Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пептиды триптофан

    Гидролиз пептидов (и белков) приводит к освобождению аминокислот, участвовавших в их построении. Расщепление проводят, как правило, кипячением с соляной или серной кислотами. При этом все аминокислоты выделяются в виде солей, например хлоргидратов. Исключение составляет триптофан, который разрушается в ходе гидролиза, и поэтому для его определения требуются иные способы. Щелочи также гидролизуют пептиды (и белки), но этот процесс протекает менее гладко и приводит к значительной рацемизации аминокислот. Гидролиз полипептидов до аминокислот можно проводить и при помощи ферментов (трипсин, эрепсин). [c.383]


    Белки свеклы имеют кислотные свойства (точка коагуляции при pH 3,5), содержат больше кислых аминокислот — глутаминовую, аспарагиновую и др. Они гидролизуют с образованием низкомолекулярных пептидов и аминокислот аланин- валин, гликокол, лейцин, изолейцин, фенилаланин, -аминомасляная, тирозин, серии, треонин, цистин, метионин, пролин, триптофан, аспарагиновая, глутаминовая, гистидин. [c.6]

    С помощью измерения оптической плотности растворов при 280 нм могут быть обнаружены только пептиды, содержащие тирозин и триптофан. Для выявления пептидов, не имеющих в своем составе этих аминокислот, необходимо располагать другими методами определения пептидов. К ним относится, например, метод пря. [c.227]

    Анализ аминокислотного состава включает полный кислотный гидролиз исследуемого белка или пептида с помощью 5,7 н. соляной кислоты и количественное определение всех аминокислот в гидролизате. Гидролиз образца проводится в запаянных ампулах в вакууме при ПО "С в течение 24 ч. При этом полностью разрушается триптофан и частично серии, треонин, цистин и цистеин. а глутамин и аспарагин превращаются соответственно в глутаминовую и аспарагиновую кислоты. В то же время пептидные связи, образованные аминокислотными остатками с разветвленной боковой цепью (Val, Не. Leu), из-за стерических препятствий гидролизуются частично. Особенно стабильны связи Val—Val. Ile—Ile, Val—De и Ile—Val. [c.34]

    Аналогичный механизм был предложен для расщепления пептидов, содержащих триптофан [124] Было высказано предположение, что такой тип расщепления может быть распространен на пептиды, содержащие гистидин, причем условия расщепления могут быть выбраны таким образом, чтобы происходило селективное расщепление пептидных связей, содержащих тирозин, триптофан и гистидин [34, 148]. [c.399]

    Наиболее общим методом определения концентрации пептидов является колориметрия продуктов реакции с нингидрином [2]. Это один из наиболее чувствительных колориметрических методов. Для обнаружения аминокислот и пептидов разработаны как обычный, так и полностью автоматизированный варианты, причем нингидриновый реагент не вызывает коррозии и его можно подавать обычным микронасосом. Реакция идет по свободным аминогруппам, но в некоторых случаях хромофор образуется с низким выходом. Данные по окрашиванию дипептидов можно найти в работе [3]. У всех дипептидов, содержащих в качестве Ы-концевой аминокислоты аргинин, треонин, серин, глутаминовую кислоту, глицин, фенилаланин, метионин, лейцин и тирозин, интенсивность окраски составляет 1,6-10 у лейцина эта величина составляет 1,7-10 . У дипептидов с М-концевым лизином и аспарагиновой кислотой интенсивность окраски несколько выше (на 20 и 29% соответственно), а дипептиды с Ы-концевым гистидином и триптофаном проявляются несколько слабее (42 и 67% соответственно от средней интенсивности). Дипептиды с М-концевым пролином, валином и изолейцином окрашиваются очень слабо [2,7 6,4 и 8,5% от средней (1,6- 10 ) интенсивности]. [c.391]


