Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы электронные облака

    В пятом периоде наблюдается такая же картина сначала заполнение 5х-орбиталей, затем заполнение уровня с и = 5 прерывается заселением погруженных в общее атомное электронное облако 4 -орбиталей, которое соответствует построению второго ряда переходных металлов, и, наконец, заполнение 5р-орбиталей, завершающееся построением валентной структуры благородного газа ксенона, Хе 4 5> 5р. Общим свойством всех благородных газов является наличие у них заполненной внешней электронной оболочки х р. В этом и заключается причина упоминавшейся выше особой устойчивости восьмиэлектронных валентных оболочек (см. гл. 7). Запоздалое заполнение /-орбиталей (и /-орбиталей) обусловливает появление неодинаково длинных периодов в периодической системе первый период содержит 2 элемента, второй включает 8 элементов, а третий тоже только 8, хотя мог бы содержать 18 элементов (на уровне с и = 3 размешается 18 электронов), затем следует четвертый период с 18 элементами, хотя он мог бы содержать 32 элемента (на уровне с и = 4 размещается 32 электрона). [c.398]


    После этого заполняются наиболее глубоко погруженные в атомное электронное облако (и — 2)/-орбитали, если они имеются. Такие орбитали существуют только при (и — 2) > 3, т.е. лишь в шестом и седьмом периодах. Соответствующие элементы обладают практически одинаковыми валентными электронными структурами и, следовательно, очень близкими химическими свойствами и относятся к внутренним переходным металлам (лантаноидам или актиноидам). [c.399]

    Самые внещние s- и р-электроны ответственны за важнейшие химические свойства атомов в случае типических элементов они называются валентными электронами. Орбитали d- и /-типа глубже погружены в общее электронное облако атома. Заселение этих орбиталей в атомах переходных металлов и внутренних переходных металлов (лантаноидов и актиноидов) оказывает меньшее влияние на химические свойства. Все же d-электроны определенным образом влияют на химические свойства переходных металлов, и в таких элементах валентными считаются электроны на внешних d-, S- и р-орбиталях. [c.408]

    Центром для адсорбции атома (молекулы) из газа может служить не только ион металла Ме+, но также и анион К . В последнем случае электронное облако адсорбированного атома затягивается в решетку симметрично относительно иона К, являющегося адсорбционным центром.  [c.23]

    Силы отталкивания возникают вследствие взаимного проникновения электронных облаков атомов. Это явление (вместе с запретом Паули) препятствует слишком сильному сближению атомов. Попытки выразить в математической форме возникающие силы отталкивания встречают чрезвычайно большие трудности. Эти силы быстро возрастают с уменьшением расстояния между атомами, но закономерность, которой они подчиняются, имеет сложный характер. Однако в ряде случаев можно пользоваться упрощенными уравнениями. При расчетах энергий решеток ионных кристаллов галоидных солей щелочных металлов и окислов щелочноземельных металлов хорошие результаты были получены при применении предложенного Борном и Майером [14] простого выражения, описывающего зависимость потенциальной энергии от сил отталкивания. Оно имеет следующий вид  [c.26]

    Химические свойства воды. Вода — весьма реакционноснособное вещество. Она взаимодействует с окислами металлов и неметаллов, образуя гидраты основного и кислотного характера. Вода обладает амфотерными свойствами. При взаимодействии со щелочами она ведет себя как кислота, а с кислотами как основание. Активные металлы взаимодействуют с водой с выделением водорода. Например, калий и натрий разлагают воду без нагревания, магний при нагревании, а железо при сильном нагревании. В результате наличия в молекуле воды отрицательно заряженных ветвей электронного облака она способна входить в состав координационных соединений в виде лигандов с образованием донорно-акцепторной связи (Си(Н20)4]804-Н20. [c.13]


