Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эластомеры упрочнение

    Упрочнение в процессе растяжения из-за кристаллизации является характерной особенностью именно эластомеров, так как обычное состояние их в процессе эксплуатации — это расплав, причем расплав, способный к большим обратимым деформациям. Для эластомеров упрочнение при кристаллизации имеет особенно важное значение, именно с ним связана высокая прочность резин на основе таких каучуков, как изопреновые и хлоропреновые. Чем выше степень деформации, при которой образовались кристаллы, тем выше их температура плавления. Следовательно, тем более высокие температуры выдерживают каучук или резина без потери прочности. Температура, при которой резко уменьшается прочность резин, — это, по существу, температура плавления кристаллов, образовавшихся при разрывном растяжении, и она, естественно, тем выше, чем сильнее напрял<ение смещает равновесную температуру плавления, т. е. чем выше коэффициент а [уравнение (8.34)] или В [уравнение (8.36)]. [c.330]


    Таким образом, несмотря на рассмотренные трудности, можно ожидать, что достоинства полимерных смесей и композиционных материалов и в дальнейшем будут способствовать преодолению этих трудностей. Использование их в разнообразных областях в качестве ударопрочных пластиков, усиленных эластомеров, упрочненных адгезивов, устройств для поглощения энергии, структурных элементов, устойчивых к коррозии, новых волокон и защитных покрытий, по-видимому, будет и дальше развиваться, особенно в связи с тем, что создание и выбор материалов все более и более становится процессом, к которому предъявляются постоянно увеличивающиеся требования. [c.403]

    Влияние ориентации на прочность проявляется не только в жесткоцепных полимерах, но также и в эластомерах [13 290, с. 202 490—494]. Было показано, что прочность закристаллизованного при растяжении на 60% натурального каучука, измеренная при 193 К, в 6 раз больше, чем прочность аморфного неориентированного полимера. Однако наблюдаемое упрочнение лишь в небольшой степени может быть отнесено за счет кристаллизации. Недеформированный каучук, закристаллизованный путем охлаждения, оказался лишь в 2 раза прочнее неориентированного аморфного. В. Е. Гуль [494, с. 241] показал, что для эластомеров характерно наличие дополнительной ориентации в месте роста надрыва. При температурах ниже температуры хрупкости дополнительная ориентация не обнаруживается. [c.179]

    Известны, однако, отклонения от указанной зависимости. Прежде всего это относится к испытаниям эластомеров при больших скоростях деформации прочность с увеличением скорости деформации изменяется немонотонно [63, с. 2071. Некоторые эластом еры в процессе деформации кристаллизуются, и именно это обстоятельство объясняет причину аномальной скоростной зависимости прочности, поскольку кристаллизация изменяет степень ориентации и упрочнения материала в зоне разрыва. Снижение разрывного напряжения в области высоких скоростей деформации вызвано, как правило, тем, что материал теряет способность к вытяжке и ориентации [63]. [c.189]

    Механизм упрочнения термопластичных эластомеров [c.105]

    Изложенные выше данные проливают свет на критическую роль жестких доменов в упрочнении эластомеров. Интересно исследовать влияние составных доменов на характеристики образцов. Такие домены могут быть получены добавлением к рассматриваемым сополимерам с концевыми поли-а-метилстирольными блоками свободного полистирола. Смеси получали предварительным смешением [c.109]

    Две рассмотренные системы иллюстрируют два различных механизма упрочнения эластомеров при их армировании жесткими наполнителями. При использовании диспергированного полимера наполнитель повышает вязкость матрицы по аналогии с понижением температуры, но не оказывает воздействия на динамические высокочастотные характеристики материала (существует обширный экспериментальный материал, указывающий на независимость температуры стеклования полимера от присутствия наполнителя). Ряд данных указывает, что эффективность армирования в этом случае зависит от жесткости наполнителя. [c.113]


