТИТАНА давлении — комплексных металлорганических катализаторов И, 12]—положило начало многочисленным исследованиям в этом направлении во многих странах мира. Первыми каталитическими системами, которые нашли применение в производстве ПЭНД, были системы на основе солей титана и алкилов или галоген-алкилов алюминия. Соединения титана могли быть заменены соединениями других металлов переменной валентности ванадия, циркония, гафния, молибдена и др. Однако низкая стоимость и доступность соединений титана, достаточно высокая активность катализаторов на его основе при полимеризации этилена, возможность получения широкого ассортимента марок ПЭ [c.14]

    В качестве катализаторов опробованию подвергались смеси соединений вольфрама, молибдена и хрома [И, 12]. Испытывалась двуокись циркония в виде геля или нанесенная на силикагель и на другие активные вещества [13]. Применение силиката циркония [14] позволило повысить конверсию до 88% при объемной скорости 200—1200. [c.127]

    Сообщается, что волокнистые материалы из глинозема выдерживают температуры свыше 1510 °С, тогда как волокна из оксида циркония могут использоваться до 1593 С. Волокна могут изготавливать в различных формах, включая блочные структуры, гильзы, цилиндрические фильтры и ткани. Эти материалы представляют новый возможный тип носителей катализаторов, обладающих термической стабильностью и высокой поверхностью. Они, по-видимому, могут быть применены в тех областях катализа, где используются блочные носители. Их применению посвящена только одна небольшая работа [41], в которой, в частности, указывается, что ввиду высокой стоимости этих соединений требуется тщательная оценка перспектив их практического использования. [c.140]

    Двуокись, гидроокись циркония, цирконаты, фосфаты, сульфаты, бориды, карбиды, нитриды циркония, индивидуальные и в сложных катализаторах, комплексные соединения циркония [c.623]

    Первое подтверждается тем, что среди активных в изомеризации окислов преобладают те, в которых ионы металла имеют электронную конфигурацию, обеспечивающую снижение энергии поверхностных комплексов за счет их стабилизации кристаллическим полем. Двуокиси титана и циркония, не отвечающие этому условию, неактивны в виде индивидуальных соединений и используются в реакциях изомеризации только в составе сложных катализаторов. С другой стороны, всем активным в изомеризации окислам присущи высокие значения работы выхода электронов и большая ширина запрещенной зоны. Единственное исключение представляет окись кобальта, но и она неактивна в виде индивидуального соединения, так же как окислы титана и циркония. Важное влияние полупроводниковых свойств окислов переходных металлов на их каталитическую активность подтверждается и тем, что окислы с благоприятными для комплексообразования внешними оболочками центральных ионов д , (Р, остаются неактивными в изомеризации при малых [c.30]

    Применение. Из щелочных металлов наибольшее применение находит натрий. Основными областями его применения является производство металлов и сплавов, например калия, циркония, тантала, сплавов со свин- цом и ртутью. Натрий используется для получения неорганических и органических соединений, например N3202, Na N, NaH. Он служит восстановителем органических соединений, катализатором некоторых реакций, наполнителем газоразрядных натриевых ламп. Натрий в сплаве с калием является теплоносителем (переносчиком теплоты) в ядерных источниках энергии. [c.244]

    Устойчивые к действию УФ-света полимеры получаются из 5—35% аллил- или винилсалицилата и этилена, координированных с металлоорганическими соединениями типа ацетилацетоната циркония. Эти полимеры — отличный материал для получения изделий литьем Хелаты олова или циркония являются катализаторами отверждения полиорганосилоксанов. Сравнительные испытания показали, что такие соединения циркония, как ацетилацетонаты, дают упругую эластичную пленку, хорошо связывающуюся с субстратом. Это свойство используют при импрегнировании тканей силц-катами, а также для придания водоотталкивающих свойств металлам, бумаге, строительным материалам и краскам . При обработке органополисилоксаном и ацетилацетонатом циркония кожа приобретает водоотталкивающие свойства, не теряя при этом внешнего вида и способности к обычной отделке . [c.302]


