Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды азотсодержащие

    Каменноугольная смола представляет собой продукт коксования каменного угля. Это вязкая жидкость черного цвета с характерным запахом крезолов. Каменноугольная смола в своем составе содержит ароматические углеводороды, азотсодержащие соединения и крезолы применяется в количестве до 3%. Вследствие содержания крезолов каменноугольная смола повышает сопротивление резины старению. Смола является источником сырья для производства разнообразных химических продуктов. В качестве мягчителя каменноугольная смола используется сравнительно редко. [c.183]


    Антиоксиданты ингибируют только радикально-цепные реакции окисление углеводородов и отчасти полимеризацию непредельных соединений. Однако в топливах, содержащих активные соединения разной природы (диеновые и полицик-лические ароматические углеводороды, азотсодержащие гетероциклы и т. д.), возможны и другие реакции уплотнения, приводящие к образованию осадка и смол. Это особенно характерно для среднедистиллятных фракций, полученных в процессах деструктивной переработки нефти. Введение антиоксидантов в такие топлива не дает ожидаемого эффекта. Поэтому антиоксиданты используются в основном для стабилизации бензинов и реактивных топлив. [c.92]

    Молекулы разбиты по следующим классам углеводороды, галоидозамещенные углеводороды, азотсодержащие соединения, кислородсодержащие соединения и т д. Внутри каждого класса молекулы расположены в [c.421]

    Это подтверждается имеющимися патентными данными о возможности стабилизации дигидропероксидов путем введения в исходный углеводород азотсодержащих соединений основного характера (Японск, пат. 47—90,569). [c.95]

    При проектировании и реализации мониторинга природных вод и почв в первую очередь возникает необходимость геохимического картирования загрязненных различными химическими и органическими веществами территорий нефтегазовых месторождений с выделением и ранжированием источников загрязнения по их роли в формировании загрязняющих техногенных потоков, а также с определением региональных фоновых значений загрязняющих веществ (в основном тяжелых металлов, углеводородов, азотсодержащей органики и др.). [c.113]

    Восстановлением карбонильных соединений но методу Вольфа-Кижнера, видоизмененному Шисслером, получают углеводороды с высокими выходами и высокой степенью чистоты. Никаких трудно отделимых побочных продуктов не образуется. Азотсодержащие вещества легко удаляются путем промывания кислотой, а непрореагировавший кетон (если таковой имеется) также может быть удален соответствующими методами, о которых говорилось выше (см. Химическая очистка ). [c.509]

    Процессы стереоспецифической полимеризации в растворе требуют применения исходных веществ высокой степени чистоты. Содержание основного вещества в бутадиене составляет не ниже 99 /о (масс.). Содержание таких примесей, как простые эфиры, ацетиленовые углеводороды, циклопентадиен, карбонильные, серу-и азотсодержащие соединения строго регламентируется. Непосредственно перед использованием мономер освобождают от ингибитора и подвергают азеотропной осушке. [c.184]


Таблица П.16. Термодинамические функции галогенсодержащих, азотсодержащих, серусодержащих производных углеводородов [в состоянии идеального газа, единицы измерения С°р и 8° — Дж1(моль К), АН°об — кДж/моль, К°р — безразмерная величина] Таблица П.16. <a href="/info/12432">Термодинамические функции</a> галогенсодержащих, азотсодержащих, серусодержащих <a href="/info/186618">производных углеводородов</a> [в <a href="/info/6438">состоянии идеального газа</a>, <a href="/info/16198">единицы измерения</a> С°р и 8° — Дж1(моль К), АН°об — кДж/моль, К°р — безразмерная величина]
    Влияние азотсодержащих соединений. С понижением давления возрастает чувствительность алюмоплатинового катализатора к отравлению не только серо-, но и азотсодержащим соединениям. При каталитическом риформинге азотсодержащие соединения расщепляются с образованием аммиака и соответствующих углеводородов. Аммиак подавляет активность катализатора /26/. [c.22]