    По данным [7.129], полярные бутадиен-нитрильные эластомеры ири низких температурах — от —100 до —160 С, т. е. в области квазихрупкого разрушения (Тс = —20-7-40°С),— ведут себя аналогично полимерным стеклам в неориентированном состоянии и полимерными пленками ориентированном состоянии (степень вытяжки а = 8). Так, для эластомера СКН-40 в неориентированном состоянии у=1,1-10 мм , что очень близко к у=1,08-10 мм для ПММА в квазихрупком состоянии, В ориентированном состоянии у меньше в 4—5 раз, что свидетельствует об упрочнении, происходящем при ориентации. Энергия активации процесса разрушения не зависит от степени ориентации и равна 134 кДж/моль, что совпадает с данными для ПММА в квазихрупком состоянии. Таким образом, бутадиен-нитрильные эластомеры являются уникальными в том смысле, что их долговечность исследована в столь широком диапазоне температур (от —100 до +200 °С) и что были прослежены релаксационные механизмы в них от термофлуктуационных механизмов при низких температурах до релаксационных механизмов при высоких температурах (см. табл, 7,1). [c.239]

    Существуют нек-рые специфич. особенности в механизме упрочнения эластомеров и жесткоцепных линейных и сетчатых полимеров. В частности, существенное упрочнение эластомеров достигается при использовании высокодисперсных наполнителей, преимущественно сажи, прочные первичные агрегаты к-рой создают в среде эластомера цепочечные структуры (см. также Наполнители резин). Действие этих структур объясняется гл. обр. тем, что их элементы являются той матрицей, на к-рой ориентирована макромолекула. Чем больше развита цепочечная структура, тем в большей степени проявляется ее ориентирующее и упрочняющее действие. Образующиеся в ходе смешения хаО тич. связи каучук — наполнитель при деформации ПОД напряжением разрываются и вновь восстанавливаются в новых положениях, закрепляя на поверхности наполнителя макромолекулы каучука, частично ориеН тированные в направлении действия напряжений. В ре зультате происходит выравнивание местных перенапряжений. Чем выше прочность связи каучук — на- [c.163]

    Полимерные смеси и композиции — это материалы от упрочненных эластомеров и ударопрочных пластиков до стеклопластиков и полимербетонов, характеризующиеся широким диапазоном свойств. Практическая важность этих материалов обусловлена нелинейностью и синергизмом свойств, которые являются следствием их уникальной двухфазной структуры. В настоящей монографии под полимерными смесями понимаются комбинации полимеров двух типов, а композитами считаются системы, содержащие полимерный и неполимерный компоненты. [c.15]

    Одним из самых старых и, безусловно, наиболее важных способов приготовления полимерных композиций является смешение. В этой главе будут рассмотрены способы получения композиций на основе полимера и диспергированного в нем эластомера, в частности механическое смешение, смешение путем прививки и др. Некоторые из таких материалов широко известны благодаря своей высокой ударной прочности, другие же не являются сколь-нибудь существенно упрочненными, однако представляет интерес их морфология. [c.76]

    Включение частиц каучука в матрицу хрупкого пластика, как и следовало ожидать, очень существенно повышает его ударную прочность. И действительно, этот факт является главной причиной использования эластомеров в смесях и привитых сополимерах [775]. Упрочнение таких материалов (по сравнению с исходным полимером) наблюдается и при других (помимо удара) условиях воздействия, таких как простое медленное растяжение и длительное статическое и динамическое нагружение, вызывающее усталость. Предполагают, что во всех этих случаях важную роль играют несколько механизмов деформирования их соотношение в суммарном процессе может зависеть от полимера и природы воздействия. [c.89]

    В этом разделе будут рассмотрены деформационные свойства типичных систем эластомер — полимер при низких и высоких (ударных) скоростях воздействия в статических испытаниях и при низкочастотном циклическом нагружении (усталостные явления). Вероятные механизмы упрочнения, например контролируемое образование микротрещин, обсуждаются в разд. 3.2.3.1 (см. также разд. 1.16 и 12.1.2.4). [c.89]

    Следует подчеркнуть, что усиленные эластомеры являются ударопрочными материалами благодаря одновременному действию различных факторов усиления. Эти факторы дополняют друг друга во время нагружения образца, так что когда исчерпывается один механизм усиления, начинает действовать другой. Многообразие механизмов усиления обеспечивает упрочнение при любом типе нагружения. [c.279]