    НОМ соке в активный пепсин в результате ферментативного действия самого пепсина, т. е. путем автокатализа. В ходе этого процесса (рис. 24-4) с Н-конца полипептидной цепи пепсиногена отщепляются 42 аминокислотаых остатка в виде смеси коротких пептидов. Остающаяся интактной остальная часть молекулы пепсиногена представляет собой ферментативно активный пепсин (мол. масса 33 ООО). В желудке пепсин гидролизует те пептидные связи в белках, которые образованы ароматическими аминокислотами-тирозином, фенилаланином и триптофаном, а также рядом других (табл. 24-1) в итоге из длинных полипептидных цепей образуется смесь более коротких пептидов. [c.748]

    Эти остатки очень устойчивы к гидролизу и к ряду других воздействий, а их полярный характер может быть с успехом использован при разделении пептидов. Надмуравьиную кислоту применяли также для превращения метионина в соответствующий сульфон, который менее чувствителен к окислению воздухом, чем сам метионин. Метод с использованием надмуравьиной кислоты имеет два главных недостатка во-первых, надмуравьиная кислота разрушает триптофан и, во-вторых, она не обеспечивает исчерпывающего окисления дисульфидных мостиков. [c.89]

    Обнаружение триптофана и его пептидов. 1 г и-диметилами-нобензальдегида растворяют в 85 мл ацетона и к раствору добавляют 15 мл концентрированной соляной кислоты. Реагент необходимо каждый раз готовить заново. Хроматограмму погружают в этот реагент через 2—3 мин появляются фиолетовые пятна триптофана и содержащих его пептидов. Триптофан можно также выявить с помощью других реагентов для обнаружения индолов. [c.126]

    Определение качественного и количественного аминокислотного состава белков и пептидов проводят после их гидролиза кислотой или щелочью. Оба вида гидролиза разрушают некоторые аминокислоты. При щелочном гидролизе частично разрушаются цистеин, серии, треонин и происходит частичная рацемизация некоторых аминокислот. При гидролизе соляной кислотой (5,7 н., 105—110° С), которая обычно используется при кислотном гидролизе пептидных связей, практически полностью разрушается триптофан. В связи с этим содержание триптофана в пробах обычно определяют после щелочного гидролиза или спектрофотометрическим методом Кроме того, наблюдаются значительные потери оксиаминокислот (серина, треонина, тирозина), се-русодержащих аминокислот (цистеина, метионина) и частично пролива. При этом степень разрушения аминокислот зависит от чистоты и концентрации НС1, используемой для гидролиза, а также длительности и температуры гидролиза. Следует отметить, что примеси альдегидов при кислотном гидролизе приводят к значительной потере тирозина, а также цистеина, гистидина, глутаминовой кислоты и лизина, а примеси углеводов в больших концентрациях — к разрушению аргинина. [c.123]

    Вторая часть доказательства коллинеарности между нуклеотидной последовательностью в ДНК и последовательностью аминокислот в белках включала в себя определение полной аминокислотной последовательности триптофансинтетазы и картирование пептидных фрагментов мутантных ферментов (гл. 2, разд. 3,2). Пептидные карты позволили идентифицировать дефектные пептиды и точно установить природу аминокислотных замещений в большом числе различных ауксотрр-фов по триптофану. Когда это было сделано, оказалось, что мутациям, локализованным очень близко друг к другу, соответствовали аминокислотные замещения в непосредственно (или очень близко) прилегающих друг к другу участках полипептидной цепи. [c.251]

    N-Koнцeвoй аминокислотой служит глутаминовая кислота, а С-концевой аминокислотой — фенилаланин. Какая структура согласуется с этилш данными Примечание пептид содержит по две из следующих кислот аланин, глицин, триптофан. Кроме того. [c.414]

    В v yчae натриевой соли дипептида концентрация свободных аминогрупп будет бЬлее высокой, следовательно, при применении соли выход ацилированного продукта будет выше, чем с аминокислотой. При pH 7,4 в случае глмцилтриптофана концентрация свободных аминогрупп почти в 20 раз больше, чем в случае триптофана, и пептид реагирует более гладко с серебряной солью фенилкарбобензилоксиглицилфосфорной кислоты, Чем триптофан [22]. [c.179]

