Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деформация низкотемпературная

    Эффект водородной хрупкости стали наиболее существенно проявляется в интервале температур от минус 20 до плюс 30°С и зависит от скорости деформации [18, 20]. Различают обратимую и необратимую водородные хрупкости. Охрупчивающее влияние водорода при его содержании до 8-10 мл/100 г в большинстве случаев процесс обратимый, то есть после вылеживания или низкотемпературного отпуска пластичность металла конструкции небольшого сечения восстанавливается вследствие десорбции водорода. Обратимая хрупкость стали обусловливается, в основном, наличием водорода, растворенного в кристаллической решетке. Необратимая хрупкость зависит от содержания в стали водорода в молекулярном состоянии, который агрегирован в коллекторах, где он находится под высоким давлением, вызывающим значительные трехосные напряжения и затрудняющим пластическую деформацию стали. Пластические свойства металла при необратимой хрупкости не восстанавливаются даже после вакуумного отжига, так как в структуре стали происходят необратимые изменения [21, 22] образование трещин по [раницам зерен, где наблюдается наибольшее скопление водорода, и обезуглероживание стали. [c.16]


    При скольжении полимерного образца со скоростью 1 мм/мин шероховатости его поверхности испытывают деформацию сжатия с частотой 100 МИН . Из рис. 13.5 видно, что низкотемпературный максимум механических потерь наблюдается примерно при той же температуре, что и максимум силы трения. [c.366]

    Синтетические пены с дешевыми неорганическими пигментами имеют по сравнению с резиновыми пенами на основе только натурального каучука следующие преимущества повышенная стойкость к старению, высокое сопротивление многократному изгибу, незначительная остаточная деформация после сжимающих нагрузок и хорошие эластичность и гистерезис. Хотя их механическая прочность несколько ниже, она все же вполне достаточна для применения, например, в качестве обивки сидения и амортизирующих устройств. По низкотемпературным показателям они также уступают пенам на основе натурального каучука, но все же дают удовлетворительные результаты практически при любых условиях эксплуатации и оказываются значительно лучше, чем эластомерные пены других вырабатываемых в настоящее время типов. Важными преимуществами чисто синтетических пен являются стабильность цен и большее постоянство технологических характеристик. [c.213]

    Поведение азота отличается от поведения углерода тем, что любые добавки азота ускоряют КР [66—69, 80, 82, 85—87]. Это ускорение несколько усиливается в результате низкотемпературного старения [88], что может быть результатом взаимодействия с углеродом [69, 85]. Подобным же отрицательным образом наличие азота отражается и на стойкости против водородного охрупчивания, что показано на рис. 13 для сплавов 309 5 и 21 Сг—6 N1—9 Мп. Оба сплава представляют стабильные аустениты, т. е. не образуют мартенсит при деформации и имеют очень близкие значения ЭДУ (-35 мДж/м2) [68]. [c.71]

    Си показывают, что если его деформировать на 20% в горячем состоянии при 120 °С перед обычным старением, то прочность может увеличиться без заметного уменьшения пластичности [188]. Эти результаты побудили развитие других [189] многочисленных ступеней обработки совмещающихся циклов старения с пластической деформацией после первой низкотемпературной стадии старения и перед последующей стадией с более высокой температурой старения (рис. 128). [c.277]

    Анализ многочисленных экспериментов по исследованию деформации и разрушения бериллия позволяет прийти к выводу о том, что механические свойства бериллия в низкотемпературной (20—100°С) и высокотемпературной (400—600°С) областях-определяются сте- [c.17]

    Преимуществом горизонтального реактора является возможность использования коротких слоев катализатора, для которых требования к прочности гранул менее жесткие. Кроме того, не имеют особого значения и явления усадки катализатора. Однако без дополнительно принятых мер (например, футеровки корпуса или его обдува) горизонтальные реакторы могут работать с ограниченным перепадом температур в слое катализатора. Иначе корпус аппарата и внутренние конструкции могут быть разрушены в результате температурных деформаций. Поэтому в наиболее простом варианте горизонтальные реакторы применяют только для низкотемпературной конверсии окиси углерода. [c.395]