    Резины на основе силоксанового и дивинилового каучуков также упрочняются вследствие кристаллизации при растяжении, но для них температура равновесного плавления Тпл лежит значительно ниже комнатной (см. табл. 2), и это упрочнение выявляется лишь в процессе деформирования при низких температурах . Для того чтобы дивинилового каучука достигла значений 25 °С, необходимо деформировать его на 500—600%, что возможно лишь для образцов каучука самой высокой регулярности. В работе приведены данные о количественной связи между прочностью эластомера и степенью кристалличности к моменту разрушения Сд (Сд измеряли по количеству тепла, выделившегося при растяжении). Величина Сд для НК и СКИ-3 коррелирует с прочностью. В этой работе отмечается увеличение прочности резин под действием добавок закристаллизованного каучука. Можно предположить, что добавленный каучук содержит повышенное количество центров кристаллизации, при наличии которых облегчается кристаллизация резины в процессе растяжения и повышается ее прочность. При динамических испытаниях резин на основе кристаллизующихся каучуков количество циклов до разрушения (ходимость) увеличивается с ростом предварительного растя-жения . [c.201]


    Как было показано в гл. УТ, развитие кристаллизации вызывает не только ухудшение механических свойств резин при низких температурах, но и приводит для ряда эластомеров к упрочнению при температурах, близких к комнатной. Поэтому для создания резин с оптимальными свойствами из таких каучуков, как изопреновые, бутадиеновые, хлоропреновые и уретановые, требуется еще обеспечить максимальное развитие кристаллизации при растяжении. Это особенно важно для изделий, работающих в условиях больших растягивающих нагрузок, а также для достижения необходимых технологических свойств сырых резиновых смесей. В этом случае необходимо выбрать такой состав резин, который бы позволил обеспечить минимальную скорость или максимальное время кристаллизации ненапряженных резин и максимальное влияние напряжения на кристаллизацию. [c.215]

    Другой, более эффективный подход к решению задачи повышения ударной прочности стеклообразных полимеров — модификация их каучуками [1, 6—10]. В этом случае определенное количество эластомера, обычно 5—20 мае. ч., вводится в жесткую стеклообразную матрицу в виде дисперсной фазы. В результате получается продукт, который обладает значительно большим сопротивлением разрушению, чем исходный полимер возрастают ударная прочность, удлинение при разрыве и работа разрушения, понижается хрупкость. При этом неизбежно несколько уменьшаются модуль упругости и разрушающее напряжение при растяжении, теряется прозрачность и увеличивается вязкость расплава, но все эти потери незначительны по сравнению с преимуществом в увеличении сопротивления разрушению. Упрочненные эластомерами полимеры обладают лучшим комплексом свойств по сравнению с исходными, поэтому для промышленности они выгоднее, несмотря на более высокую стоимость. [c.83]

    Общее сходство кривых долговечности для жестких (см. рис. IV. 10) и эластичных полимеров (см. рис. IV. 14), наличие у первых области нехрупкого разрушения, появление вынужденной эластичности при разрыве (трещины серебра ), а также ориентационного упрочнения при длительных испытаниях заставляют предположить, что в присутствии агрессивных сред, увеличивающих подвижность молекул жестких полимеров, следует также учитывать ориентационное упрочнение в зоне разрыва, характерное для эластомеров. С другой стороны, аномалии длительной прочности кристаллических жестких полимеров (полипропилен), вызванные тем, что в присутствии таких агрессивных сред, как серная кислота и гидроокись натрия, ускоряется кристаллизация материала и увеличивается степень кристалличности могут иметь место и в случае эластомеров. [c.106]

    При озонном растрескивании наблюдается деформация, при которой разрушение происходит с наибольшей скоростью (критическая деформация екр). При деформациях, больших екр, разрушение замедляется. С позиций, учитывающих изменение прочностных свойств полимеров при их растяжении, наличие екр объясняется ориентационным упрочнением эластомера. Это подтверждается и тем, что в резинах при больших деформациях (сотни процентов) благодаря молекулярной ориентации и образованию волокнистой структуры озонные трещины распо- [c.28]