    ЭРЛИХА реакция, взаимодействие 4-диметиламино-бензадьдегида (т. наз. реагент Э р л и х а) с триптофаном или его остатками в белках (пептидах) по схеме  [c.489]

    Триптофан- это а-аминокислота, в молекуле которой содержится индольная группа. Триптофан относится к незаменимым аминокислотам, не образующимся в организме человека, и входит в состав пептидов и белков. Кроме того, он является предшественником в биогенезе индола и алкалоидов цинхоны, а также множества вторичных метаболитов. [c.554]

    По полярности боковой цепи Я различают полярные и неполярные аминокислоты. К неполярным аминокислотам относятся глицин и аланин, а также гидрофобные аминокислоты — валин, лейцин, изолейцин, пролин, метионин и фенилаланин. К полярным аминокислотам причисляют серин, треоиин, цистеин, аспарагин, глутамин и триптофан (нейтральные соединения), аспарагиновую и глутаминовую кислоты и тирозин (кислые гидрофильные аминокислоты), а также лизин, аргинин и гистидин (основные гидрофильные аминокислоты). Гидрофильные полярные соединения увеличивают растворимость пептидов и белков в водных системах, в то время как нейтрально-полярные аминокислоты ответственны за каталитическую активность ферментов. В противоположность неполярным гидрофобным аминокислотам полярные аминокислоты обычно находятся на поверхности молекулы белка. [c.17]


    Аминокислоты можно получать путем выделения из белковых гидролизатов, с использованием микробиологических методов, с помощью ферментативных методов или путем химического синтеза. Первые три подхода дают ь-аминокислоты, а при химическом синтезе получаются оь-соедине-ния, которые нужно еще разделить на оптические антиподы. До недавнего времени аминокислоты удавалось полущть только в очень малых количествах, но в последние годы их производство приняло индустриальные масштабы и в 1977 г. достигло 400 ООО т. Аминокислоты используются как вкусовые добавки в пищевой промышленности (глутамат натрия, аспарагиновая кислота, Щ1СТИН, глицин и аланин), как питательные растворы и терапевтические средства в медицине (все протеиногенные аминокислоты), как добавки для улучшения неполноценных питательных белков и фуража (лизин, метионин, триптофан), как промежуточные вещества в косметической промышленности (серин, треонин, цистеин), а также как исходные вещества для синтеза различных пептидов. [c.38]

    Ароматические ядра таких аминокислот, как фенилаланин, тирозин и триптофан можно специфически метить с помощью гало-ген-тритиевого каталитического замещения в присутствии основания. Остатки тирозина, которые могут входить в пептиды, сперва иодируют (3,5-замещение) и далее иод замещают на тритий. Например, 23- [3,5- Нг-Туг] -Р-кортикотропин- (1—24) -тетракозапептид синтезирован последовательным иодированием замещенного (11 — 24)фрагмента, содержащего свободную а-аминогруппу, присоединенную к производному (1—10)фрагмента, и введением трития с помощью смеси Рс1/С— Ь/СаСОз в качестве катализатора, где карбонат играет роль необходимого основания [62]. Следует заметить, однако, что в кислых растворах [3,5- Н2]-тирозин теряет тритий в результате обмена. Меченный в ядро фенилаланин устойчив при кипячении в 5%-ной хлороводородной (соляной) кислоте,, однако теряет тритий при нагревании в >80 %-ной серной кислоте. [c.248]

    Сэнгер и Туппи [72] применили этот метод при расшифровке структуры В-цепи инсулина. Выделив и проанализировав не менее 60 пептидов, им удалось расшифровать только четыре участка цепи, включающих всего 19 остатков аминокислот. В частичных кислотных гидролизатах, помимо пептидов, встречается до 25% свободных аминокислот [54]. В ходе кислотного гидролиза полностью разрушается триптофан [53] и в значительной степени повреждаются оксиаминокислоты [65]. [c.35]

