Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тепловые полимеризации

    Мембраны можно формовать также непосредственно на трубчатых пористых подложках указанными выше способами, а также нанесением на них двух слоев мономеров и последующей тепловой полимеризацией, приводящей к образованию из первого мономера крупнопористого слоя, а из второго мономера — активного слоя мембраны. Полимеризацию можно [c.44]

    Усиление кислотоупорности достигают дополнительным дублением оставшегося защитного слоя в растворе хромового ангидрида СгОз (50 г/л) в течение двух минут и тепловой полимеризацией путем инфракрасного облучения. [c.135]


    Процесс является экзотермическим и термодинамически неустойчивым. Тепловой эффект реакции полимеризации составляет 96,37 кДж/моль (23 ккал/моль) превращенного этилена. Поэтому при недостаточном отводе тепла может произойти взрывчатое разложение этилена. [c.104]

    Как уже отмечалось, тепловой эффект реакции полимеризации составляет 96,37 кДж/моль (23 ккал/моль). При недостаточном теплоотводе температура процесса очень быстро может повыситься до опасных пределов. Однако отвод тепла реакции через теплообменную поверхность реактора невозможен, так как на его стенках образуются полимерные отложения. Поэтому прибегают к циркуляции этилена (парогазовой смеси этилена с растворителем). Тепло при этом отводится за счет испарения растворителя и нагрева рециркулирующей парогазовой смеси (ПГС). [c.114]

    Полимеризация в водных эмульсиях — весьма распространенный метод получения полимеров, так как он удобен не только для полимеризации отдельных мономеров, но и для сополимеризации двух или нескольких мономеров. Водно-эмульсионный способ полимеризации позволяет осуществлять процесс с большими скоростями и легко регулировать тепловой режим. Кроме того, разобщенность взрыво- и пожароопасных мономеров в водной эмульсии позволяет более безопасно осуществлять процесс. [c.338]

    Реакции конденсации и поликонденсации многих химических вешеств сопровождаются значительным тепловым эффектом. Процессы поликонденсации по термодинамическим характеристикам к свойствам получающихся высокомолекулярных продуктов сходны с процессами полимеризации. Поэтому аварии, возникающие пра проведении процессов конденсации и поликонденсации, имеют аналогичный характер. [c.345]

    Впоследствии было принято решение об устройстве второго подключения к магистральному паропроводу для снабжения паром установки полимеризации и синтеза триизобутилалюминия, при этом для указанных установок предусмотрели самостоятельный тепловой узел с редуцирующим устройством. [c.232]

    Удобным и широко применяемым способом контроля за реакцией при периодической полимеризации в больших масштабах является проведение процесса в хорошо перемешиваемой системе, содержащей растворитель, не смешивающийся с мономером и полимером (обычно воду). При таких условиях жидкий мономер разбивается на маленькие капельки. Энергичное перемешивание часто в присутствии соответствующих диспергирующих веществ препятствует соединению капель по мере того, как они превращаются в шарики полимера. Механизм полимеризации в этом случае, по-видимому, идентичен механизму простой реакции, протекающей в массе мономера, но продукт реакции получается в более удобной форме, а наличие турбулентной системы и большого количества воды облегчает контроль теплового режима [70]. [c.119]


    Чтобы составить математическую модель реактора радикальной полимеризации, напишем уравнения материальных балансов по мономеру, радикалу, инициатору (приняв, что на вход реактора подается смесь мономера и инициатора), а также уравнение теплового баланса, учитывая тепловыделение лишь в реакции роста цепи. [c.50]

    Примером технологического процесса, в котором тепло реакции отводится лишь за счет охлаждения потоков, подаваемых в реактор, является так называемый процесс полимеризации в адиабатическом реакторе [53]. Из уравнения теплового баланса для такого реактора следует, что  [c.311]

    При п > 3 тепловой эффект полимеризации близок к нулю [10, 39] и, следовательно, основной движущей силой процесса является изменение энтропии системы. [c.472]

