Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы циркония

    Были выбраны оптимальные условия измерения скорости реакции в присутствии циркония и гафния. Конечные концентрации участников реакции были следующие пероксид водорода — 1,4-10 соляная Кислота — 0,44 рубеановодородная кислота — 6,0 10 катализатор (цирконий или гафний) — 1,0-Ю - —3,0-10 сульфат натрия —2,0-10 — —1,0-10- перхлорат натрия — 8,0-—8,0-10- моль/л. [c.72]


    Бифенил. Термическая стабильность бифенила несколько выше, чем бензола. Это и следовало ожидать, так как стабилизация бифенила обусловливается 8 калориями энергии резонанса дополнительно к той, которая получается при образовании двух отдельных молекул бензола. Тиличеев [45] нашел, что константа скорости разложения бифенила при 500° С в 20 раз превосходит таковую для разложения нафталина, и что стабильность бензола приближается к стабильности бифенила. Гринсфельдер и другие [14] сообщают, что практически разложение бифенила в контакте с алюмо-цирконий-кремниевым катализатором при 550° С не происходит. Мейер и Гофман [27] нашли, что при еще большей температуре получается 4,4 -дифенил-бифенил.  [c.97]

    Крекинг-процесс предъявляет строгие требования к свойствам катализатора. Катализатор должен обеспечить не только требуемые выходы продуктов, но также и удовлетворительное качество их. Он должен противостоять действию высокой температуры при регенерации, а также обладать достаточной устойчивостью к истиранию как в процессе крекинга, так и при регенерации. Катализатор, кроме того, должен обладать определенным сочетанием химических и физических свойств. Эти требования ограничивают выбор материала, который может быть использован в качестве катализатора крекинга. Из большого числа исследованных катализаторов лишь немногие имеют требуемые свойства и, кроме того, недороги в производстве. С точки зрения сырья, используемого для приготовления катализаторов, последние делятся на два класса естественные и синтетические. В качестве естественных катализаторов могут быть использованы природные бентонитовые глины [11, 12] типа монтмориллонита и другие природные алюмосиликаты, такие как каолин и галлуазит. Синтетические катализаторы могут быть приготовлены из окиси кремния в комбинации с окисями алюминия, циркония или магния. Химия производства катализаторов обоих типов очень сложна и здесь обсуждаться не будет. Большинство катализаторов каталитического крекинга различаются по их активности и стабильности и при сравнимой активности обеспечивают лишь незначительные различия в распределении и качестве продуктов крекинга. В табл. И приводится сравнение действия катализаторов синтетического алюмосиликатного шарикового, двух типов природных глинистых и синтетического катализатора из окисей магния и кремния. [c.154]

    Ионы карбония образуются в реакциях, катализируемых так называемыми кислотными катализаторами, к которым относятся протонные кислоты (например, серная, фосфорная и фтористо-водородная) галогениды типа катализаторов Фриделя-Крафтса (например, хлористый алюминий, хлористый цирконий и фтористый бор) и окиси (нанример, алюмосиликаты). Ионы карбония, образующиеся в реакционных условиях прежде чем превратиться в конечные продукты могут претерпевать одно или несколько изменений в соответствии со следующими правилами  [c.213]


    Из других катализаторов, которым приписывают некоторую изоме-ризующую активность, следует назвать хлористый цинк и хлористый цирконий. Они рассмотрены в обзоре [18]. [c.42]

    Ожиженная бутан-бутеновая фракция, содержавшая 19,3 % изобутилена и 28,6% м-бутилена, полимеризовалась при 165° и давлении 45 кг/см в присутствии катализаторов крекинга на силикатной основе [67] при объемной часовой скорости жидкости от 7 до 8 с образованием от 36 до 52 % вес. полимера в расчете на взятый бутилен. Эти синтетические катализаторы имели состав окись кремния — окись алюминия, окись кремния — окись циркония, окись кремния — окись алюминия— окись циркония и окись кремния — окись алюминия — окись тория, в которых 100 молей окиси кремния были смешаны соответственно с И молями окиси алюминия, 50 окиси циркония, 2 окиси алюминия и 12 окиси циркония, 5 окиси алюминия и 0,5 окиси тория. [c.204]