    Гидролазы. Ферменты этой группы играют особенно важную роль в пищеварении и в процессах пищевой технологии. К ним относится большая группа протеолитических ферментов, катализирующих гидролиз белков и пептидов. Большое значение в биохимии пищеварения принадлежит протеолитическим ферментам (пепсин, химиотрипсин, аминопептидаза, карбоксипептидаза и др.), осуществляющим деполимеризацию молекул белка по мере его движения по пищеварительному тракту. Протеолитиче-ские ферменты участвуют в процессах, происходящих при переработке мяса, в хлебопечении. С их помощью проводят умягчение мяса и кожи, их применяют при получении сыров. Действие протеаз очень избирательно. Одни протеазы разрушают пептидные связи внутри молекул белка — эндопептидазы и на конце ее молекулы (экзопептидазы), т. е. отщепляют аминокислоты с N- или С-конца, другие расщепляют пептидные связи только между отдельными аминокислотами. Так, трипсин разрушает пептидную связь между лизином (Лиз) или аргинином (Apr) и другими аминокислотами, пепсин — между аминокислотами с гидрофобными радикалами, например между валином (Вал) и лейцином (Лей). Фермент химотрипсин гидролизует пептидную связь между триптофаном, (см. схему) тирозином и другими аминокислотами. В самом общем виде схема расщепления пептидных связей в полипептидной цепи может быть представлена следующим образом  [c.23]

    Амидные связи способны гидролизоваться как в кислой, так и щелочной средах (см. 7.3.3). Пептиды и белки гидролизуются с образованием либо более коротких цепей — это так называемый частичный гидролиз, либо смеси а-аминокислот при полном гидролизе (рис. 11.1). Щелочной гидролиз практически не используется из-за неустойчивости многих а-ами-,нокислот в этих условиях. Обычно гидролиз осуществляют в кислой среде. Любые пептиды и белки полностью гидролизуются при нагревании в запаянной амАуле (в вакууме или атмосфере азота) с 20% хлороводородной кислотой при нагревании до температуры 110°С в течение 24 ч. Некоторые а-аминокислоты могут претерпевать изменения и в кислой среде, например в этих условиях триптофан полностью разрушается. [c.345]

    Существуют также методы ковалентного присоединения к носителям триптофан- и лизинсодержащих пептидов, однако они применяются относительно редко. [c.56]

    Силънокислые ионообменники. Только недавно найден метод, позволяющий количественно определить после кислого гидролиза триптофан, а также, например, лизерги-новую кислоту. Этот метод имеет и другое преимущество — практически исключено образование гумина. По методу М. Пома [15] в стеклянной колбе сплавляют околО 0,05—0,2 г пептида с 1 г амберлита IR-112 вЗ—10жл 80%-ного этанола в атмосфере азота и нагревают 6—10 час при 90—95°. После охлаждения аминокислоты вымывают из ионообменника 10%-ным раствором аммиака. [c.396]

    Вследствие относительной стабильности некоторых пептидных связей для осуществления полного гидролиза белков или пептидов до индивидуальных аминокислот требуются жесткие условия, такие, как нагревание в течение 70 ч с 6 н. НС1 в эвакуированной запаянной ампуле. В этих условиях триптофан почти полностью разлагается, причем скорость его распада увеличивается в присутствии углеводов и других карбонилсодержащих соединений [43]. В аналогичных условиях наблюдается некоторое разложение лейцина, аспарагиновой кислоты, пролииа, но этого можно избежать при добавлении фенилгидроксиламина [59]. Для полного гидролиза более стабильных пептидов, содержапщх, например, валин и изолейцин, необходимо увеличение времени гидролиза. При этом наблюдается значительная потеря других аминокислот, в частности цистина, серина и треонина [66, 132]. В тех случаях, когдалеобходимо измерить степень разложения отдельных аминокислот, постепенно увеличивают продолжительность гидролиза. Если время гидролиза химотринсиногена (5 и. HG1, 110° С, запаянная эвакуированная ампула) увеличивают с 24 до 72 ч, то количество определяемого пролина увеличивается на [c.391]