    Рассмотрение взаимодействия компонентов тяжелого нефтяного сырья с водородом показывает, что все виды гетеросоединений и вое группы углеводородов могут подвергаться глубоким химическим превращениям в процессе каталитической переработки под давлением водорода. При переработке различных видов сырья глубина превращения каждого из компонентов в значительной мере зависит от состава сырья, т. е. от присутствия в зоне реакции других компонентов. Взаимное влияние присутствующих в сырье соединений связано с их различной способностью адсорбироваться на поверхности катализатора. Некоторые соединения, например серо- и азотсодержащие, ароматические углеводороды (особенно конденсированные), обладают повышенной адсорбционной способностью. При этом их устойчивость в условиях реакции и скорость взаимодействия с водородом весьма различны. В результате наиболее устойчивые и медленно реагирующие соединения с повышенной адсорбционной способностью могут блокировать поверхность катализатора и препятствовать превращениям других компонентов сырья. Глубина превращения компонентов сырья и направление основных реакций определяются условиями процесса и видом катализатора. [c.303]

    Эти же методы исследования были использованы для анализа гидрогенизатов смол. Так, при помощи хроматографического метода определен групповой состав жидкофазного гидрогенизата низкотемпературной смолы из черемховского угля состав асфальтенов 1, выделенных из угольного гидрогенизата. Из жидкофазного гидрогенизата бурого угля удалось выделить 8 парафиновых углеводородов, 6 полициклических углеводородов, 20 азотсодержащих соединений, 9 фенолов. Подробно исследован состав низкотемпературного гидрогенизата (процесс ТТН) буроугольной смолы. [c.164]

    В 40—50-х годах предпринимаются исследования термодинамических свойств большого числа углеводородов в широком интервале температур. Результаты этой работы послужили основой для постановки ряда нефтехимических производств, синтеза моторного горючего, получения некоторых видов синтетического каучука и толуола. Позднее подобные исследования проводятся для некоторых групп сераорганических соединений, галогенпроизводных углеводородов, некоторых кислородных и азотсодержащих органических соединений. [c.20]

    О роли такого механизма реакции можно также судить по специфическому действию азотсодержащих соединений на каталитические свойства алюмоплатинового катализатора [17]. Органические соединения азота в условиях риформинга реагируют с образованием аммиака. Адсорбируясь на кислотных центрах и блокируя их, аммиак подавляет все реакция, протекающие с участием кислотных центров катализатора, в том числе и реакции дегидроциклизации парафинов. Так, добавление к -нонану диэтиламина (0,2% в пересчете на азот) приводит к снижению степени превращения нонана в ароматические углеводороды с 63 до 24%. При этом дегидрирующая активность катализатора полностью сохраняется, что подтверждено испытанием катализатора в реакции дегидрирования метилциклогексана. Следовательно, при отравлении катализатора аммиаком дезактивируется только его кислотная функция, что и обусловливает резкое снижение активности катализатора в реакции дегидроциклизации парафинов. [c.38]

    В первой ступени при относительно низкой температуре, низкой объемной скорости и высоком парциальном давлении водорода проводится гидрирование основной массы непредельных углеводородов, в том числе исчерпывающее гидрирование углеводородов с сопряженной двойной связью, а также гидрогенолиз большей части серу- и азотсодержащих соединений. (табл. 3.6). [c.117]


    Функциональными группами в производных углеводородов называются группы атомов типа [С]—А—Н, где А — атом или группа атомов кислорода, серы, азота (но не углерода) к функциональным группам относят и карбонильную группу [С] = 0. Символ углерода в квадратных скобках указывает, что углерод, несущий функцию, считается частью углеродного скелета Различают кислород-(или серу-)содержащие и азотсодержащие функциональные группы. В общем названии соединения по Женевской номенклатуре обозначения кис-лород-(нли серу-)содержащих функциональных групп ставятся в конце слова (после корня или обозначения кратной связи), а азотсодержащих — в начале слова (перед корнем или перед названиями радикалов). [c.271]

    Наличие нефункциональных заместителей (стр. 271), азотсодержащих функциональных групп и фенольных гидроксилов в производных бензола и его гомологов обозначается соответствующими приставками, а в основу берутся тривиальные названия углеводородов. Наличие сульфогруппы и карбоксильных групп указывается как обычно окончаниями -сульфокислота и -карбоновая кислота. Когда общее число заместителей в бензольном ядре не превыщает двух — применяются символы орто-, мета- и пара--, в остальных случаях положение заместителей обозначается цифрами. При этом нет общепринятых правил нумерации атомов бензольного ядра. По Женевской номенклатуре номер 1 присваивают тому атому ядра, несущему замещающую группу, с которым непосредственно связан атом-заместитель с наименьшим атомным весом (например, [c.388]