    С увеличением межъядерного расстояния энергия связи в молекулах уменьшается. Примером может служить уменьшение энергии диссоциации двухатомных молекул галогенов от С1г к Вгг, Ь, г также, как указывалось выше (см. 5.2), молекул щелочных металлов. Это связано с понижением в том же направлении плотности электронного облака в молекулах, которая, естественно, должна уменьшаться с увеличением размеров атомов. [c.100]

    Подразделение веществ на ковалентные и ионные относительно, так как даже в галоген идах щелочных металлов нет полного перехода электрона (смещения электронного облака) от атомов металлов к атомам галогенов, эффективный заряд их имеет порядок [c.120]

    Как известно, кристаллическая решетка металла состоит из положительно заряженных ионов (катионов), удерживаемых общим электронным облаком. Все металлы характеризуются свойством в большей или меньшей степени растворяться в воде, причем в раствор переходят только катионы. Полярные молекулы воды извлекают из кристаллической решетки ме- [c.144]

    В процессе образования кристалла происходит перекрывание внешних электронных облаков атомов по аналогии с образованием химической связи в молекулах. В соответствии с методом МО при взаимодействии двух атомных электронных орбиталей образуются две молекулярные орбиТали связывающая и разрыхляющая. При одновременном взаимодействии N микрочастиц образуется N молекулярных орбиталей. Величина N в кристаллах может достигать огромных величин (порядка 10 ). Поэтому и число электронных орбиталей в твердом теле чрезвычайно велико. При этом разность между энергиями соседних орбиталей будет ничтожно мала. Так, в кристалле натрия разность энергетических уровней двух соседних орбиталей имеет порядок 10 Дж. Таким образом, в кристалле металла образуется энергетическая зона с почти непрерывным распределением энергии, называемая зоной проводимости. Каждая орбиталь в этой зоне охватывает кристалл по всем его трем измерениям. Заполнение орбиталей зоны проводимости электронами происходит в соответствии с положениями квантовой механики. Так, из условий минимума энергии электроны будут последовательно заполнять все орбитали, начиная с наинизшей, причем на каждой орбитали в соответствии с запретом Паули может располагаться лишь два электрона с антипараллельными спинами. С повышением температуры за счет теплового возбуждения электроны будут последовательно перемещаться на более высокие энергетические уровни, передавая тепловую энергию с одного конца кристалла на другой и обеспечивая таким образом его теплопроводность. [c.82]

    Формулы (7.10) объясняют происхождение символов /-орбиталей. Форма граничных поверхностей /-электронных облаков весьма существенна при объяснении химической связи в комплексных соединениях переходных металлов. На высших энергетических уровнях (и >4) возникают /-орбитали (/=3). Угловая составляющая при этом напоминает рассмотренную только что для /-орбиталей. [c.34]

    В атомах других элементов электрическое поле ядра искажено движением внутренних электронов. Особенно сильно искажено поле ядра и сильно расщеплены уровни в атомах, где имеется недостроенный й-или /-уровень, так как в этом случае электронные облака имеют несимметричную форму. Такие элементы имеют самые сложные спектры. К ним относятся металлы всех побочных подгрупп, кроме трех первых атомы металлов первой и второй подгруппы имеют нижний х-уровень, а в атомах третьей подгруппы при возбуждении одного электрона также нет недостроенных с1- и /-уровней. Все элементы главных групп периодической системы имеют достаточно простой спектр. [c.41]

    Можно ввести параметр у, позволяющий оценить способность центрального иона сжимать электронное облако атома кислорода. Расчеты показывают, что этот параметр, который Дафф и Ингрэм называют параметром, смягчающим основность , имеет небольшое значение для щелочных металлов (около единицы) и возрастает при переходе к водороду, фосфору, сере (2,50 2,50 2,04 соответственно), образующим прочные анионы. [c.247]