    Низкотемпературный участок, ограничиваемый температурой хрупкости Тхр и температурой стеклования Тс, называется областью стеклообразного состояния (1) и характеризуется чрезвычайно малыми деформациями полимера. Участок резкого нарастания деформации (переходная область 2) соответствует переходу вещества в высокоэластическое состояние пологий участок 3 (плато высокоэластичности) имеет в качестве верхней границы температуру текучести образца Т участок резкого повышения деформации (4) уходит в область высоких температур и оканчивается температурой термодеструкции полимера. Значения и АН характеризуют уровень высокоэластических деформаций в данном режиме деформирования. [c.371]

    Учет внутренних напряжений позволяет, по-видимому, объяснить еще одно весьма интересное явление — так называемое ЛГ-состояние, возникающее в некоторых однофазных твердых растворах [188]. ЛГ-состояние было обнаружено в сплавах, которые первоначально были подвергнуты закалке с высоких температур или холодной деформации, а затем — низкотемпературному отжигу. В результате низкотемпературного отжига отмечалось увеличение электросопротивления. Это явление, в принципе, могло быть объяснено либо эффектом ближнего расслоения, либо же тем, что граница однофазной области определена недостаточно точно и сплав при низкотемпературном отжиге фактически находится в двухфазной области диаграммы равновесия. [c.247]

    Следует упомянуть работу В. А. Каргина с Г. П. Андриановой и Г. Г. Кардашем, посвященную высокой деформируемости кристаллического полипропилена в широком интервале температур. В рассматриваемой работе дается важный анализ механизмов деформируемости полимеров, выделены низкотемпературная деформация, связанная со скольжением элементов надмолекулярной структуры, когда гибкость макромолекул полностью подавлена, и высокотемпературная деформация, связанная с превращениями внутри кристаллических областей, когда гибкость макромолекул играет доминирующую роль. [c.12]

    Ключевые слова низкотемпературная калориметрия, бинарная смесь, тензометрический датчик, давление, напряжение, деформация, уравнение состояния. [c.161]

    В противоположность рассмотренным, остальные конструкции газораспределительных устройств, показанных на рис. Х1Х-1, вводят газ в слой через сплопшые щели. Тип 1, е состоит из механически обработанных металлических брусков, смонтированных на расстоянии приблизительно 1 мм друг от друг сходный тип, показанный на рис. Х1Х-1, ж, менее подвержен забиванию во время работы. По этим конструкциям распределителей применительно к процессу обжига имеется подробная информация . Решетки типа 1, з и и обычно изготовляют из металлических полос и используют для относительно низкотемпературных процессов (таких, как сушка), когда термическая деформация решетки незначительна. [c.685]

    Влияние марганца иа изменение лрочности сталей пока не установлено. Добавка никеля способствует улучшению пластических свойств стали при сохранении дo тi точной прочности в условиях низких температур 139]. На способность сталей к деформации при йзких температурах влияет присутствие примесей. Увеличение содержания примесей (например, кислорода, серы, фосфора) понижает способность сталей к низкотемпературной деформации. [c.135]

    Целью модификации битумов полимерами является получение композиционного материала (компаунда) с преобладающими свойствами полимера, такими, как высокая прочность, широкий интервал рабочих температур - , высокая химическая стойкость, хорошая переносимость больших пластических деформаций, стойкость к действию климатических факторов и т.п.Температурный диапазон работоспособности дорожных битумов (алгебраическая сумма температуры размягчения по КиШ и температуры хрупкости по Фраасу) составляет обычно 50-65°, что обусловлено главным образом природой нефти, т.е. низкотемпературными свойствами ее низкомолекулярных компонентов и групповым химическим составом тяжелых остатков (сырья для производства битумов).Битумы малоэластичны, т.к. их пространственная структура, создаваемая за счет коагуляционных контактов между частицами дисперсной фазы (асфальтеновых ассоциатов), обусловливает минимальные по сравнению с недисперсными системами величины обратимых деформаций . В то же время условия эксплуатации дорожных, мостовых, аэродромных асфальтобетонных покрытий диктуют необходимость обеспечить трещиностойкость при температурах до -50°С и ниже, теплостойкость до 60-70°С и весьма существенно увеличить долю обратимых деформаций (эластичность). Для решения этих задач исследователи пошли по пути изменения структуры битума за счет создания в нем дополнительной эластичной структурной сетки полимера способного распределяться в битуме на молекулярном уровне. [c.51]