    Эффективны два типа катализаторов кислого характера безводные соли галоидоводородных кислот типа Фриделя — Крафтса и кислоты, способные к переносу протона. В качестве примеров катализаторов первого типа можно привести хлористый алюминий, бромистый алюминий, хлористый цирконий и фтористый бор газообразный хлористый водород используется в качестве промотора этих катализаторов. Серная кислота и жидкий фтористый водород являются главными катализаторами второго типа. Как соли галоидоводородных кислот, так и переносящие протоны кислоты переходят в нижние слой или осадки , которые представляют собой комплексы, получающиеся в результате соединения катализаторов [c.304]

    Гидратация и дегидратация. Все катализаторы этого класса имеют сильное сродство к воде. Главный представитель этй Ь класса—глинозем. Применяется также фосфорная кислота или ее кислые соли на носителях, подобных алюмосиликатному гелю и силикагелю с окислами тантала, циркония или гафния. [c.313]

    Наиболее часто используемым элементом является никель — активный компонент подавляющего большинства катализаторов конверсии углеводородного сырья. На втором месте находится алюминий, который (в составе окиси алюминия) входит в носители, наполнители, промоторы. Значительно реже встречается магний (в составе окиси магния). Еще реже в состав катализатора вводятся кальций, натрий, калий, уран, барий. В составе сырья относительно редко встречается кремний, титан, цирконий, хром, марганец. [c.17]

    Влияние фтористого бора на алкилирование алканов [174] и цикланов [175] олефинами изучалось впервые в 1935 г. Исследование каталитического алкилирования выявило целый ряд эффективных катализаторов алкилирования серная кислота, плавиковая кислота, фторид бора, хлористый цирконий и т. д. [c.58]

    Термодинамические расчеты показывают, что при низких температурах свободная энергия реакций отрицательна [517]. В отсутствии какого-либо катализатора и при атмосферном давлении прибавление изобутана к изобутилену термодинамически возможно при температурах вплоть до 260° С [518]. Реакция легко проходит при комнатной температуре с высоким выходом в присутствии соединений типа Фридель — Крафтса и сильных кислот (хлорид хрома, четыреххлористый цирконий [519], три-фтористый бор [520], серная кислота [521—526], фтористоводородная кислота [527]). Так как реакция сопровождается умень- [c.126]

    Известны многие вещества, обладающие способностью повышать скорость крекинга нефтепродуктов, но высокие выходы желаемых продуктов получаются лишь при переработке с применением гидратированных алюмосиликатов. В промышленности могут использоваться активированные (обработанные кислотой) природные глины типа бентонита и синтетические алюмосиликатные или магниево-силикатные катализаторы [281, 286]. Их активность можно в некоторой степени увеличить добавкой малых количеств окисей циркония, бора (последняя имеет тенденцию улетучиваться во время процесса) и тория. При введении этих добавок состав продуктов крекинга в основном не изменяется. Как природные, так и синтетические катализаторы могут применяться в виде шариков, таблеток или порошка в любом случае необходима их своевременная замена вследствие потерь от истирания и постепенного снижения активности. [c.339]

    В роли металлорганической компоненты катализатора вместо органических производных элементов I—IV групп периодической системы могут также быть использованы я-аллильные комплексы переходных металлов (циркония, хрома, никеля) [53]. [c.214]

    Присутствие некоторых веществ даже в ничтожных количествах резко понижает активность катализатора пли совершенно уничтожает его действие другие, наоборот, будучи прибавлены к катализатору в определенном (оптимальном) количестве, увеличивают его активность, хотя сами по себе не являются катализаторами для данной реакции. Такие вещества (активирующие добавки) называются промоторами (активаторами) и служат как бы катализаторами для катализаторов . В нефтепереработке многие синтетические катализаторы используются с активирующими добавками. К ним относятся окислы циркония, тория, ванадия, бериллия, магния и многих других металлов. [c.22]