    Наличие в составе алюмосиликатных катализаторов 3—5 % щелочноземельных металлов (Са, Mg), а также небольших количеств по-видимому, не влияет на каталитические свойства алюмосиликата. Триоксид лгелеза в совокупности с А1зОа и 310.2 может усиливать катализ реакций дегидрогенизации. Искусственное введение в состав алюмосиликатных катализаторов кислородных соединений бора, марганца, тория, циркония и т. д., рекомендуемое многими патентами, вероятно, связано с повышением термической устойчивости катализатора или с понижением его обуглероживаемости за счет каталитического торможения реакций глубокого распада углеводородов либо, наконец, со смягчением окислительных процессов на поверхности катализатора при его регенерации горячим воздухом. [c.58]

    Поляризованными связями. Наиболее активные катализаторы получают из соединений Т1, Сг, V и 2г при взаимодействии последних с алкилами металлов [247]. Лучшими сокатализаторами для производных и V являются алкилы алюминия, а для производ-ньОс циркония — алкилы щелочных и щелочно-земельных металлов. [c.179]

    Интенсивно разрабатываются методы этерификации в присутствии амфо-терных каталитических систем, представляющих собой осажденные на носитель гидраты окислов алюминия, титана и олова, соли титана, олова, циркония и карбоновых кислот или органические соединения титана. Наибольшую каталитическую активность обнаруживают тетраалкилтитанаты и тетраалкилцирконаты. Амфотерные катализаторы частично или полностью растворимы в реакционной массе и легко удаляются из нее осаждением, гидролизом, обработкой сорбента ш или простой фильтрацией. Этернфикация в их присутствии протекает при более высокой температуре (160—200 °С) и требует большего избытка спирта (40% и выше), чем при использовании кислотного катализатора. [c.238]

    Уже давно в масла, на основе которых готовят к >аски и лаки, а также в алкидные смолы, чтобы ускорить их высыхание и твердение, добавляют катализаторы, известные под названием сиккативы, или сушки. Интересно сравнить действие сиккативов и катализаторов, описанных в предыдущем разделе, В обоих случаях используются одни и те же элементы с переменной валентностью и в обоих случаях они образуют с органическими молекулами растворимые соединения. Кобальт и марганец при комнатной температуре и церий при температуре затвердевания инициируют высыхание за счет образования промежуточьых продуктов, обладающих окислительными свойствами. Другие элементы типа свинца, цинка, кальция и циркония дополняют действие кобальта и марганца, облегчая процесс полимеризации. В отсутствие кобальта или марганца, иницируюших процесс высыхания, полная реакция полимеризации протекала бы значительно медленнее /40/. [c.291]

    КАРБИДЫ — соединения металлов или неметаллов с углеродом. К.— тугоплавкие твердые вещества, нерастворимые ни в одном из известных растворителей. Наиболее распространенный метод получения К- заключается в нагревании до температуры около 2000 С смеси соответствующего металла или его оксида с углем в атмосфере инертного или восстановительного газа. Преобладающее большинство К. (карбид бора В4С, кремния Si , титана Ti , вольфрама W , циркония Zr и др.) очень твердые, жаропрочные, химически инертные. К. применяют в производстве чугунов и сталей, различных сплавов современной техники, используют в качестве абразивных материалов, восстановителей, рас-кислителей, катализаторов и др. К. вольфрама и титана входят в состав твердых и жаропрочных сплавов, из которых изготовляют режущий и буровой инструменты из К. кремния (карборунд) изготовляют шлифовальные круги и другие абразивы К. железа Feg (цементит) входит в состав чугунов и сталей К. кальция применяется в производстве ацетилена, цианамида кальция и др. К. используют как материалы для электрических контактов, разрядников и многого др. (см. Кальция карбид. Карборунд). [c.119]