    Последующее молекулярное описание одноосного деформирования неориентированного частично кристаллического полиэтилена характеризует пластическую деформацию волокон, образующих термопласты со сферолитной структурой. Оно может служить иллюстрацией большого разнообразия механизмов деформирования. При деформациях менее 1 % выявляют анизотропные упругие свойства кристаллов (орторомбического) полиэтилена [57] и аморфного материала [53]. При тех же самых условиях имеют место неупругие деформации СНг-групп и сегментов цепей, которые обусловливают низкотемпературные Р-, у- и б-релаксационные механизмы [10, 56]. При больших деформациях (1—5%) происходит дополнительное изменение сегментов цепи, их относительного положения и конформационные изменения (поворот связей). Подробное исследование поведения цепей в аморфных областях было выполнено Петракконе и др. [53]. В кристаллических областях под действием деформаций такого же порядка возникают дислокации и дислокационные сетки (наблюдаемые в ламеллярных кристаллах в виде муаровых узоров). В зависимости от условий внешнего нагружения и типа дислокаций их движение вызывает пластическую деформацию кристалла путем двойникования, смещения плоскостей или фазового перехода орторомбической ячейки в моноклинную. Обширный обзор деформирования полимерных монокристаллов был дан Зауэром и др. [57] и в книге Вундерлиха [3]. Детальный расчет вклада различных структурных элементов и дефектов в деформирование частично-кристаллических полимеров можно найти во многих статьях, из которых здесь приводятся только некоторые [47—62]. Хотя упомянутые выше эффекты обусловливают нелинейность зависимости напряжение—деформация, первоначально существовавшая надмолекулярная организация все еще сохраняется. Подобная деформация называется однородной. [c.41]


    При низкотемпературной карбонизации (550 - 650°С) происходит переход мезофазы в твердый полукокс. Этот процесс сопровождается вспучиванием под действием вьщеляющихся газов, что ведет к образованию мелко-пористой структуры кокса. При вспучивании происходит глубокая деформация кокса и уъеличение числа дефектных структур, что при последующей термообработке приводит к возникновению усадочных трещин. [c.89]

    Несмотря на то что величина молекулярной ориентации, определенная по двулучепреломлению, сильно зависит от температуры и деформации, другие физические свойства волокна практически не зависят от этих параметров. Клеерман объясняет это следующим образом. При низких температурах деформация волокна реализуется за счет подвижности структурных элементов с малыми временами релаксации. Перегруппировка структурных элементов с большими временами релаксации (перемещение целых молекулярных цепей) требует слишком большого времени. Поэтому закаленные образцы, полученные методом низкотемпературной вытяжки, будут содержать много ориентированных сегментов, присутствие которых проявляется в значительной оптической анизотропии, но эти сегменты при отжиге быстро разориентируются под влиянием броуновского движения. Именно это демонстрируют эксперименты по исследованию скорости усадки при температурах выше температуры стеклования. [c.70]

    При переходе из высокоэластического состояния в стеклообразное происходит замена одного молекулярного механизма трения другим. В стеклообразном состоянии сила трения образуется из вкладов взаимосвязанных адгезионной и объемно-механической-составляющих. Чем больше адгезионная составляющая, тем больше и объемно-механические потери, которые связаны с внутренним трением в самом полимере. Низкотемпературный максимум при температуре Гм2 существенно связан с механическими потерями в самом полимере, так как при многократных деформациях при этой же температуре наблюдается максимум потерь, связанный с замораживанием подвижности малых участков полимерных цепей. При исследовании фрикционных свойств эластомеров в атмосфере при повышенных температурах на кривой р= Т) (рис. 13.12) появляется еще высокотемпературный максимум, связанный с ин--тенсификацией процессов окисления поверхностных слоев. [c.376]