    Ребиндер и Маргаритов [15], по-видимому, первые предположили, что вблизи поверхности частиц активного наполнителя эластомер находится в ориентированном состоянии. Это обусловливает упрочнение наполненной системы, пронизанной пространственной структурной сеткой, образованной частицами активного наполнителя. В работе Каргина с сотр. [38] было показано, что суспензия технического углерода в вазелиновом масле обнаруживает ярко выраженную высокоэластичность, хотя отдельно обе составные части системы высокоэластическими свойствами не обладают. Указанный факт дает прямое доказательство возникновения структурной сетки наполнителя в углеводородной низкомолекулярной среде. Высокая эластичность смесей технического углерода и парафинового масла была изучена Пейном [38а]. [c.239]

    Посмотрим результаты эксперимента. Из табл. 1.4 видно, что при температурах ниже Гс или Тхр введение наполнителей в жесткие полимеры вызывает уменьшение прочности в 1,5—5 раз или незначительное упрочнение (на 20—30%). У эластомеров в хрупком состоянии (табл. 1.5) при введении наполнителей прочность либо не изменяется, либо уменьшается на 15—30% и даже в 2 раза. Таким образом, наполнители в этих условиях ведут себя практически одинаково в пластиках и эластомерах, вызывая либо разупрочнение, либо незначительное их упрочнение. Это связано с тем, что в этих условиях практически не может реализоваться их влияние на два фактора, кардинально изменяющих прочность, — уменьшение роли дефектов и развитие молекулярной ориентации. А фактор, на который наполнитель может влиять, — изменение физической структу- [c.23]

    Тепловые эффекты в смеси технический углерод — эластомер [60], показывают, что при температурах 70— 110°С происходит разрушение связей каучук — наполнитель. Последнее подтверждается начинающимся при этих температурах снижением квазиравновесного модуля в вулканизатах [60] за счет уменьшения числа узлов сетки. Об ослаблении связей наполнитель — полимер при несколько более низких температурах свидетельствует и наличие максимумов на кривых температурной зависимости прочности и тангенса угла механических потерь у резин из СКЭПТ в области 50 °С, у резин из СКН-18, СКН-26 и СКН-40 в области 60 °С [45]. Причем положение максимума не зависит от концентрации наполнителя. Сам максимум, очевидно, связан с конкуренцией процессов, облегчающих в результате ослабления связей наполнитель — полимер ориентацию и, следовательно, упрочнение, и процессов разупрочнения, связанных с ослаблением межмолеку-лярных взаимодействий. [c.59]

    Это размягчение или снижение прочности уретанов аналогично эффекту Муллинса , т. е. размягчению упрочненных наполнителялш резин при многократном растяжении. Муллинс и Тобин предположили, что наблюдаемый модуль равен сумме модуля, обусловленного поперечными первичными химическими связями, и модуля, обусловленного вторичными связями полимера с наполнителем, которые, как полагают, могут разрушаться под действием напряжения. Размягчение эластомеров, упрочненных наполнителями, обсуждалось также в работе Хаувинка . [c.407]

    Механизм явления всестороннего упрочнения пока не ясен, по-видимому, его нельзя связывать только с наличием глобулярных структур в эластомерах. Упрочнение проявляется при наличии внешнего механического поля не только в сопротивлении разрезанию вулканизатов, но и в сопротивлении продольному раздиру (на резинах из неопрена, бутилкаучука и нитрильного каучука [7]), в релаксации напряжения в вулканизатах [69], а также в сопротивлении разрезанию каучуков и в их ползучести [70]. Так, время до разрезания ориентированного исходного каучука СКН-40М больше как при разрезании перпендикулярно [Трз1 = 125 с], так и параллельно [трзп = 60 с] оси ориентации, чем у изотропного образца (трз = 2б с) коэффициент ползучести изотропных образцов каучука СКН-40М (т)п = 6-10 Па-с) ниже, чем у образцов, в которых направление сдвига перпендикулярно оси предварительной ориентации [г)пг = = 18-10 Па-с] или параллельно ей [т1п11 = 32-10 Па-с]. [c.115]