    Что касается пептидов, то из входящих в их состав аминокислот наибольшее сродство к гелям сефадекса придает им триптофан. Триптофансодержащие пептиды из частичных (например, триптических) гидролизатов белков (например, цитохрома с-551 из Pseudomonas) всего сильнее удерживаются гелем и элюируются в виде отдельной зоны [123]. Классическим примером подобного явления служит разделение тироцидинов. Эта группа циклических декапептидов, обладающих антибиотической активностью, состоит из трех компонентов, один из которых (тиро- [c.191]

    Области применения аффинной хроматографии расширяются, поокольку метод основан на специфических взаимодействиях биологически активных веществ. Как видно из табл. 11.1, этот метод успешно используется при выделении самых разных соединений. Наряду с этим он полезен при изучении различных систем на аффинных сорбентах можно разделять низкомолекулярные энан-тиомеры и удалять нежелательные вещества из живых организмов. -Например, аффинной хроматографией можно разделить на оптические антиподы 0,Ь-триптофан. Используя специфическое выделение меченых пептидов, можно определить пептиды активного центра фермента, связывающего участка антител или участка пептидных цепей на поверхности молекулы. Аффинная хроматография может быть использована для изучения возможности замены природных пептидных цепей ферментов различными модифицированными синтетическими пептидами. Активные центры ферментов или антител, связывающие свойства субъединиц, специфичность ферментов по отношению к различным ингибиторам, комплементарность нуклеиновых кислот, взаимодействие нуклеотидов с пептидами, влияние присутствия различных соединений на образование специфических комплексов и т. д. могут быть исследованы с помощью аффинной хроматографии. [c.282]

    По нескольким причинам эти производные представляют особый интерес. Наличие ДНФ-группы придает специфичность, а также позволяет использовать электронозахватные детекторы с чувствительностью до 3-10 моль/с [79]. Хотя ДНФ-производ-ные использовали для определения М-концевых аминокислот и последовательности пептидов, их рассмотрение будет ограничено установлением последовательности в тех пептидах, которые с трудом поддаются очистке или доступны в малых количествах. В общем же случае они оказываются непригодными, поскольку аминокислоты с дополнительными функциональными группами нельзя разделить без дальнейшей обработки. Оксигруппы треонина, серина и оксипролина обрабатывали триметилсилилирую-щими реагентами [67], но триптофан и тирозин, по-видимому, не удалось удовлетворительно хроматографировать (см. разд. Обсуждение в работе [96]). [c.90]

    В серии публикаций Вейганд и сотр. предложили много методов и реагентов для трифторацетилирования аминокислот. Перенос ТФА-остатка из фениловых [145] и метиловых [137] эфиров трифторуксусной кислоты на а-аминогруппы ряда аминокислот и пептидов протекал с высокими выходами. Этот метод использовался также для ацилирования 14 связанных со смолой метиловых эфиров аминокислот [108], включавших серин, треонин, оксипролин и лизин. Случайное появление многочисленных газохроматографических пиков согласуется с неполным ацилированием ОН- или е-ЫНг-групп, тем не менее в другой работе [66] метиловые эфиры ТФА-аминокислот (включая оксиаминокислоты и триптофан, но не аргинин, гистидин и цистин) успешно хроматографировали после ацилиро-вания по аналогичной методике. [c.108]

    Для пептидов, содержащих ароматические и (или) гетероциклические аминокислоты (фенилаланин, тирозин, триптофан и гистидин), характерны следующие типы расщепления а) частичное элиминирование боковой цепи в виде АгСНг в процессе фрагментации по аминокислотному типу б) первоначальный разрыв связи N—ароматического или гетероциклического аминокислотного остатка с последующим аминокислотным типом фрагментации образовавшегося иона с) элиминирование боковой цепи в виде АгСНг (например, в виде иона тропилия в случае фенилаланина). Все три процесса наиболее отчетливо проявляются у триптофансодержащих пептидов [13]. [c.196]