    Причиной появления низкотемпературной модификации интерметаллида ТЬСоа является спонтанная магпитострикция. Относительная деформация кристаллической решетки по направлению <111>, оцененная по рентгеновским данным, составляет величину 5-10 , что хорошо согласуется с данными магнитных измерений. [c.167]

    За последние примерно десять лет, благодаря применению методов оптической и электронной микроскопии высокого разрешения, были достигнуты определенные успехи в изучении механизма процессов кокеообразования при низкотемпературной карбонизации различ-. , ах пеков. Исследованиями Брукса и Тейлора [39-42], предложившими гипотезу процесса кокеообразования через мезофазные превращения коксуемого сырья, а также других авторов [43-54] было показано, что начальной стадией формирования микроструктуры коксов является образование частиц мезофазы - слоистых жидких кристаллов, состоящих из ароматических макромолекул и обладающих анизотропией свойств. Считается, что первые сферы мезофазы размерами 0,I мк появляются в зависимости ог типа коксуемого сырья при температурах 360-520°С. За счет слияния соприкасающихся сфер происходит укрупнение частиц. Скорость образования таких частиц определяется продолжительностью и температурой обработки, а также вязкостью изотропной массы. Процесс укрупнения сфер и образования мезофаз-ной матрицы сопровождается деформациями, приводящими к изменению формы частиц мезофазы. Деформированные частицы мезофазы в дальнейшем образуют жесткий коксовый каркас, состоящий из графитоподобных слоев. В зтой стадии пластичность материала и подвижность Шхромолекул резко снижаются, что в условиях продолжающихся химических превращений, сопровождающихся выходом летучих и усадками, приводит к образованию микротрещин и пор. Воздействием на процесс формирования мезофазы можно получить коксы волокнистой (игольчатой), тонкой-мозаичной (точечной), сферолитовой и грубой мозаичной текстур, существенно различающихся физико-химическими, т.е. эксплуатационными свойствами [55-59]. [c.9]

    Термомех. обработку стали применяют для повышения ее твердости и прочности при сохранении достаточно высокой пластичности и ударной вязкости. Различают высоко- и низкотемпературную обработки. При высокотемпературной обработке пластич. деформацию проводят в аустенитном состоянии с послед, закалкой при низкотемпературной-сталь нагревают до аустенитиого состояния, охлаждают до т-р, ниже т-р повыш. устойчивости переохлажденного аустенита, проводят пластич. деформацию и быстрое охлаждение. При термомех. обработке обычно происходит измельчение структуры сплава (зерна, мартенсита, карбидов). [c.134]

    Не рекомендуется осуществлять холодную пластическую деформацию (штамповка, вальцовка) сварных соединений из толстолистовой стали 0Х17Т. Если все же это необходимо, то для повышения вязкости металла проводят низкотемпературный подогрев до 150-250 °С, то есть выше порога хладноломкости.,  [c.18]

    При нагревании гомолога Н-С24Н50 наблюдаются те же этапы термических деформаций и фазовых превращений, что и у гомолога Н-С22Н46. Температуры фазовых переходов у этого относительно длинноцепочечного гомолога несколько выше триклинно-ромбическое превращение осуществляется при 42.5 °С, а ромбическо-гексагональное — при 43.8 °С. Вещество плавится при 49.2 °С. Температурный интервал существования низкотемпературной ром- [c.149]

    Интерпретация структурных деформаций. Ромбическая ро-тационно-кристаллическая фаза Ог ,, у четных членов гомологического ряда н-С Н2 +2 ранее не наблюдалась, в том числе и в терморентгеновских экспериментах [211, и др.]. Позднее (1994 г.) Е. Б. Сирота и Д. М. Зингер [373], изучая четные н-парафины с и=22 и 24 методом дифференциальной сканирующей калориметрии, обнаружили у них скачок теплоемкости вблизи температуры плавления. Авторы [373] связали этот скачок теплоемкости с фазовым переходом (Ог а,, Н , 2). Поскольку символом К, эти авторы обозначили низкотемпературную ромбическую ротационно-кристаллическую фазу (Ог , в наших обозначениях), то, надо полагать, они тем самым косвенно подтвердили факт существования триклинно-ромбического полиморфного превращения, несмотря на то, что сам переход Тс . ,- Ог ц) ими не был описан. Этот переход является самым низкотемпературным в цепочке полиморфных превращений четных н-парафинов. По-видимому, авторам работы [373] оставалась неизвестной в 1994 г наша работа [76], в которой такое превращение было описано еще в 1987 г [c.150]