    Одним из важных разделов теоретической химии является учение о химической связи. Ковалентная связь осуществляется общей электронной парой, облако которой по-разному может распределяться в пространстве относительно ядер атомов Если электронное облако располагается симметрично между ядрами обоих атомов, то такая связь является неполярной ковалентной связью. Если электронное облако смещается в сторону более электроотрицательного атома, то происходит поляризация связи. Такая ковалентная связь называется полярной. Другой разновидностью химической связи является ионная связь, которую следует рассматривать как результат полного переноса электрона от одного атома к другому. Здесь допускается, что связь обусловлена силами электростатического притяжения между частицами противоположного заряда, В металлах между атомами осуществляется металлическая связь, характерной особенностью которой является обобществление валентных электронов множеством атомов в кристалле (делокализация). [c.87]


    Положительное значение степени окисления имеют атомы, отдающие свои электроны другим атомам, т. е. связующее электронное облако оттянуто от них. К таким относятся металлы. Щелочные металлы имеют во всех соединениях степень окисления, равную + 1, а щелочноземельные +2. [c.56]

    Атом водорода состоит из одного протона (ядро) и одного электрона. Это простейший атом, не имеющий аналогов в периодической системе химических элементов Д. И. Менделеева. Он способен терять электрон с образованием положительно заряженного катиона Н и в этом отношении сходен со щелочными металлами, которые также проявляют степень окисления + 1. Однако катион Н" " представляет собой голый протон, в то время как ядра катионов щелочных элементов окружены электронными оболочками. Ион водорода имеет очень небольшой радиус — 0,53-10 см, поэтому в ходе химических реакций он легко проникает в электронные облака других атомов, причем связь может быть ковалентной. [c.98]

    Характеристика элементов подгруппы галлия. Подобно типическим элементам, металлы подгруппы галлия являются 5/7-элементами. Несмотря на то что элементы подгруппы галлия — типовые аналоги, наблюдаются особенности в свойствах отдельных ее представителей. Элемент галлий непосредственно следует за первой десяткой кайносимметричных переходных 3 -металлов, для которых особенно сильна -контракция. Поэтому атомный радиус галлия меньше таковых не только его более тяжелых аналогов, но и алюминия. Вследствие этого ионизационные потенциалы галлия более высокие и связанные с ними энергетические характеристики отличаются от его аналогов. Уже у элементов ИВ-группы заметна тенденция к уменьшению степени окисления сверху вниз, в частности для ртути. Такое понижение положительной степени окисления еще более заметно и подгруппе галлия, В этом в определенной мере проявляется горизонтальная аналогия. Уже для таллия степень окисления +1 более стабильна, чем характеристическая степень окисления +3. Вследствие с1- и особенно /-контракции переход от индия к таллию сопровождается только незначительным увеличением атомного радиуса. В то же время ионизационные потенциалы таллия заметно больше, чем индия. Дело в том, что оба бз -электрона атома таллия подвержены сильному эффекту проникновения через двойной экран и /-электронных облаков. В результате 5-электроны с трудом участвуют в образовании химических связей. Этот факт получил наименование концепции инертной электронной пары. Поэтому у таллия часто валентным является бр-электрон, который, переходя к окислителю, превращает таллий в устойчивый ион Т1(+1). По этой причине производные Т1(+1) почти не проявляют восстановительных свойств и, наоборот, производные Т1(+3) являются сильными окислителями. [c.156]

    Пожалуй, первым из обративш внимание на природу поверхностных сил был Френкель. Его представления о том, что электроны проводимости образуют вблизи поверхности металла электронное облако и совместно с ионным зарядом создают двойной электрический слой, быстро нашли последователей. Вначале были предложены многочисленные эмпирические формулы, выражающие поверхностное натяжение 7 через другие физикохимические константы (атомный вес, работа выхода электрона, температуры кипения и плавления, модуль сдвига, скорость звука и др.). Здесь мы укажем только на некоторые термодинамические уравнения связи, например, между поверхностным натяжением металла и работой выхода электрона. [c.295]