    Роль кислородсодержащих соединений изучена относительно мало. Однако показано что уменьшение удельной поверхности катализатора гидрокрекинга Р1 на алюмосиликате, модифицированного цирконием, не коррелирует ни с интенсивностью отложения кокса (выжигаемого при регенерации), ни со структурой применяемого сырья и содержанием в нем азота (в виде пиридина) или серы (в виде тиофена). Уменьшение удельной поверхности коррелирует только с содержанием в сырье кислородсодержащих соединений. На основании этого был сделан вывод, что причиной уменьшения [c.322]

    В настоящее время существуют две группы процессов получения высших а-олефинов из этилена на алюмоорганических катализаторах. В первой группе процессов, более традиционных, используется реакция олигомеризации этилена под влиянием триэтилалюминия. Во второй группе процессов, разработанных в последние годы, используются комплексные катализаторы на основе переходных металлов никеля, кобальта, титана, ванадия, хрома, вольфрама, циркония. [c.322]

    Характер действия катализаторов определяется их химической природой. Так, благодаря носителям, обладающим кислотной природой, — алюмосиликатам аморфной и кристаллической структуры, магний- и цирконий-силикатам, а также фосфатам, катализаторы помимо гидрирующих свойств обладают изомеризующей и расщепляющей способностью. Носители нейтральной природы — окись алюминия, окись кремния, окись магния и др., не придают, как правило, дополнительных свойств катализаторам гидрогенизационных процессов [36]. [c.66]

    G-69 промотированный цирконием катализатор, содержащий [c.200]

    Во время второй мировой войны большие количества бутадиена для синтеза каучука получали из этилового спирта. Часть этанола каталитически дегидрировалась в ацетальдегид, а последний конденсировался в присутствии этилового спирта и окиси тантала на силикагеле в качестве катализатора с образованием бутадиена. Типичные условия проведения реакции следующие температура 325°С, молярное соотношение этанола и ацетальдегида 3 1, среднечасовая объемная скорость подачи жидкости 0,33-0,5 ч , давление атмосферное, катализатор - 2% окиси тантала на силикагеле. Хорошим катализатором является также окись циркония (2% окиси циркония на силикагеле). [c.338]

    Как видно из табл. 24, действие катализатора, содержащего цирконий, мало отличается от действия обычного катализатора. Но применение окиси магния в качестве составной части катализатора влияет на количество образующихся углеводородов С4 (табл. 26 [19]). [c.29]

    В присутствии катализаторов (соединений вольфрама, молибдена, циркония, тантала, железа и некоторых других элементов) скорость реакции резко возрастает. Зависимость скорости указанной реакции от концентрации реагирующих веществ в присутствии молибдена выражается уравнением [c.312]

    Если происходят реакции обмена, не связанные с передачей электронов, то катализаторами могут быть вещества, содержащие подвижные ионы водорода или ионы гидроксила (кислотно-основ-ной катализ). К ним относятся гидроокиси алюминия, железа, циркония, тория и др. [c.33]

    Гидрирующим компонентом обычно служат те металлы, ко — тор ае входят в состав катализаторов гидроочистки металлы VIII (Ni, Со, иногда Pt или Pd) и VI групп (Мо или W). Для активирования кат,1лизаторов гидрокрекинга используют также разнообразные промоторы рений, родий, иридий, редкоземельные элементы и др. Функции связующего часто выполняет кислотный компонент (оксид алк миния, алюмосиликаты), а также оксиды кремния, титана, циркония, магний— и цирконийсиликаты. [c.227]

    Все промышленные катализаторы крекинга содерн< ат окиси кремния и алюминия. Были приготовлены гакже активные катализаторы, состоящие из окисей циркония и кремния и из окисей магния и кремния, но по различным причинам они не полумили промьпнлениого применения. Первоначально катализаторы приготовлялись исключительно из глин. Позднее стали применяться синтетические катализаторы, которые составляют сейчас основную массу используемых катализаторов (70%). Еще на первой стадии развития крекинг-процессов было найдено, что эффективность различных катализаторов может меняться в широких пределах. Были разработаны стандартные методы для эмпирического определения активности катализаторов. Такие методы не только дали вoзмoнiнo ть контролировать производство катализаторов, но также помогли разработке новых более совершенных катализаторов. Эти методы [1, 7, 15] основаны на определении активности катализатора в стандартных условиях, приближающихся к условиям работы промышленных установок. [c.152]