    Применяют и совместную полимеризацию пропиленов и бутиленов или бутиленов и амиленов. Насыщенные углеводороды, содержащиеся в сырье полимеризации, естественно, не вступают в реакцию, но благоприятно влияют на тепловой баланс реактора, препятствуя чрезмерно глубокому протеканию реакции, сопровождающейся образованием более тяжелых полимеров (теплота полимеризации л 1550 кДж/кг). [c.79]

    Изомеризации олефинов посвящено огромное число работ, вероятно, большее, чем какой-либо другой реакции. Это объясняется тем, что изомеризация является эффективной модельной реакцией для изучения механизма теплового, фото- и радиационнохимического воздействия на вещество. Она активируется огромным числом гомогенных и гетерогенных катализаторов, поэтому на ее примере удобно изучать механизм катализа и кинетические закономерности химических процессов. Наконец, эта реакция оказывается целевой или сопутствующей во многих технических процессах изомеризации олефинов и парафинов, окислении олефинов, их полимеризации и др. В таких процессах, как сорбционное выделение олефинов, каталитический крекинг, гидроформилирование, алкилирование, сульфирование и др., она существенно влияет на выход и свойства продуктов, и возникает необходимость как ее подавления, так и активирования. [c.5]

    Это уравнение в очень редких случаях используется для совместного решения с уравнениями материальных и теплового балансов с целью определения поля давления. К таким случаям относятся системы уравнений, описывающие процессы в длинных трубах (пиролиз углеводородов, полимеризация этилена при высоком давлении). Обычно его применяют для расчета перепада давления в аппарате. При этом нет необходимости рассматривать полное уравнение, например уравнение Бернулли (см. главу IV). [c.66]

    Метод описания ФХС, который будет изложен в настоящей главе, является в некотором смысле противоположным тому формальному подходу, который обсуждался выше. Здесь исходным моментом решения задачи служит внутренняя структура системы. Поведение ФХС представляется как следствие ее внутренних физико-химических процессов и явлений, для описания которых привлекаются фундаментальные законы термодинамики и механики сплошной среды. В главе будут рассмотрены характерные схемы реализации этого подхода на примерах сложных физикохимических систем, построение адекватных математических описаний которых обычно вызывает затруднения. В частности, будут сформулированы принципы построения математической модели химических, тепловых и диффузионных процессов, протекающих в полидисперсных ФХС (на примере гетерофазной полимеризации) будет изложен метод построения кинетической модели псев-доожиженного (кипящего) слоя будет рассмотрен один из подходов к расчету поля скоростей движения смеси газа с твердыми частицами в аппарате фонтанирующего слоя сложной конфигурации на основе модели взаимопроникающих континуумов будет исследован процесс смешения высокодисперсных материалов с вязкими жидкостями в центробежных (ротационных) смесителях. [c.134]

    Тепловые эффекты процессов полимеризации мономеров А// ккал моль) [c.561]

    КИМ образом, они могут протекать самопроизвольно под действием энергетического фактора прн противодействии энтропийного( 95). Так как влияние энтропийного фактора относительно возрастает с повышением температуры, то при достаточно высоких температурах (при атмосферном давлении) вместо образования полимера становится термодинамически возможным обратный процесс деструкции (разложения). Эта температура в общем тем ниже, чем меньше теплота полимеризации, с поправкой на различие в значениях энтропии полимеризации. Тепловые эффекты процессов полимеризации для некоторых полимеров приведены в табл, 65. [c.561]

    Тепловые эффекты указанных реакций различаются по величине и знаку. В большинстве случаев реакции эндотермичны, но некоторые (перераспределение водорода, полимеризация, циклизация, конденсация и т. д.) протекают с экзотермическим эффектом. Интенсивность протекания тех или других реакций определяет результирующий эндотермический тепловой эффект крекинга, который может изменяться от 100 до 400 кДж/кг сырья. [c.106]


    Та блица 6.1. Тепловые эффекты и изменение стандартной энергии Гиббса прн реакциях полимеризации пропилена и бутенов [c.189]