    С учетом всех перечисленных выше фактов предлагается следующая модель деформационного поведения эластомеров ниже их температуры перехода в стеклообразное состояние. В области I межмолекулярное притяжение достаточно сильное и сегменты цепей подвергаются энергоэластическому деформированию. Вначале постеиенно и затем за пределом вынужденной эластичности более активно происходит проскальзывание и иереориентация сегментов цепей. Разрыв цепей незначителен, поскольку цепи проскальзывают, а не разрываются. В температурной области II, где происходит хрупкое разрушение независимо от предварительной ориентации, межмолекулярное притяжение, по-видимому, достаточно велико, так что осевое нагружение сегментов цепей сравнимо с их напряжением разрушения. При отсутствии локального деформационного упрочнения наибольшая трещина, возникающая в образце в процессе его деформации до значения 5%, будет быстро расширяться, вследствие чего прекратится рост любых других зародышей трещин. На примере термопластов было показано, что образования, по существу, одной плоскости разрушения едва достаточно для получения регистрируемого количества сво- [c.214]

    Известен ряд эффективных методов предотвращения фрет-тинг-коррозии. Основными являются так называемое рациональное конструирование, применение различных смазок (масел, обладающих малой вязкостью), использование эластомер-ных прокладок или же материалов с низким коэффициентом трения, а также сопряжение мягкого металла с твердым. В частности, для работы в контакте со сталью можно рекомендовать покрытия из 8п, А , РЬ, а также кадмиевое покрытие. Для предотвращения фреттинг-усталости следует избегать конструкций, в которых поверхность соприкосновения деталей совпадает с областью концентрации напряжений. В ряде случаев целесообразно Поверхностное упрочнение металла, т. е. обработка на белый слой , дробеструйная обработка или же накатка роликами. [c.55]

    О влиянии релаксационных явлений на прочность кристаллизующихся эластомеров свидетельствует немонотонная зависимость прочности от скоростн растяжения (рис. 5.43). На участке А происходит криста 1лизация полимера (образование фибриллярной структуры), при этом повышается степень ориентации молекул и в кристаллической части, и в аморфной. Трещины илн надрывы зарождаются в аморфной области и.ли иа границе кристалл — аморфная часть, и прочность определяется прочностью аморфных участков Поскольку при кристаллизации повышается степень их ориентации, а следовательно, и прочность, то можно считать, что кристаллизация приводит к упрочнению. В процессе деформирования на участке В макромолекулы не успевают принять необходимую для кристаллизации конформацию и кристаллизация замедляется, а на участке полимер не кристаллизуется и прочность определяется степенью ориентации макромолекул. [c.335]

    Упрочнение гидрогеля для получения более слабого по структуре высушенного силикагеля. Как описали Александер, Броудж и Айлер [273], при термическом старении силикагеля в присутствии влаги получается объемистая, быстро диспергируемая форма кремнезема, которую можно легко размалывать для дальнейшего использования в эластомерах в качестве армирующего реагента или в маслах для приготовления консистентных смазок. Были описаны условия обработки для упрочнения слабой структуры гидрогеля посредством нагревания образца в воде до тех пор, пока его удельная поверхность не понижалась на 10—50 %, после чего влага удалялась спиртом. Существенно, что подобный гель формируется при достаточно низкой концентрации в воде из кремнеземных частиц такого размера, когда их поверхность в единице объема составляет 20—75 м /см . Так, для частиц диаметром 7 нм при величине удельной поверхности около 400 м /г должна быть создана подходящая концентрация кремнезема 5—20 % перед тем, как начнется гелеобразование. Гель затем нагревается во влажном состоянии до тех пор, пока коэффициент коалесценции не достигнет значения около 0,5. [c.730]

    Обзор по механизмам упрочнения и воздействиям, оказываемым широким набором наполнителей на физические свойства эластомеров, дополненный 47 библиографическими ссылками, был опубликован Смитом [566а]. Салвадор [5666] исследовал эффекты замещения некоторой доли углеродной сажи на кремнезем в природном каучуке. Полное замещение дает более низкие свойства, но при соблюдении соотношения 155102 35С наблюдалось усиление величин относительного разрывного удлинения и раздира, а также термического старения, однако при этом понизились модуль и упругость материала. [c.809]