    Катализатор Стандард Ойл Дэвэлоимент Компани , известный под названием катализатор 1707 , имеет следующий состав 72,4 М 0 — 18,4 ГоаО., —4,6 СиО —4,6 КдО [37 . В лабораторных опытах с этим катализатором из чистых и-бутепов были получены предельные выходы бутадиена порядка 85% при 20%-ной конверсии и 72% при 40%-ной конверсии. Одиако во время заводских опытов с менее чистым бутеновым сырьем была достигнута более низкая избирательность (от 70 до 80% при конверсии 20—25%). Активным дегидрирующим компонентом катализатора является железо. Предполагается, что медь в какой-то мере также способствует повышению активности катализатора и служит также стабилизатором. Калий, присутствующий, по-видимому, в виде КаСОд, является промотором и способствует взаимодействию отложившегося кокса с паром. Применение в качестве промотора гидроокиси калия является большим достижением, так как по своему промотирующему де -ствию она намного превосходит гидроокиси натрия, лития, кальция и других металлов, ранее использовавшихся в катализаторах. Сравнимых результатов можно достичь только путем применения очень дорогих рубидиевых и цезиевых промоторов. Во время работы катализатора содержание промотора снижается, однако количество его можно восполнить подачей с сырьем или водяным паром раствора К СОд. В настоящее время в литературе описаны многочисленные модификации катализатора 1707 [37]. Лабораторные опыты показывают, что вместо железа в катализаторе могут быть использованы марганец или кобальт, а вместо -окиси магния — окиси цинка, бериллия или циркония. Окись цинка, [c.202]

    При конденсации т/ ет-бутилхлорида с пропиленом образуются первичный продукт 2-хлор-4,4-диметилпентан и большее или меньшее количество (в зависимости от катализатора и условий) продукта его перегруппировки 2- и 3-хлор-2,3-диметилпентана. Как правило, в качестве побочных продуктов получаются децилхлориды пока еще не установленного строения, вероятно, в результате конденсации трет-гентилхлори-дов с пропиленом. Если вести реакцию в присутствии хлористого алюминия при —30°, то с выходом до 70% образуются гептилхлориды, среди которых около 45% приходится на долю 2-хлор-4,4-диметилпентана, остальную часть составляет З-хлор-2,3-диметилпентан с ничтожными примесями 2-хлор-2,3-диметилпентана. Подобные же смеси с выходами от 20 до 60% получались и при проведении реакции в присутствии хлорного железа (при —15°- —-10°), фтористого бора (при 10°), хлористого висмута, хлористого цинка, хлористого циркония (при комнатной температуре) и хлористого титана (при 50°) [18 . Наиболее высокое содержание 2-хлор-4,4-диметилпентана в продуктах реакции было получено при использовании в качестве катализатора хлористого висмута. [c.229]

    V1I-7. Тодос и Шутцман проводили в дифференциальном реакторе синтез хлористого этила из этилена и хлористого водорода в присутствии метана. Катализатором служил оксихлорид циркония, нанесенный на силикагель. Уравнение реакции  [c.235]

    Барий вводят в катализатор в виде нитрата, гидроокиси и ацетата, бор — в виде борного ангидрида, марганец — в виде нитрата, а кремний, титан, цирконий, хром используются в окисной форме при иггзтовлении катализаторов и носителей смешением компонентов. [c.18]

    Наличие в составе алюмосиликатных катализаторов 3—5 % щелочноземельных металлов (Са, Mg), а также небольших количеств по-видимому, не влияет на каталитические свойства алюмосиликата. Триоксид лгелеза в совокупности с А1зОа и 310.2 может усиливать катализ реакций дегидрогенизации. Искусственное введение в состав алюмосиликатных катализаторов кислородных соединений бора, марганца, тория, циркония и т. д., рекомендуемое многими патентами, вероятно, связано с повышением термической устойчивости катализатора или с понижением его обуглероживаемости за счет каталитического торможения реакций глубокого распада углеводородов либо, наконец, со смягчением окислительных процессов на поверхности катализатора при его регенерации горячим воздухом. [c.58]