    Вьщеление различных типов ротационно-кристаллического состояния вещества (низкотемпературного, высокотемпературного и промежуточного) оказалось возможным благодаря тому, что каждое из этих состояний проявилось у парафинов индивидуально в особенностях их термических деформаций, полиморфньгх превращений и изоморфных замещений. В свою очередь эти же особенности явились аргументами в пользу динамической модели строения ротационных кристаллов — в чистом виде или в ее различньгх комбинациях со статической моделью. [c.181]

    Принципиальная особенность поведения при нагревании смесей типа T ,+Or , заключается в том, что в некотором ограниченном температурном интервале они могут существовать в трехфазном состоянии (см., например, рис. 41). Однаш при последующем нагревании все смеси ташго типа гомогенизируются в фазе Or , , что свидетельствует о расширении пределов изоморфной смесимости н-парафинов после их перехода в низкотемпературное ротационно-кристалличесше состояние. После гомогенизации смеси в фазе Ог ,, парафиновые шмпозиции испытывают характерные для всех ромбических твердых растворов термические деформации и фазовые превращения. [c.204]

    Термические деформации и полиморфные превращения. Методом терморенггенографии изучен образец н-парафина из миеш-на (обр. 10). В интервале температур 30-43 °С наблюдался многоступенчатый распад поликомпонентного твердого раствора вследствие его поэтаггного полиморфного перехода из кристаллического состояния (ромбическая фаза в низкотемпературное ротационнокристаллическое состояние (ромбическая фаза Ог ,, ). На начальной [c.279]

    Термические деформации и полиморфные превращения. Поскольку мягкий парафин при комнатной температуре существует в высокотемпературном ротационно-кристаллическом состоянии (фаза Я ( 2), его исследование было начато при температуре 5 °С. При этой температуре мягкий парафин существует в кристаллическом состоянии. Оба нефтяных парафина испытывают фазовые превращения, характерные для бинарных твердых растворов (см., например, рис. 33) и для поликомпонентных твердых растворов, в состав которых входят сравнительно короткоцепочечные гомологи и распределение которых по номерам п близко к симметричному (см., например, рис. 67). Однаш превращения мягшго парафина оказываются существенно более низкотемпературными по сравнению с соответствующими превращениями твердого парафина. [c.299]

    Полиорганофосфазены обладают большим разнообразием специфических, нетривиальных свойств и могут представлять интерес с различных аспектов практического использования [1, 3, 8, 9, 12, 14, 18, 24, 29, 31, 33, 35, 36, 265-276]. Перспективным является их использование в качестве полимерных материалов для низких температур (морозостойкие эластомеры, смазки и др.). Вулканизаты поли-фторалкоксифосфазеновых эластомеров устойчивы к топливу и маслам, гидравлическим жидкостям, обладают высокой кислородо- и озоиостойкостью, работоспособны в широкой области от -65 до 175 °С. По свойствам при низких температурах и устойчивости к многократным деформациям они превосходят резины на основе фтор- и фторсиликоновых каучуков [266]. Их можно использовать для изготовления антивибрационных и уплотняющих прокладок, колец и манжет, топливных шлангов и других целей в аэрокосмических, нефтехимических и других отраслях промышленности [3, 4, 14, 31, 33, 148, 168, 265, 266, 268]. В условиях холодного климата перспективно применение полифторалкоксифосфазенов, как самостоятельное, так и в качестве низкотемпературного модификатора других материалов [249]. [c.356]