    Согласно диаграмме энергетических уровней, изображенной на рис. 9-2, б5-орбиталь более устойчива, чем 5 -орбиталь, что не удивительно, поскольку аналогичное явление наблюдается в предыдущих периодах. Однако 4/-орбитали обычно также устойчивее, чем 5 -орбитали, хотя различие между ними по энергии невелико и имеются исключения. Идеализированная схема заселения орбиталей у элементов шестого периода такова сначала происходит заселение 6.s-opбитaли у цезия, Сз, и бария, Ва, затем заселяются глубоко погруженные в обшее атомное электронное облако 4/-орбитали у 14 внутренних переходных элементов от лантана, Ьа, до иттербия, УЬ. Как показано на рис. 9-3, имеются незначительные отклонения от этой схемы. Наиболее важным из них является то, что после Ва новый электрон у Ьа поступает на 5с/-орбиталь, а не на 4/-орбиталь. Поэтому лантан в сущности должен характеризоваться скорее как переходный, а не как внутренний переходный металл. Однако имеет больше смысла запомнить идеализированную схему заполнения, чем концентрировать внимание на отдельных исключениях из нее. [c.398]

    В л-комплексах образуются гибридные Пе-, Пр- и (гг—1)< -орбн-тали (п — валентная оболочка). Если общее число электронов на этих орбиталях меньше числа электронов на аналогичных орбиталях благородного газа, незаполненные орбитали могут быть использованы для координации и последующего химического изменения молекул, окружающих комплекс, и тогда л-комплекс может проявлять каталитические свойства. Другой, более существенной причиной каталитической активности л-комплексов является неравномерность электронного облака, если металл окружен разными лигандами, как, например, в случае комплекса (СеН5СМ)2 Р(1С12. [c.102]

    Электроны, находящиеся на орбиталях 29 в комплексах, где отсутствуют л-связи, имеют энергию, мало отличающуюся от их энергии Б иесвяз-анном атоме металла приближенно можно считать, что они остаются на своих атомных орбиталях. При строгом рассмотрении считается, что электроны, занимающие в свободном атоме металла орбитали с1ху, с1уг и при образовании комплекса переходят на несвязывающие молекулярные орбитали /2 , которые по энергии и форме электронных облаков мало отличаются от атомных орбиталей. [c.129]

    Представление об эффективных зарядах атомов приводит к следующей картине реакции атома натрия (в общем случае — атома щелочного металла) с молекулой R 1 (в общем случае — с молекулой RX, где X — атом галогена). При приблнжоиии атома натрия к молекуле R I происходит смещение электронного облака от атома натрия к атому хлора. Нужно поэтому ожидать, что чем Солее эффективный заряд атома хлора, тем должно быть более затруднительно перераспределение электронной плотности в комплексе R 1—Na и тем бо.гыпе должна быть энергия активации. [c.153]

    Различают три возможных механизма образования двойного электрического слоя. Согласно одному из ннх двойной электрический слон образуется в результате перехода нонов или электронов из одной фазы в другую (поверхностная ионизация). Например, с поверхности металла в газовую фазу переходят электроны, образуя со стороны газовой фазы электронное облако. Количественной характеристикой такого перехода может слуя ить работа выхода электрона. Интенсивность электронного потока увеличивается с повышением температуры (термоэлектронная эмиссия). В результате поверхность металла приобретает положительный заряд, а газовая фаза — отрицательный. Возникший электрический потен-инал на границе раздела фаз препятствует дальнейшему переходу электронов — наступает равновесие, при котором положительный заряд поверхности металла скомпенсирован отрицательным зарядом, созданным электронами в газовой фазе, т. е. формируется двойной электрический слой. [c.45]

    Скачки потенциалов на границе металл—вакуум (фс и/вакуум и ф2п/вакуум) обусловливаются В нсрвую очередь частичным выходом электронного облака за пределы кристаллической решетки металла. Отдельно слагаемые правой части уравнения (IX.26) не могут быть измерены. Различные методы измерения ведут лишь к определению е. [c.189]