    Получающееся в итоге представление об упрочнении резины состоит Б том, что прочности на растяжение и на раздир и общая величина жесткости заметно повышаются в том случае, когда очень небольшие частицы наиолнителя (диаметром 5— 10 нм) полностью дисиергированы и находятся в виде разделенных, дискретных частиц внутри матрицы. Для получения хорошего диспергирования подобные небольшие ло размеру частицы должны быть, вероятно, гидрофобными. Когда же на частицах наиолнителя имеются иолярные и гидрофильные участки иоверхности, то такие частицы стремятся собраться вместе в виде цепочки благодаря связыванию подобных участков, которые не могут смачиваться углеводородным веществом матрицы эластомера. Это придает жесткость структуре резины, т. е. ведет к повышению значений модуля и твердости. [c.815]

    Как сообщили Зеликин и др. [571], гидрофобные пирогенные кремнеземы были применены в качестве армирующих наполнителей в силиконовом каучуке, давая значения прочности на растяжение 71 кг/см2 и разрывного удлинения 460% Однако упрочнение этого типа эластомера, вероятно, в настоящее время значительно улучшено благодаря новым способам введения частиц кремнезема с оптимальными характеристиками. [c.816]

    При малых деформациях спектр времен релаксации вулканизата с сажей, обладающей однородной поверхностью, сдвигается в область больших времен, а для актданой сажи с неоднородной поверхностью — резко падает в этой области. При больших деформациях (более 50%) спектр вулканизатов с активными сажами см.ещается в область больших времен релаксации тем больше, чем больше упрочняющее действие сажи. При деформациях более 50% увеличение высоты релаксационного спектра и смещение его в область больших времен при использовании активной сажи обусловлено возникновением упрочненных структур и наличием прочных связей полимер — наполнитель. Повышение температуры ускоряет релаксационные процессы и приводит ос разрушению слабых связей, вследствие чего уменьшается высота релаксационного спектра. Молекулярная теория, позволяющая описать релаксационные свойства наполненных эластомеров, была развита Сато Йосиясу [255]. На основе статистической теории высокоэластичности им выведены формулы для расчета релаксации напряжений, модуля- упругости и механических потерь наполненных полимеров. [c.138]

    Частицы жесткой гетерофазы, химически связанные с макромолекулами, по мнению авторов [30, 35—37], действуют как частицы усиливающего наполнителя, что и обусловливает основные особенности механических свойств вулкаиизатов. Образование гете-рофазной структуры в резинах с ПНС подтверждается возникновением малоуглового рентгеновского рассеяния. Появление рассеяния рентгеновских лучей, направленных на объект под малыми углами, свидетельствует о присутствии дисперсной гетерофазы с отличной от основной матрицы электронной плотностью. Интенсивность рассеяния растет с увеличением концентрации ПНС. Расчеты показали, что размеры частиц гетерофазы полимеризованного метакрилата магния в вулканизатах бутадиен-стирольного каучука составляют 140—250 А, т. е. близки по величине к размерам частиц усиливающих углеродных саж. Отмечается, однако, что такое совпадение не свидетельствует о сходстве в механизме усиления. Доля сшивок, связанных с частицами полимеризованного метакрилата магния, увеличивается с ростом его концентрации и при 40— 50 масс. ч./ЮО масс. ч. каучука составляет около 90%. Соответственно уменьшается доля сшивок в матрице эластомера, и облегчаются процессы релаксации цепей. При использовании метакрилата натрия происходило образование только линейного гомополимера. Однако при этом, несмотря на возникновение гетерофазы, не наблюдалось существенного упрочнения вулкаиизатов. Предполагается, что в этом случае размер частиц гетерофазы значительно больше, чем у активных наполнителей или частиц полимеризо-ванной магниевой соли. Действительно, при переходе к акриламиду наблюдалось уменьшение размера частиц дисперсной фазы и улучшение физико-механических свойств резин [43]. [c.118]