    Полимеризация бутадиена с катализатором в впде металлоорганического комплекса протекает в жидкой гомогенной фазе в растворе (в качестве растворителя используется бензин). Эта реакция — первого порядка со значительным тепловым эффектом (АЯ = —18,3 ккал моль). [c.129]

    По тепловому эффекту различают реакции эндотермические, идущие с поглощением тепла, и экзотермические, протекающие с выделением тепла. Так, реакции крекинга, пиролиза, каталитического риформинга являются эндотермическими, а гидрогенизации, алкилирования, полимеризации и др. — экзотермическими. Это требует и соответствующего конструктивного оформления аппарата, чтобы обеспечить подвод тепла в случае эндотермической реакции и отвод тепла в случае экзотермической реакции. [c.372]

    При полимеризации в р а с т в о р а х подбирают такой растворитель, в котором растворим мономер и образующийся полимер или растворим только мономер, и тогда полимер при его получении выпадает в осадок. В первом случае раствором служит готовый лак, и этот метод часто применяется в лакокрасочной промышленности. Во втором случае осадок полимера в виде мелкодисперсных частиц отделяется фильтрацией, промывается и высушивается. При полимеризации в растворителях как мономер, так и катализатор, инициатор и другие добавки растворяют в подобранной жидкости и нагревают раствор обычно в многосекционном реакторе с мешалкой при энергичном перемешивании. Отвод теплоты реакции и регулирование температуры осуществляются при помощи змеевика или водяной рубашки, что намного улучшает тепловой режим процесса по сравнению с блочным методом. При этом методе получаются более однородные полимеры, но обычно меньшей молекулярной массы, чем в других методах, так как цепи под действием молекул растворителя быстро обрываются. Метод используется, например, для производства полимеров винилацетилена в метиловом спирте. [c.196]

    Тепловой эффект полимеризации 68 700/104 = 661 кДж/кг. Приход теплоты (кДж)  [c.61]

    Гидрирование ацетиленовых и диеновых углеводородов в пропан-пропиленовой и бутан-бутиленовой фракции пиролиза. Во избежание термической полимеризации гидрирование сжиженных газов пиролиза необходимо осуществлять при возможно более низкой температуре (не более 50 °С), причем повышение ее должно происходить только путем адиабатического разогрева (за счет теплового эффекта реакции). Чтобы не допустить чрезмерного разогрева, в ряде случаев следует использовать два последовательных реактора колонного типа либо применить трубчатые реакторы с внешним теплоносителем или возвратом части про-гидрированного и охлажденного продукта на вход реактора. Поскольку фракции пиролиза Сз и С4 получаются в жидком виде, целесообразно проводить гидрирование также в жидкой фазе. Ввиду высокой реакционной способности гидрируемых примесей большого соотношения водород/сырье не требуется, поэтому, как правило, циркуляция водородсодержащего газа не применяется. В реакторы подается стехиометрическое количество водорода с 10—30% избытком. К катализаторам предъявляются требования высокой селективности (гидрироваться должны только высоконенасыщенные углеводороды) и инертности по отношению к реакции полимеризации. Наиболее эффективны палладиевые катализаторы, нанесенные на окись алюминия или носители на основе окиси алюминия. [c.21]

    В то время как тепловой баланс зависит от энергии, выделяющей при весьма экзотермичной реакции полимеризации мономера [c.22]

    При термическом крекинге реакции распада углеводородов протекают с затратой тепла, а реакции соединения (например, полимеризация) протекают с выделением тепла. Так как в этом процессе преимущественно идут реакции расщепления, то суммарный тепловой эффект его отрицателен. Поэтому для осуществления крекинг-процесса необходимо затратить тепло. Для легкого крекинга мазута затрачивается 350 ккал тепла на 1 кг образующегося бензина, для глубокого крекинга соляровой фракции — 300 ккал на 1 кг бензина. [c.236]

    Наряду с указанными способами изготовления ТФЭ формование трубчатых мембран на опорной поверхности каркаса предложено проводить последовательным нанесением двух слоев органических мономеров с последующей тепловой полимеризацией, обеспечивающей образование тонкого селективного слоя и прочного пористого подслоя, а также полимеризацией наносимого мономера под воздействием без-электродного тлеющего. раз1ряда или плазменного разряда (см. стр. 76). [c.135]