    Все элементы в соответствии с электронным строением атомов можно подразделить на металлы и неметаллы. Такая дифференциация элементов относительна. Б каждом элементе представлены в той или иной мере оба противоположных качества. Металлические свой-, ства элементов определяются способностью атомов при взаимодействии частично или полностью смещать электронные облака к другим атомам ( отдавать электроны), проявлять восстановительную активность. К самым активным металлам относятся элементы с меньшей энергией ионизации и электроотрицательностью, максимально большими радиусами атомов и малым числом внешних электронов (например, щелочные металлы). Неметаллические свойства определяются способностью атомов принимать электроны, проявлять при взаимодействии окислительную активность. К наиболее активным неметаллам (окислителям) относятся элементы с большой энергией ионизации атомов, большим сродством к электрону и минимально возможными радиусами атомов (галогены, кислород, сера). Из 107элементов металлическими свойствами обладают 85, неметаллическими — 22. Ряд элементов проявляет амфотерные свойства (Ве, 2п, А1, 5п, РЬ и др.). Изменение свойств элементов в периодической системе можно проследить в трех основных направ- [c.84]

    Теория кристаллического поля (ТКП) развивает воззрения об электростатическом взаимодействии между d-элементом в качестве центрального иона и ионами противоположного знака или полярными молекулами. При этом учитывается квантово-механическая природа электронов комплексообразователя. Основы этой теории сформулированы в 1929 г. Г. Бете в его работе Расщепление атомных термов в кристалле . Электростатическая теория рассматривала ион металла как атомное ядро, окруженное сферическим электронным облаком. Теория кристаллического поля допускает, что d-электроны образуют несферические электронные облака путем избирательного заполнения орбиталей с низкими значениями энергии, направленными между лигандами. В этой теории центральный ион d-элемента рассматривается с учетом его электронного строения, участия валентных электронов, а лиганды — бесструктурно как источники электростатического поля. В этом недостаток теории. В ионе или атоме переходного элемента без внешнего окружения энергия всех пяти d-орбиталей (d y, d z, d 2< принадлежащих к одному и тому же энергетиче- [c.228]

    Наряду с а-связью может образоваться и я-связь, если на орбитали атома металла, которая может перекрываться с вакантной орбиталью донорного атома, находятся соответствующие с(-элек-троны. Эта связь изменяет распределение заряда как у атома металла, так и у лиганда, усиливая а-связь. Чем больше электронные облака перекрывают друг друга, тем более прочной является образующаяся ковалентная связь. Было показано, что для удовлетворения этого критерия необходимо, чтобы исходные атомные орбитали были гибридизованы, образуя новую систему эквивалентных орбиталей, принимающих участие в связи и имеющих определенное направление в пространстве. [c.250]

    Длина первого периода таблицы Менделеева — два элемента, так как при главном квантовом числе п= электронные облака имеют шаровую симметрию и в пределах такогс облака по законам квантовой механики могут находиться только два электрона. В разных вариантах таблицы Менделеева водород помещают или в первой группе, или в седьмой группе, а в некоторых вариантах этот элемент занимает вообще особое место. При этом линиями показывают сходство водорода как со щелочными металлами, так и с галогенами. Действительно, подобно галогенам водород может быть окислителем, а подобно щелочным металлам — восстановителем. [c.38]

    Если расположить простые вещества в ряду по убыванию восстановительной активности (ряд активностей металлов), то обнаружится несоответствие их последовательности с положением элементов в периодической системе. Так, олово и свинец находятся в системе соответствецно в пятом и шестом периодах, и казалось бы, что более высокими восстановительными свойствами должен обладать свинец (2=82), а не олово (2=50). Однако в ряду активностей олово стоит левее свинца. Ожидаемая последовательность их расположения в ряду активности нарушается, так как при заполнении электронами уровней атомов от 2=50до2=82в атомный остов вошли 14/-электронов (облака новой симметрии, силы отталкивания ослабли) и произошло /-сжатие. Уменьшение радиуса атома привело к увеличению энергии ионизации. [c.45]