    Применение брома, иода и их соединений. Бром применяется для получения бромидов, красителей, фармацевтических препаратов. Иод используется для осуществления транспортных реакций с целью получения веществ высокой степени чистоты. Наиболее распространено иодидное рафинирование титана, циркония и других тугоплавких металлов. Кроме того, иод — катализатор в органическом синтезе и антисептик в медицине. Бромид бора используется для легирования полупроводниковых материалов для придания им р-проводимости. Бромид серебра — основной компонент светочувствительного слоя фотобумаги, кино- и фотопленки. Иодид серебра — компонент иодобромосеребряных фотобумаг, материал для влектрохимических преобразователей, твердых электролитов. " [c.371]

    Различные соединения циркония. Цирконах свинца в виде твердого раствора с титанатом свинца используется в качестве материала для пьезокерамики. Карбид и нитрид циркония применяют для изготовления твердых сплавов. 2гС14 предложено использовать в качестве компонента катализатора для полимеризации [c.307]

    Для снижения температуры и уменьшения времени термической обработки в последнее время предложен ряд катализаторов — органические соединения титана, циркония и др. На фабриках химической чистки в качестве катализатора применяют тетрабутоксититан Т1(ОС4Нэ)4, представляющий собой бутиловый эфир ортотитановой кислоты, его структурная формула такова  [c.248]

    Было показано что скорость полимеризации и микроструктура образующихся полимеров определяются мольным соотношением А1 Т1 в каталитической системе и температурой полимеризации. Содержание 1,4-трамс-звеньев в полидиенах, в зависимости от условий полимеризации, составляло 81.5-94 %. Предполагается, что носители типа Mg I2 увеличивают поверхность гетерогенного катализатора и способствуют образованию Т1С1з в нужной для тгерамс-полимеризации диена а-, 5- или у-модификации Титан-магниевые комплексы, модифицированные соединениями никеля или циркония, также приводят к трамс-полибутадиеиу Варьируя состав каталитической сис-тем.ы и температуру полимеризации, можно регулировать микроструктуру вплоть до образования практически регулярного [c.144]

    В качестве катализаторов применяли иикепь металлический, оксид никеля, никель азотнокислый, никель сернокислый, никель муравьинокислый, никель шавелевокислый, оксид кобальта, оксид марганца, оксид хрома, оксид железа, предварительно восстановленные водородом при температуре 500°С, промьниленные катализаторы никель-марганцевый, железо-хромовый, алюмо-никель-молибденовый, интерметаллическое соединение цирконий-никелевый гидрид ультрадисперсные оксиды металлов кобальт-никель-марганец-хром, медь-хром-марганец-кобальт, медь-хром-кобальт-1шкель-марганец, медь-кобальт-хром-железо-ннкель-марганец, а также двухкомпонентные катализаторы на основе металлов подгруппы железа. Физико-химические свойства их приведены в табл.7. [c.42]

    Публикации (в основном патенты), касающиеся приготовления, свойств, активности и стабильности гетерогенных катализаторов пиролиза появились в литературе с начала 60-х годов. Наибольший интерес и значение уже в тот период получили исследования по каталитическому пиролизу, выполненные в Московском институте нефтехимической и газовой промышленности им. И. М. Губкина под руководством Я. М. Пауш-кина и С. В. Адельсон [375]. В качестве активных компонентов катализаторов для пиролиза в публикациях предлагаются соединения многих элементов периодической системы, в большинстве случаев оксиды металлов переменной валентности (например, ванадия, индия, марганца, железа, хрома, молибдена и др.), оксиды и алюминаты щелочных и щелочноземельных металлов (большей частью кальция и магния) и редкоземельных элементов, а также кристаллические или аморфные алюмосиликаты [376]. Обычно активные вещества наносят на носители, в качестве которых применяют пемзу, различные модификации оксида алюминия или циркония, некоторые алюмосиликаты. Сведения о работах по исследованию процесса каталитического пиролиза, опубликованные до 1978 г., систематизированы в обзоре [377]. [c.180]

    Катализаторы Циглера — Натта для ведения анионно-координационной полимеризации получают из металлалкилов, металларплоа, или сидрпдов металлов I—III групп. периодической системы (натрий, литий, барий, алюминий и др.), которые предварительно смешивают с соединениями переходных металлов (IV—VIII группы). К последним относятся хитан, ванадий, хром и цирконий,, т. е. элементы с незаполненной промежуточной электронной оболочкой. [c.179]