    Исследованы также каталитические свойства поли-а-аминокислот, полученных тепловой полимеризацией мономеров [88] . Как правило, реакционная способность боковых групп аминокислотных остатков в этих полимерах (например, имидазольной группы гистидина, участвующей в нукл(1ос[)ильном катализе гидролиза п-нитрофениловых эфиров) не превышает реакционную способность свободных аминокислот. [c.109]

    ТОТ факт, что в процессе образования металлополимеров происходит перераспределение интенсивности полос в области 700—830 смГ что, как можно полагать, обусловлено изменением характера функциональных групп и заместителей фенильных колец полиэфира. На рис. 2 приведены термограммы эпоксидно-диановой смолы, полимера, их смесей и металлополимеров свинца на их основе. Термограмма эпоксидной смолы характеризуется экзотермическим эффектом с максимумом при 384°, который обусловлен в основном изомеризацией эпоксидных групп в карбонильные и тепловой полимеризацией эпоксидных групп. Термограмма ФКП имеет экзотермический эффект с максимумом при 61 , что характеризует процесс поликонденсации полимера. Температура размягчения системы около 150°. Процесс термоокислительной деструкции характеризуется экзо- термическим эффектом с мак-симумом при 384°. Термограмма смеси полимеров с соотношением ЭД ФКП 1 3 по видублиз------о—--0 ,—о—0-- ка к термограмме полиэфира, и [c.100]

    Полимеризующиеся композиции приготовить для тепловой полимеризации (А) и фотохимической полимеризации (Б) по следующей рецептуре (в г)  [c.165]

    Значительное улучшение цвета и цветостойкости достигается применением высыхающих па холоде алкидов в сочетании с мочевинными или меламиповыми смолами. Эти преимущества особенно заметны, когда карбамидная смола применяется с невысыхающими алкидами в покрытиях горячей сушки. Лучшая устойчивость таких алкидов к изменению цвета под влиянием тепла и света способствует стабильности полученной пленки. В результате взаимодействия алкидов с карбамидной смолой образуется новая смола, дающая пленку, полностью непроницаемую для воды и химикалиев и обладающую отличными физическими свойствами. Пленка образуется главным образом за счет взаимодействия алкидной и карбамидной смол, и в меньшей степени за счет независимой раздельной поликонденсации этих смол. В противоположность этому высыхание нормальной алкидной системы высыхающего типа зависит от медленного механизма образования, включающего как тепловую полимеризацию, так и связывание кислорода за счет алифатических двойных связей, тогда как нормальный невысыхающий алкид не обладает способностью полимеризоваться или окисляться по месту двойных связей модификатора и потому пригоден как пленкообразователь только в смесях с карбамидными смолами при условии горячей сушки. До применения с карбамидными смолами этот тип алкидов использовался лишь как пластификатор для нитролаков. Ниже приведены области применения меламиио-формальдегидных и мочевино-формальдегидных смол в покрытиях горячей сушки. [c.207]

    Существенной областью применения фоточувствительных полимеров является голография. Первоначально процесс получения голограмм фотополимеризацией состоял в экспонировании сенсибилизированной к соответствующему излучению полимеризационной смеси, после чего голограмму проявляли — незаполимеризовавшуюся смесь вымывали водой. Затем были разработаны составы с участием ингибиторов тепловой полимеризации [153], которые не требуют для получения голограммы дополнительной обработки после экспонирования. Наряду с фотонолимеризуемыми материалами в голографии частности, при создании микроминиатюрных голографических устройств для вычислительной техники) используются полимерные материалы, обладающие свойством фотопроводимости. Применение поливинилкарбазола позволило получить запоминающее устройство  [c.115]