    Перемещение связующих электронов в решетке металла напоминает движение р-электронов в бензольном кольце и в базисной плоскости графита. Оно происходит потому, что электронное облако одного атома перекрывается сблаком такого же электрона другого атома, а этот, в СБОЮ очередь, перекрывается с облаком третьего атома, и так по всей решетке металла. Особенности перекрывания электронных облаков при металлической связи, обусловленной р-электронами, состоят в том, что имеются боковые, а не радиальные перекрытия. [c.167]

    Если адсорбируемое вещество — одновалентный атом А типа Н, Ыа, адсорбент — идеальный ионный полупроводник, построенный из однозарядных ионов М+ и Н (М — символ металла, —символ металлоида), то пока атом А находится достаточно далеко от поверхности, валентный электрон является собственностью этого атома (рис. 31, а). Если же атом А посажен на поверхность, то его электрон принадлежит уже не только ему. Он принадлежит, строго говоря, всей сис1еме в целом. При этом валентный электрон атома А оказывается в большей или меньшей степени затянутым в решетку, Этим затягиванпем электрона (или электронного облака) в решетку и обусловливается связь между адсорбированным атомом А и кристаллом. Таким образом, связь осуществляется только валентным электроном атома, в результате чего возникает слабая одно-электронная связь (рис, 31, б). Степень затягивания электрона с атома А в решетку определяется как природой атома А, так и приридой решетки. [c.162]

    В индивидуальном состоянии HafSiFJ не выделена, по силе близка к серной кислоте. Существуют малоустойчивые кристаллогидраты с различным содержанием воды. Соли ее — гексафторосиликаты — термически более стойки, но при нагревании разлагаются на SIF4 и фториды металлов. В октаэдрической структуре нонов [SiFel- кремний находится в состоянии 5/ Й --гнбридизации и его к. ч. 6. Для других галогенов соединения аналогичного состава неизвестны. Здесь существенную роль играет размерный фактор и, как следствие этого, недостаточное перекрытие электронных облаков для об- [c.206]

    Поляризация химической связи. Ковалентная связь гомео-полярна только для молекул и соединений, состоящих из одинаковых атомов . А таких веществ не может быть больше (с учетом аллотропии) количества элементов в Периодической системе. В настоящее время металлов и металлидов (соединений с преимущественно металлической связью) насчитывается свыше 10 000. Все остальные миллионы химических соединений характеризуются полярной ковалентной связью. Это происходит потому, что абсолютное большинство молекул и соединений образуется сочетанием неодинаковых атомов. При этом происходит смещение связующего электронного облака под влиянием второго атома—поляризация, результатом чего является полярная связь. Смещение связующего электронного облака происходит в сторону более электроотрицательного атома. И потенциал ионизации, и срс Дство к электрону порознь не могут служить достаточной мерой элсжтро-отрицательности элемента. Малликен предложил количественную меру электроотрицательности атома в виде полусуммы первого ионизационного потенциала и сродства к электрону  [c.99]

    Таким образом, из рис. 36 видно, что чем больше разность ОЭО 1. Омпонентов соединения, тем более полярна ковалентная связь. Для галогенидов и оксидов металлов межатомная связь наиболее лолярна потому, что галогены и кислород имеют высокие значения ОЭО. Однако, привлекая концепцию электроотрицательности как условной величины, характеризующей относительную способность атома в соединении притягивать к себе связующее электронное облако, необходимо учитывать следующее  [c.102]


Смотреть страницы где упоминается термин Металлы электронные облака: [c.80]    [c.80]    [c.80]    [c.80]    [c.80]    [c.399]    [c.425]    [c.170]    [c.35]    [c.114]    [c.101]    [c.289]    [c.151]    [c.129]   
Современная общая химия Том 3 (1975) -- [ c.3 , c.99 ]

Современная общая химия (1975) -- [ c.3 , c.99 ]




ПОИСК





Смотрите так же термины и статьи:

Облака как

Электронные облака

Электроны облака



© 2025 chem21.info Реклама на сайте