    Последний пример влияния носителя на каталитическую активность был обнаружен нри исследовании Делла Бетты с сотр. [33] метанирования на никеле Ренея и никеле, нанесенном на оксид циркония и оксид алюминия. Установлено, что активности на единицу поверхности никеля располагаются в следующей последовательности Ы1>Ы1/А120з>Н1/2г02, тогда как стойкость к сернистым соединениям образует обратный ряд. Одно из существенных достоинств данных исследований заключается в том, что они служат базой для проведения сравнения по удельной активности, т. е. активности на единицу поверхности никеля. Ввиду значительного колебания дисперсности испытанных катализаторов сравнение их на другой основе бесполезно. Это ставит вопрос о влиянии размера кристаллитов на протекание реакции, что предполагается обсудить в дальнейшем. [c.37]

    Применение в катализе. Использование в катализе необычно стабильных интерметаллических соединений затруднено сложностью достижения высокоразвитой поверхности этих веществ при приготовлении катализаторов. Одним из путей решения этой проблемы, например в случае е 2гР1з, могла бы быть пропитка солью платины оксида циркония или оксида алюминия с нанесенным на него, оксидом циркония с последующим восстановлением образующейся композиции в атмосфере очень сухого и чистого водорода. [c.138]

    Развитие сырьевой базы ПАВ и других продуктов, получаемых на основе высших олефинов, базируется только на высших а-олефинах, синтезируемых каталитической олигомеризацией этилена. Причем на смену каталитическим высокотемпературным процессам олигомеризации этилена, в основу которых положена реакция Циглера, протекающая прн температуре 100— 240 С и давлении 20 МПа, приходят низкотемпературные процессы олигомеризации этилена на металлорганических системах, включающих комплекс переходного металла и алюминий-органическое соединение [80]. Сопоставительная оценка активности и селективности различных катализаторов олигомеризации этилена (табл. 2.2) указывает на то, что наиболее эффективными каталитическими системами являются карбоксилат циркония— сесквиэтилалюминийхлорид (СЭАХ) [A. . 1042701 СССР, 1983] и никель-боргидридиая система, предложенная фирмой Shell , [c.86]

    Рассмотрим прежде всего железные катализаторы, полученные методом сплавления. Распределение в них стабилизаторов определяется химической природой последних. Окислы алюминия, магния и титана до некоторой степени растворяются в магнетите. То же самое можно сказать и о СаО, Ь1гО и Na20, однако К2О и ВаО в магнетите нерастворимы (эти окислы щелочных и щелочноземельных металлов относятся к химическим промоторам) [151]. Если содержание окислов алюминия и магния превыщает 1 мол.%, они растворяются, по-видимому, уже не полностью [152] и часть окислов, как показывают данные электронно-зондового микроанализа [153], образует отдельную фазу. Двуокись кремния (и двуокись циркония ), вероятно, нерастворима в магнетите введенная как стабилизатор, двуокись кремния обнаружена в слое, разделяющем зерна магнетита. Двуокись кремния препятствует растворению в магнетите более основных окислов (образует с ними соединения), и поэтому ее присутствие затрудняет равномерное распределение химических промоторов щелочных или щелочноземельных металлов [151]. [c.233]