    Вдоль всех поверхности теплообмена обеспечивается интенсивный съем тепла при помощп горячего парового конденсата, циркулирующего через охлаждающие рубашки змеевика. Проведение процесса в змеевике, составленном из труб небольшого диаметра, обеспечивает большую удельную поверхность охлаждения. Для полимеризации этилена это особенно важно, поскольку тепловой эффект реакции может достигать 1000 ккал кг п своевременный и быстрый отвод тепла является решающим фактором для данного процесса. Часть избыточного тепла отводится также рециркулирующим этиленом. [c.277]

    Стирол, как ранее уже мпого раз указывалось, отиосительпо легко, полимеризуется под влиянием теплового воздействия [88]. Термическая полимеризация стирола (блокполимеризация) проводится следующим образом в мешалке ири 80" стпрол полимеризуется до образования сиропообразной жидкости, содержащей примерно 33% полимера. Дальнейшая полимеризация производится непрерывным стюсобом в условиях ступенчатого повышения температуры до 140—180 . Расплавленный стирол пропускается затем через тонкие щели высотой 1 мм и шириной 30 мм на охлаждаемые стальные вальцы, при этом он затвердевает, а затем размалывается в. порошок на мельничной установке. [c.239]

    В термических, а также каталитических процессах нефтепе — реработки одновременно и совместно протекают как эндотермические реакции крекинга (распад, дегидрирование, деалкилирова— ние, деполимеризация, дегидроциклизация), так и экзотермические реакции синтеза (гидрирование, алкилирование, полимеризация, конденсация) и частично реакции изомеризации с малым тепловым эффектом. Об этом свидетельствует то обстоятельство, что в про — дуктах термолиза (и катализа) нефтяного сырья всегда содержатся углеводороды от низкомолекулярных до самых высокомолекуляр — ных от водорода и сухих газов до смолы пиролиза, крекинг — остатка и кокса или дисперсного углерода (сажи). В зависимости от температуры, давления процесса, химического состава и молекулярной массы сырья возможен термолиз с преобладанием или реакций крекинга, как, например, при газофазном пиролизе низкомолеку — лярных углеводородов, или реакций синтеза как в жидкофазном процессе коксования тяжелых нефтяных остатков. Часто термические и каталитические процессы в нефте— и газопереработке проводят с подавлением нежелательных реакций, осложняющих нормальное и длительное функционирование технологического процесса. Так, гидрогенизационные процессы проводят в среде избытка водорода с целью подавления реакций коксообразования. [c.9]

    БНК, модифицированные поливинилхлоридом, различаются по соотношению БНК. и ПВХ, типу БНК, способу полимеризации, вязкости по Муни. Выпускаются две группы каучуков 70% БНК+ 30% ПВХ (главным образом) и 50% БНК+ 50% ПВХ. Эти каучуки легко перерабатываются на обычном оборудовании, резиновые смеси на их основе хорошо шприцуются, каландруются, формуются, льются. Основным преимуществом БНК, модифицированных ПВХ, является их исключительная погодо-, озоностой-кость, а также высокое сопротивление раздиру, высокая стойкость к тепловому старению и несколько большая стойкость к агрессивным средам. Кроме того, резины из этого каучука имеют высокую огнестойкость. Для обеспечения стойкости каучуков с ПВХ к тепловому старению в них вводят обычные неокрашиваюшие антиоксиданты для БНК и специальные для ПВХ. Эти каучуки выпускают обычно в виде гранул. [c.365]

    Выход полимеров достигает максимальной велпчзгны при температуре тепловой обработки примерно 300 однако необходимо учитывать, что, судя по молекулярной массе полимеров, с изменением условий термообработки катализатора изменяется не только скорость, ио и характер процесса полимеризации. [c.60]

    Эффективным способом предотвращения образования полимериза-тов в порах угля является его обработка перед регенерацией растворами антиполимеризаторов, в качестве которых используют, например, смесь тиолов [22, 27], фталевый ангидрид [25, 27] и другие. Продолжительность действия антиполимеризатора в течение тепловой обработки угля составляет 2...2,5 ч. Однако при высокой концентрации примесей в растворах этаноламинов характер их адсорбции изменяется и продолжительность тепловой обработк i угля должна составлять 4...6 ч. Это приводит к резкому падению концентрации антиполимеризатора в порах угля, развитию процессов полимеризации и снижению степени регенерации адс >рбента [23]. [c.82]