    Относительно недавно в качестве носителей стали использовать специальным образом приготовленную керамику. Применяют керамику на основе а-окиси алюминия (корунда), окиси циркония, силиката циркония (циркона), карборунда, динаса, муллита. Керамические носители инертны, температуростойки и могут изготовляться с диаметром пор 2000—3000 А. Возможность получения широко- и малонористых носителей особенно важна при синтезе катализаторов для получения целевых продуктов, являющихся промежуточными в системе последовательных необратимых реакций, например в реакциях окисления. Характеристики основных керамических носителей даны в работе [32]. [c.187]

    На стадии окисления требуются точная регулировка подачи воздуха и тщательное перемешивание реагентов на входе в реактор с катализатором селектокс. Последний представляет собой окснд ванадия (или сульфид ванадия), нанесенный на нещелочной пористый тугоплавкий оксид. Типичный катализатор состоит из 1...30% (желательно 5... 15%) ванадия в оксидной или сульфидной форме. В качестве носителя используют алюминий, титан, кремний, цирконий, а также их различные комбинации, фосфаты кислых металлов, арсенаты, кристаллические или аморфные алюмосиликатные водородные цеолиты. [c.175]

    Эти реакции дегидрирования упомянуты лишь в связи с уникальностью используемого для их проведения катализатора. Речь идет о превращениях этилсукцината в этилфумарат и ацетона в метилглиоксаль на диоксиде селена в качестве катализатора. Носителями могут служить оксиды алюминия, кремния, циркония, титана или церия. [c.160]

    В статье [48] описан сульфованадиевый катализатор СВБ, промотированный фосфатом циркония. Он имеет состав [c.254]

    Катализаторы крекинга в основном представляют собой алюмосиликатные системы с разным соотношением глинозема и кремнезема. Кроме алюмосиликатов можно применять цирконий-силикатные, магнийсиликатные, алюмосиликатмагниевые катализаторы [5]. Однако последние два типа катализатора промышленного применения не нашли [6]. [c.7]

    Поляризованными связями. Наиболее активные катализаторы получают из соединений Т1, Сг, V и 2г при взаимодействии последних с алкилами металлов [247]. Лучшими сокатализаторами для производных и V являются алкилы алюминия, а для производ-ньОс циркония — алкилы щелочных и щелочно-земельных металлов. [c.179]

    Катализаторы крекинга. В процессе каталитического крекинга используются, как правило, алюмосиликатные катализаторы с различным соотношением глинозема и кремнезема. Помимо алюмосиликатов могут также применяться цирконий-силикатные, магнийсиликатные и алюмосиликатмагниевые катализаторы [47]. [c.404]

    Интенсивно разрабатываются методы этерификации в присутствии амфо-терных каталитических систем, представляющих собой осажденные на носитель гидраты окислов алюминия, титана и олова, соли титана, олова, циркония и карбоновых кислот или органические соединения титана. Наибольшую каталитическую активность обнаруживают тетраалкилтитанаты и тетраалкилцирконаты. Амфотерные катализаторы частично или полностью растворимы в реакционной массе и легко удаляются из нее осаждением, гидролизом, обработкой сорбента ш или простой фильтрацией. Этернфикация в их присутствии протекает при более высокой температуре (160—200 °С) и требует большего избытка спирта (40% и выше), чем при использовании кислотного катализатора. [c.238]

    Гидрирование асфальтенов в чистом виде проводят главным образом для выяснения их структуры. С этой целью используются как сравпительио мягкие катализаторы типа иикеля Ренея, так и жесткие катализаторы деструктивнс й гидрогенизации, включающие титан, торий, цирконий и др. Образующиеся при деструктивной гидрогенизации осколки не дают, однако, достаточной информации о строении исходных молекул асфальтенов. [c.216]

    Реакция дегидрирования катализируется хромоалюминиевым катализатором, промотированным оксидом калия или оксидами магния, бериллия и циркония. К таким катализаторам относится, например, катализатор К-16 состава Сг20з А120з-К20, активный при температуре 570-600°С и обладающий высокой селективностью (70-75%) и способностью к регенерации. [c.326]