    Быстрые релаксационные процессы (Р и ) при комнатных температурах могут наблюдаться только при высоких частотах деформации, а при низких частотах (меньше 10 Гц) только при низких температурах. Поэтому эти переходы называют высокочастотными или низкотемпературными. Один из таких переходов — р-яврвжо5, обусловленный мелкомасиггабными движениями [c.229]

    Но сам факт огромных низкотемпературных деформаций, отличных по характеру от вынужденной эластичности и позволяющих называть полимеры этой группы температуростойкими (чтобы подчеркнуть относительную стабильность упругодеформационных свойств в очень широком интервале температур) довольно удивителен. [c.337]

    Исследование влияния наполнителей на множественные переходы в аморфных полимерах, находящихся в различных физических состояниях, и на величину и положение подобластей стеклообразного состояния показало, что увеличение концентрации наполнителя приводит сначала к резкому увеличению всех определенных из механических характеристик температур перехода, а затем они изменяются мало [184—187]. При этом была обнаружена большая чувствительность температур перехода наполненных полимеров к скорости деформации по сравнению с ненаполненными, объясняемая уменьшением подвижности цепей под влиянием поверхности В результате изменения скорости деформации и концентрации наполнителя один и тот же полимер при данной температуре может находиться в хрупком, хрупкоэластическом, вынужденно-эластическом или высокоэластическом состоянии. При наличии в полимере множественных переходов, как правило, высор-температурные переходы под влиянием наполнителя смещаются в сторону более высоких, а низкотемпературные—более низких температур. [c.101]

    Высокоэластическое состояние характерно только для полимеров. В высокоэластическом состоянии происходит интенсивное тепловое движение отдельных звеньев, атомных групп и сегментов, однако движение макромолекул как отдельных кинетических единиц певозмол<но. Полимеры в высокоэластическом состоянии обладают удивительными механическими свойствами. Они способны испытывать громадные обратимые деформации, достигающие иногда нескольких сот процентов. Сущность этого явления заключается в распрямлении свернутых гибких длинных цепей под влиянием приложенной нагрузки и в их возвращении в результате теплового движения к первоначальной форме после снятия нагрузки. Высокотемпературной границей высокоэластического состояния является температура текучести Гт (выше которой полимер находится в вязкотекучем состоянии), низкотемпературной границей — температура стеклования Т , (ниже которой полимер находится в стеклообразном состоянии). [c.74]

    Рассмотрим кратко особенности высокоэластического разрушения полимерных тел. Естественно, что оно связано с достаточно большими эластическими предразрывными деформациями элементов структуры. Наиболее ярко этот тип разрушения проявляется у эластомеров. Этот вид разрушения изучен достаточно хорошо (см., например, [6, с. 88]). При статическом нагружении эластомеров разрушение происходит во времени и характеризуется двумя стадиями медленной и быстрой. Поверхность разрыва, полученная на медленной стадии, в отличие от хрупкого разрыва имеет шероховатый вид при быстрой стадии образуется зеркальная поверхность. Чем меньше статическое напряжение и медленнее разрыв, тем больше шероховатая зона. Наоборот, при больших напряжениях и быстром разрушении вся поверхность разрыва может быть зеркальной. Быстрый разрыв эквивалентен низкотемпературному, медленный — высокотемпературному разрыву. В случае разрыва при многократном деформировании обычно наблюдается шероховатая зона разрыва. При замедленном процессе разрушения разрыв начинается с образования очагов разрушения, из которых растут надрывы, подобные трещинам в хрупком материале, и очаги разрушения появляются в наиболее ослабленных местах как внутри, так и по поверхности образца. Наиболее опасный очаг приводит к разрушению образца. У пространственно сшитых эластомеров (резин) надрыв, как правило, имеет форму окружности. У низкомодульных (с низкой степенью сшивания) резин отчетливо видны эластически растянутые тяжи в месте надрыва. Образование тяжей связывают с наличием пачечной надмолекулярной структуры и преодолением межмолекулярного взаимодействия и ориентацией растягиваемых [c.119]