    Тем не менее, если требуются более тонкие формы кремнезема, например для упрочнения наполнителя в эластомерах или для получения хорошей консистенции густого масла, продукт должен быть получен деполимеризацией кремнезема тем или иным путем и реполимеризацией его в необходимую коллоидно-дисперсную форму. Это достигается обычно превращением песка в летучее или [c.155]

    Хотя многое в механизме упрочнения пластиков каучуками остается еще невыясненным и достаточно подробно изучено всего лишь несколько систем, обычно при низких скоростях деформиро-вадия, резюмируя, можно отметить некоторые важные черты. Эластомер должен иметь достаточно низкую Тд с тем, чтобы при рассматриваемых скоростях нагружения оставаться в высокоэластическом состоянии и вызывать в матрице растрескивание и пластическую деформацию. Концентрация, размер частиц и состав фазы каучука должны быть таковы, чтобы большое число мелких микротрещин могло возникнуть и взаимодействовать или разветвляться в матрице, а не в самих частицах каучука и чтобы уже растущие трещины или микротрещины при взаимодействии с этими частицами прекращали свой рост или разветвлялись. Что же касается матрицы, то, очевидно, даже незначительная ее пластичность в огромной степени повысит роль сдвиговой текучести по сравнению с менее эффективным растрескиванием. [c.110]

    Упрочнение в процессе растяжения из-за кристаллизации характерно для эластомеров, так как обычное состояние их в процессе эксплуатации — расплав, способный к большим обратимым деформациям. С образованием кристаллов в процессе растяжения и плавлением их при снятии нагрузки с образца связаны в значительной мере тепловые эффекты, сопровождающие деформацию нат -рального каучука. Чем выше степень деформации, при которой появляются кристаллические образования, тем выше температура плавления и выше температура, до которой можно нагревать каучук или резину без значительной потери прочности. Температура, при которой резко уменьшается прочность резин, есть по существу температура плавления кристаллических областей, образовавшихся при разрывном напряжении. Эта температура, естественно, тем выше, чем сильнее напряжение смещает равновесйую температуру плавления, т. е. чем выше коэффициент а в уравнении (41) или коэффициент В в уравнении (39)., Действительно, при выяснении влияния состава на кристаллизацию растянутых резин из НК было отмечено (см. гл. IV), что резины, содержащие моносульфидные и С—С поперечные связи (1-я группа), характеризуются меньшими значениями параметров а я В, чем [c.199]

    На рис. 7 показано изменение разрушающего напряжения вулканизатов натурального каучука с 30% активной сажи в зависимости от степени набухания 0 в дибутилфталате. Независимо от способа введения в многокомпонентную систему иа основе эластомера пластификатора при небольших содерн аниях последнего прочность системы увеличивается. Было показано [1], что это имеет место вследствие образования лабильных связей, способствующих рассасыванию напряягений в вершине растущего дефекта, увеличение в этой области дополнительной ориентации материала и, следовательно, его упрочнения. [c.214]

    Систематическое исследование направлений полимеризации 24 гексатриенов-1,3,5 различными методами, в том числе ИК-и ПМР-спектроскопическими, показало [2, с. 173], что перок-сидное инициирование обусловливает образование линейных полимеров по типу 1,6-присоединения. Такой вариант проведения процесса наиболее приемлем при склеивании. Поэтому адгезионные свойства гексатриенов изучены на примерах индивидуальных мономеров или их растворов, содержащих 0,5 % пероксидов бензоила или дикумила. Как следует из табл. 6, соответствующие адгезивы обеспечивают высокие значения прочности клеевых соединений, составляющие 7,8—21,4 МПа для стали 3 и 1,7—3,4 кН/м при креплении к ней резины на основе полиизопропенового эластомера СКИ-3 [114]. В последнем случае относительная узость интервала значений сопротивления расслаиванию обусловлена когезионным характером разрушения адгезионных соединений по приповерхностным слоям субстратов, упрочненным продиффундировавшим в них адгезивом. Наибольшей адгезионной способностью характеризуются, как и следовало ожидать, азотсодержащие адгезивы. Если в среднем сопротивление отрыву резино-сталь-ных соединений составляет около 10 МПа, то минимальное значение равно 12,7 МПа, а максимальное — 21,4 МПа. Этот факт свидетельствует о справедливости исходных теоретических представлений, определяющих выбор химической природы адгезивов. [c.27]