    Существенное значение имеют промотирующие добавки. Окислы щелочных металлов повышают стойкость катализатора к закоксовыванию окислы титана, циркония и кремния повышают его термостойкость. Незначительная добавка (0,01-0,1%) металлов платиновой грушш заметно повып1ает активность и стабильность катализатора. [c.40]

    Уже давно в масла, на основе которых готовят к >аски и лаки, а также в алкидные смолы, чтобы ускорить их высыхание и твердение, добавляют катализаторы, известные под названием сиккативы, или сушки. Интересно сравнить действие сиккативов и катализаторов, описанных в предыдущем разделе, В обоих случаях используются одни и те же элементы с переменной валентностью и в обоих случаях они образуют с органическими молекулами растворимые соединения. Кобальт и марганец при комнатной температуре и церий при температуре затвердевания инициируют высыхание за счет образования промежуточьых продуктов, обладающих окислительными свойствами. Другие элементы типа свинца, цинка, кальция и циркония дополняют действие кобальта и марганца, облегчая процесс полимеризации. В отсутствие кобальта или марганца, иницируюших процесс высыхания, полная реакция полимеризации протекала бы значительно медленнее /40/. [c.291]

    Для активирования катализаторов гидрокрекинга используют также разнообразные промоторы рений, родий, иридий, редкоземельные элементы и др. Функции связующего часто выполняют кислотный компонент (оксид алюминия, алюмосиликаты), а также оксиды кремния, титана, циркония, магний-и цирконийсиликаты. [c.250]

    ПромышленЕше катализаторы, несмотря на их доступность и относительно невысокую (за исключением АП-64 АП-56) стоимость, недостаточно технологичны при приготовлении катализаторных покрытий из-за необходимости дробления гранул и отбора фракции измельченного катализатора с размером частиц 0,15 мм и менее. Кроме того, относительно узкий набор оксидов металлов в промышленных катализаторах не позво-ля 5т детально изучить полноценный ряд их активности при окислении углеводородов. В связи с этим была исследована в качестве компонентов катализаторного покрытия большая группа ультрадисперсных порошков (УДП) как индивидуальных оксидов металлов, так и смесей различных оксидов, включающих оксиды кобальта, никеля, марганца, церия, железа, хрэма, меди, циркония. Эти оксиды, по данным [4], ориентировочно располагаются в следующий ряд активности в реакциях окисления  [c.132]


Смотреть страницы где упоминается термин Катализаторы циркония: [c.81]    [c.57]    [c.57]    [c.225]    [c.66]    [c.25]   
Линейные и стереорегулярные полимеры (1962) -- [ c.103 , c.106 , c.116 , c.138 ]

Линейные и стереорегулярные полимеры (1962) -- [ c.103 , c.106 , c.116 , c.138 ]




ПОИСК





Смотрите так же термины и статьи:

Промоторы для железных катализаторов циркония

Силиконы катализаторы цирконий алкоголят

Цирконий как активатор катализатор

Цирконий как активатор катализатор как катализатор

Цирконий как активатор катализатор метила

Цирконий как активатор катализатор получении дифенила

Цирконий как активатор катализатор при гидратации

Цирконий как активатор катализатор при гидролизе хлористого

Цирконий как активатор катализатор при окислении метана

Цирконий как активатор катализатор при реакции метана с паром

Цирконий как активатор катализатор спиртов

Цирконий как активатор катализатор фенила

Цирконий как катализатор при пиролизе гомологов бензола

Цирконий окись его как активатор катализатора

Цирконий соединения его как катализаторы при

Цирконий хлористый как катализатор

Цирконий хлористый катализатор катионоидного присоединения

Цирконий хлористый, катализатор катионоидного алкилирования

Цирконий цианистый, как катализатор

Цирконий, соединения его ке к катализаторы при получении нитрилов

Цирконий, соединения его ке к катализаторы при получении нитрилов этила посредством его



© 2025 chem21.info Реклама на сайте