    Собственно, реакция Фриделя — Крафтса [45] заключается в алкилировании или ацилировании ароматического кольца в присутствии кислот Льюиса типа хлористого алюминия. Кроме того, эта реакция может быть распространена на алкилирование и ацили-рование алифатических углеводородов, как насыщенных, так и ненасыщенных [46, 47]. Основная реакция часто сопровождается вторичными реакциями типа полимеризации или изомеризации субстрата или алкилирующего агента. Далее реакция осложняется образованием комплекса между реагирующими веществами, катализаторами и продуктами, как уже указывалось в гл. I некоторые из этих комплексов могут образовывать отдельные фазы [48]. Хотя основная схема механизма реакции твердо установлена, количественное рассмотрение кинетических закономерностей наталкивается на трудности, поэтому количественный анализ проведен только для нескольких реакций, осуществленных в благоприятных условиях. К числу используемых катализаторов относятся галоидные соединения бора, алюминия, галлия, железа, циркония, титана, олова, цинка, ниобия и тантала. Все эти соединения являются акцепторами электронов и, по определению Льюиса, общими кислотами. Их функция, по-видимому, состоит в облегчении образования ионов карбония из олефинов, галоидалкилов или спиртов, из хлорангидридов алкил- или арилкарбоновых кислот, ангидридов кислот или сложных эфиров [49]. Ионы карбония легко реагируют с ароматическими углеводородами, и эти реакции открывают важные пути синтеза производных ароматических углеводородов. [c.79]

    Компонентами катализатора Циглера являются а) металлоорганическое соединение металлов II или III группы, особенно алкила-ты алюминия, цинка или магния, или гидриды щелочных металлов, алкилгидриды металлов типа Rn М — X, б) соль, например галогенид, алкоголят или ацетилацетоиат металла IV, V и VI групп, особенно хрома, молибдена, тория, ванадия или циркония. По-видимому, между двумя компонентами происходит реакцня, в которой металл компонента [б)] частично алкилируется и восстанавливается, например в случае титана — до степени окисления 3 или ниже. [c.436]

    Отсюда следует, что для соединения с большой величиной энергии кристаллической решетки разрушение решетки может стать чрезвычайно невыгодным процессом и реакция будет протекать по другому механизму. Сопоставление энергий кристаллических решеток окислов II и IV групп показывает, что для первых она колеблется от 700 до 1000 ккал молъ, а для вторых она значительно больше и составляет 2500—3000 ккал/молъ. Действительно, на окислах четырехвалентных металлов, а именно на двуокисях титана, циркония, олова и церия, не происходит промежуточного образования соли и фазовый состав катализатора до и после работы один и тот же [8]. [c.143]

    Катализаторы мсгут присоединять воду к некоторым соединениям или вызывать отщепление веды.. .В качестве катализаторов гидратации и дегидратации рекомендуются скислы тсрия, вольфрама, титана, циркония, молибдена и хрома в чистсм виде или вместе с такими промоторами, как окись алюминия, магния и цинка и углекислый калий. Известно, что окись алюминия сильно ускоряет дегидратацию, но, чтобы окись алюминия могла действовать как деги- [c.585]

    II и III групп пригодны также неполностью алкилированные соединения типа R, MeX , где X — водород, галоген или алкокси-группа. Из соединений переходных металлов, кроме галогенидов, эффективными компонентами катализатора являются алкил-галогениды, галогепоксиды, ацетилацетонаты, причем главным образом таких металлов, которые имеют первый потенциал ионизации ниже 7 эв этому условию, в частности, отвечают соединения высшей валентности титана, циркония, ванадия, хрома, железа, кобальта (потенциал ионизации 6.7—6.9 эв). Для приготовления катализатора можно использовать производные переходных металлов любой валентности, но в каталитическом комплексе чаще всего участвуют их соединения с пониженной валентностью. [c.404]

    Циклопентадиенильные комплексы титана или циркония СргМСи в смесях с алкильными производными лития, магния и алюминия также катализируют гидрирование, но они не так активны, как ацетилацетонаты металлов VHI группы [166]. Взаимодействие между paTi Ia и алкилом металла носит весьма сложный характер. Если в качестве алкилирующего агента используется алюминийорганическое соединение, то катализатор быстро теряет свою гидрирующую активность. Однако в присутствии небольших критических количеств кислорода в смеси этого не происходит [172]. Величина оптимального [c.69]


Смотреть страницы где упоминается термин Цирконий соединения его как катализаторы при: [c.57]    [c.66]    [c.169]    [c.63]    [c.360]    [c.207]    [c.341]    [c.24]    [c.584]    [c.56]    [c.380]    [c.82]    [c.83]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы циркония



© 2025 chem21.info Реклама на сайте