    Особенно целесообразна модификация при склеивании пористых субстратов, когда следует предотвратить ускоренную диффузию отвердителя в приповерхностные слои соединяемых материалов и их преждевременное упрочнение. Если на одну из древесных поверхностей нанести акрилатный компонент с добавкой бензоилпероксида, а на другую — такой же компонент с добавкой 5% 4,4 -мeтилeнби (N,N-димeтилaнилинa), то по сравнению с традиционной технологией склеивания сопротивление соединения сдвигу увеличивается на 50%, достигая 7,7 МПа [129]. Аналогичный эффект, но в еще большей степени, проявляется в случае, когда акрилатный адгезив содержит высокомолекулярную добавку, способствующую дальнейшему росту коэффициента его диффузии. Так, введение в клей, отверждаемый после контактирования раздельных слоев 9-бо-рабицикло [3,3,1] нонаном, собственного полимера (полиметил-метакрилата) и хлорсульфонированного полиэтилена обеспечивает прочность адгезионных соединений стали 24 МПа [126]. Наиболее часто в качестве подобных добавок используют бута-диен-нитрильные эластомеры [129, 145, 149]. Диспергируя их в акрилатных адгезивах раздельного нанесения, получают соединения стали, которые при толщине клеевого слоя 0,05 мм характеризуются после отверждения при комнатной температуре в течение 5 мин сопротивлением сдвигу 11 МПа и сопротивлением отслаиванию 7 кН/м [149]. Подобно другим составам аналогичной технологии склеивания, такой адгезив не [c.37]

    В неупорядоченном бездефектном полимере с С—С-связями теоретическая прочность за счет дисперсионных сил оценивается около 600 МПа [5]. В предельно ориентированном полимере за счет прочности химических С—С-овязеи она должна достигать 30 000 МПа [5], т. е. теоретически в этом случае возможно упрочнение в 50 раз. При этом образец, конечно, толностью теряет эластичность, и длина молекул должна совпадать с длиной образца. Что показывает практика Упорядоченные и сориентированные природные полимеры— лен, паутина, натуральный шелк — обладают большой прочностью, достигающей (1,0ч-1,7)- 10 МПа. В последнее время удалось синтезировать волокна с прочностью при растяжении 3000 МПа — это ПРД-49 из поли-и-фенилентерефтальамида, кристаллы полиоксиметилена [26]. Ориентация путем вытяжки (табл. 1.2) В отличие от слабого упрочнения при изменении структуры в органических полимерах приводит к упрочнению в 3—28 раз i[22, 27, 28], а в неорганических (стекло) — в 25—35 раз. Ориентация в эластомерах приводит к такому же эффекту, как в жестких полимерах [5, 29]  [c.20]

    Однако картина не всегда столь проста. Бывают условия, при которых структура полимера при растяжении успевает самоупрочниться из-за развития молекулярной ориентации или кристаллизации быстрее, чем развиваются дефекты, приводящие к разрушению. Такой образец обладает высокой прочностью при растяжении. В то же время образец той же резины, но другой физической структуры из-за меньшей интенсивности развития процесса упрочнения разрывается при меньшем напряжении. Примерами образцов второго типа являются эластомеры с преобладанием глобулярной структуры. Как известно, глобулы ориентируются значительно слабее, чем фибриллы, а к моменту разрыва они не успевают полностью развернуться, поэтому вулканизаты бутилкаучука, полученного из разных растворителей [22] и обладающие преимущественно глобулярной и фибриллярной структурами, имеют прочность [c.46]


Смотреть страницы где упоминается термин Эластомеры упрочнение: [c.215]    [c.792]    [c.795]    [c.816]    [c.165]    [c.90]    [c.145]    [c.113]    [c.8]   
Энциклопедия полимеров Том 2 (1974) -- [ c.330 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 , c.330 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.330 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 , c.330 ]




ПОИСК





Смотрите так же термины и статьи:

Эластомеры



© 2025 chem21.info Реклама на сайте