    Здесь уравнения (4.62)—(4.66) описывают средние скорости изменения концентраций инициатора, радикалов, мономеров и суммарной степени превращения в частицах дисперсной фазы. Уравнение (4.67) описывает нестационарный перенос тепла от единичного включения к сплошной фазе. Уравнения теплового баланса (4.68)—(4.69) для реактора и рубашки составлены при допущении полного перемепшвания сплошной фазы в реакторе и теплоносителя в рубашке. Уравнение БСА (4.70) характеризует изменение в течение процесса функции распределения частиц дисперсной фазы по массам р (М, 1). В уравнениях (4.62)—(4.70) введены следующие обозначения / ( г) — эффективность инициирования X — суммарная степень превращения мономеров АЯ — теплота полимеризации — эффективная энергия активации полимеризации 2 — коэффициент теплопроводности гранул р . — плотность смеси — теплоемкость смеси — коэффициент теплоотдачи от поверхности гранулы к сплошной среде Оои сво — начальные концентрации мономеров кр (х) — эффективный коэффициент теплопередачи — поверхность теплообмена между реагирующей средой и теплоносителем, Ут — объем теплоносителя в рубашке Гу, и Тт — температура теплоносителя на входе в рубашку и в рубашке соответственно Qт— объемный расход теплоносителя V — объем смеси в реакторе — объем смеси [c.275]

    В табл. 6.1 приведены данные о тепловом эффекте и изменении энергии Гиббса при реакциях полимеризации пропилена и бутенов. Тепловые эффекты полимеризации составляют 8 кДж/моль (17 2 ккал/моль) полимеризовавшегося олефина. При температурах до 500—550 К в стандартных условиях полимеризация идет с уменьшением свободной энергии Гиббса. Энергия Гиббса образования сооответствующих изоолефинов на 2—19 кДж/моль (0,5— 4,5 ккал/моль) ниже, чем а-олефинов нормального строения, и сни- [c.189]

    Сухая перегонка топлива происходит при нагревании топлива без доступа воздуха. В результате могут протекать а) физические процессы, например разделение жидких топлив на фракции по температурам кипения и др. б) химические процес сы— глубокие химические деструктивные превращения компонен тов топлива с получением ряда продуктов. Роль и характер отдель ных процессов при пиролизе различных видов топлив неодииако вы. В большинстве случаев их суммарный тепловой эффект эндо термический и поэтому для процессов пиролиза необходим подвод теплоты извне. Нагрев реакционных аппаратов большей частью производится горячими дымовыми газами, которые передают теплоту топливу через стенку или же при непосредственном соприкосновении с ним. Сухой перегонке подвергают твердые и жидкие топлива. Сухая перегонка твердых топлив (пиролиз) углей, торфа, древесины, сланцев — сложный процесс, при котором протекают параллельные и последовательные реакции. В общем, эти реакции могут быть сведены к расщеплению молекул, входящих в состав топлива, полимеризации, конденсации, деалкилированию, ароматизации продуктов расщепления и т. п. Качество и количество продуктов, получаемых при пирогенетической переработке различных топлив, неодинаковы и прежде всего зависят от вида перерабатываемого топлива, а затем для каждого топлива от температурных условий, продолжительности пребывания в зоне высоких температур и ряда других факторов. При процессах пиролиза получаются твердые, газообразные и парообразные продукты. [c.33]

    Реакция экзотермична. Тепловой эффект составляет 71 8 кДж/моль полимеризовавшегося Элеф ина. Равновесная степень полимеризации возрастает с увеличением давления и снижением температуры. [c.266]


Смотреть страницы где упоминается термин Тепловые полимеризации: [c.34]    [c.164]    [c.320]    [c.59]    [c.82]    [c.502]    [c.434]    [c.327]   
Энциклопедия полимеров Том 3 (1977) -- [ c.3 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.3 ]




ПОИСК







© 2025 chem21.info Реклама на сайте