    Фельдгандлер Э. Г., Савкина Л. Влияние деформации и низкотемпературного старения на свойства аустенитных и феррито-аустенитных сталей/ Повышение характеристик качественных сталей за счет оптимизации легирования и структуры Сб. науч. тр. М. Металлургия, 1984. С. 37—40. [c.135]

    Таким образом, на основании многочисленных экспериментальных работ по деформации полимерных кристаллов можно заключить, что за начальные этапы деформации (10—15%) ответственны такие моды деформации, как двойникование и фазовые переходы мартенситного типа. Их развитие зависит от соотношения между направлением приложенной силы и расположением плоскостей молекулярного складывания. Большие деформации наступают за счет постепенного наклона и скольжения цепей. Системы скольжения могут быть различны, но скольжение может происходить только по плоскостям, параллельным плоскостям молекулярных складок. Деформация сопровождается образованием трещин,-пересекаемых микрофибриллами. При низкотемпературной деформации образование микрофибрилл происходит за счет выскальзывания из монокристаллических ламелей отдельных складчатых блоков, соединенных небольшим числом распрямленных молекулярных цепей (см. рис. III. 5, а). При более высоких температурах переход в микрофибриллы происходит, по-видимому, по механизму, предложенному Ко-баяси путем разгибания складчатых молекул и образования из них микрофибрнлл (Kobayashi, см. [4 гл. 7]). [c.177]

    Деформации сферолитов в условиях высокотемпературной (при температурах близких к Тпл) и низкотемпературной вытяжки (Гст < Гв Гком) протекают внешне различно. При низких Гв деформация неоднородна и приводит к образованию шейки, при высоких Гв переход к микрофибриллярной структуре становится более однородным и постепенным. Вклад различных мод деформации в условиях низко- и высокотемпературной вытяжки неодинаков. Но механизм превращения сферолитной структуры в микрофибриллярную остается одним и тем же. [c.208]

    Каучуки — высокомолекулярные вещества, обладающие высокими эксплуатационными качествами, в частности хорошей эластичностью, водонепроницаемостью, тепло- и морозоустойчивостью, высокой стойкостью к старению. Уже свыще 100 лет каучук используют в битумных композициях для придания им эластичности, а следовательно для повыщения эксплуатационной надежности дорожных и кровельных материалов, герметиков и лаковых покрытий. Модификация битумных материалов каучуками заключается в следующем повыщается температура размягчения, уменьшается з ависи-мость пенетрации от температуры, снижается температура хрупкости, возникает способность к эластическим обр атимым деформациям, повышается жесткость и прочность битумной смеси, значительно улучшаются низкотемпературные характеристики. Для смешивания с битумом применяются чистые (неву 1канизованные) каучуки, так как они наиболее эффективно модифицируют физические свойства битумных материалов. Разнообразие видов каучуков, применяющихся для модификации битума и нашедших практическое применение, невелико. Подробно исследовано использование натурального каучука в качестве добавки к битумам в основном дорожных марок. Из синтетических каучуков наиболее часто применяют дивинилстирольный, бутадиенстирольный, поли-хлоропреновый (неопреновый) [170, 171, 172, 173, 229] и некоторые блок-сополимеы, в частности полистирол-полиизопрен— полистирол и полистирол—полибутадиен—полистирол [174, 175]. Каучукоподобные олефины полиизобутилен, сополимер изобутилена с изопреном (бутилкаучук) и сополимер этилена с пропиленом (СКЭП) также используются для совмещения с битумом [169, 176, 223]. Регенерированный каучук и отходы шин в виде крошки при совмещении с битумом дают грубые смеси, так как мало набухают в компонентах битума. Однако смеси обладают повышенными эластическими и упругими свойствами по сравнению с битумами, и поэтому указанный дешевый материал широко применяется для изготовления битУМНо-полимерных мастик [69,176]. [c.59]


Смотреть страницы где упоминается термин Деформация низкотемпературная: [c.72]    [c.214]    [c.147]    [c.191]    [c.235]    [c.264]    [c.66]    [c.202]    [c.83]    [c.319]    [c.513]    [c.647]    [c.805]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.517 ]




ПОИСК







© 2025 chem21.info Реклама на сайте