    Некоторые аминокислоты при использовании для метилирования окиси серебра с иодистым метилом дают нежелательные результаты [88, 89]. Например а) в результате метилирования пептидов, содержащих аспарагиновую кислоту, получается сложная смесь соединений [88] Ь) остатки глутаминовой кислоты обычно не дают осло Жнений, но некоторые производные пептидов претерпевают частичное расщепление цепи с образованием остатка пироглутаминовой кислоты [88, 89] с) остаток триптофана гладко образует диметильное производное после метилирования но было отмечено, что триптофан в положении 9 грамицидинов А к В представляет исключение (табл. 1), так как появляются примеси на 30 м. ед. выше молекулярного веса. [c.216]

    Для образования пептидов могут быть использованы трити-ловый эфир у-алкил-Ь-глутаминовой кислоты [103], дитритил-L-гистидин, тритил-ОЬ-метионин и тритил-ОЬ-триптофан [11]. Эти реакции представляют особый интерес, так как те же замещен-ные аминокислоты в виде их смешанных ангидридов с угольной кислотой не вступали в реакции конденсации. Этот факт был приписан пространственным затруднениям [10] ангидрид или вообще не образовывался или реагировал дальше с образованием карбоната [210]. Другое объяснение этому факту состоит в том, что стадия образования ангидрида становится настолько медленной, что преобладает реакция эфира хлоругольной кислоты с триэтиламином. Эта побочная реакция невозможна в случае карбодиимидов и тогда пептиды образуются. [c.222]

    Каждый из этих ферментов атакует вполне определенные пептидные связи. Трипсин катализирует гидролиз пептидных связей, карбонильная группа которых принадлежит одной из основных аминокислот, обычно аргинину или лизину. Пепсин и химотрипсин предпочтительно катализируют гидролиз тех пептидных связей, в образовании которых участвуют ароматические аминокислоты, в частности триптофан, тирозин и фенилаланин. Среди протеолитических ферментов наиболее высокой специфичностью обладает трипсин поэтому именно он наиболее подходит для такого рода анализа. Ясно, однако, что при помощи только одного, пусть даже абсолютно специфичного, фермента невозможно определить полную последовательность аминокислот в полипептиде. Если, например, триптическое расщепление полипептида дало пять фрагментов (пептидов), в сумме соответствующих всей цепи, и если даже для каждого из них удалось установить аминокислотную последовательность, то это еще не все требуется узнать, в каком порядке эти пептиды располагались в нативном полипептиде. Чтобы узнать это, необходимо получить другие пептиды, которые перекрывались бы с первыми. Главное преимущество ферментативного гидролиза — специфичность реакции расщепления в отношении природы расщепляемых пептидных связей накладывает в то же время строгое ограничение на применимость этого метода. В идеале желательно было бы, например, иметь возможность расщеплять иногда те пептидные связи, которые в норме трипсином не атакуются, или, наоборот, предохранять от расщепления связи заведомо чувствительные. Недавно были предложены некоторые модификации методики, которые позволяют в какой-то мере решить эту задачу. Так, например, реакция е-аминогруппы лизина с этилтрифтортиоацетатом в слабо щелочном растворе дает блокированный по аминогруппе остаток, пептидная связь которого не атакуется трипсином [c.90]

    При расщеплении пептида НгК-триптофан-метионин-аспара-гинат-фенилаланин-СОКНг после первого цикла было идентифицировано бмс-триметилсилилпроизводное метилтиогидантоина триптофана, после второго цикла — производные фенилаланина и метионина. Аспарагинат не был обнаружен. Авторы предполагают, что последний, вероятно, циклизуется с С-концевым амидом фенилаланина. [c.34]


Смотреть страницы где упоминается термин Пептиды триптофан: [c.363]    [c.149]    [c.222]    [c.113]    [c.510]    [c.111]    [c.607]    [c.48]    [c.280]    [c.216]    [c.359]    [c.280]    [c.293]    [c.32]    [c.31]   
Аффинная хроматография (1980) -- [ c.129 ]




ПОИСК





Смотрите так же термины и статьи:

Триптофан



© 2025 chem21.info Реклама на сайте