    Гидрокрекинг можно рассматривать как сочетание процессов каталитического крекинга исходных веществ и гидрирования ненасыщенных соединений. При гидрокрекинге химическим превращениям подвергаются как углеводороды, так и неуглеводородные соединения, причем в последнем случае гидрогенолиз идет быстрее, что позволяет удалять из сырья гетероатомы в виде Н З, N1 9 и НаО. Легче всего происходит гидрогенолиз серусодержащих соединений, наиболее устойчивы азотсодержащие соединения. Образовавшиеся в результате крекинга осколки исходных соединений, а также содержащиеся в сырье ненасыщенные углеводороды присоединяют водород, образуя соответствующие нафтеновые и парафиновые углеводороды. [c.135]

    Модель реакции алкилирования, разработанная в настоящей статье (рис. 18), предполагает протекание процесса как в кислотной фазе, так и на поверхности раздела кислота/углеводород. Образование триметилпентанов и других октанов протекает преимущественно на поверхности раздела фаз. Добавка катионоактивных азотсодержащих веществ снижает стабильность промежуточно образующихся карбоний-ионов, ускоряя отрыв гидрид-ио- нов от молекулы изобутана или других потенциальных доноров гидрид-ионов. Ускорение гидридного переноса способствует более быстрому насыщению карбоний-ионов на поверхности раздела фаз, ведущему к образованию целевого алкилата, и соответственно замедляет протекание полимеризации и других побочных реакций. Вполне вероятно также, что поверхностно-активные вещества физически отделяют карбоний-ионы один от другого на поверхностной пленке, препятствуя полимеризации карбоний-иона и олефина. В такой пленке концентрация карбоний-ионов должна быть ниже, чем без добавки, и эффект действия масс тоже будет направ- [c.31]

    Эти сравнительно сильные химические силы вызывают появление изотерм Я-типа и обычно ведут к плохому разделению в элютивной хроматографии. Хемосорбция часто используется для селективного удерживания соединений некоторых типов. Примерами могут служить адсорбция аминов катионообменными смолами, адсорбция олефинов двуокисью кремния, пропитанной нитратом серебра. Изотермы Я-типа часто наблюдаются в высокоэффективной элютивной хроматографии. Они могут быть вызваны хемосорбцией некоторых растворенных веществ на тех активных центрах поверхности адсорбента, которые не были полностью дезактивированы. Например, поверхность двуокиси кремния может содержать некоторые остаточные кислотные центры, которые адсорбируют основания. Аналогично окись алюминия содержит центры основного характера, которые сильно хемосорбируют кислоты. Флорисип (сипикат магния) также содержит сильные кислотные центры и, как было отмечено, хемосорбирует ряд соединений, включая ароматические углеводороды, азотсодержащие соединения, обладающие основным характером, и эфиры, в то же время окись магния хемосорбирует полиядерные ароматические углеводороды. Следствием хемосорбции в колонках является появление полос, имеющих сильно растянутые "хвосты", что ведет к неполному разрешению и извлечению образца. В ТСХ в этих случаях часть образца, очевидно, должна оставаться сзади в виде пятна в точке введения пробы. В конце этой главы приведен список дополнительной литературы, где подробно рассматривается хемосорбция. [c.55]

    Атомы расположены в табл. 7 в порядке возрастания атомного номера. Потенциалы ионизации, приведенные в этой таблице, определены спектроскопически и опубликованы в [1] и [143]. Молекулы (табл. 8—12) разбиты по следующим классам углеводороды, галоидозамещенные углеводороды, азотсодержащие соединения, кислородсодержащие соединения и т. д. Внутри каждого класса молекулы расположены в порядке нарастания числа атомов Н и С (например Сг, СгН, С2Н2,...), заместители-галогены вводятся в порядке нарастания атомного номера (К, С1, Вг, J). [c.163]

    При перегонке угля при более низкой температуре (около 500°) получается большое количество смолы (до 12%), однако ее состав различен. Эта смола, называемая низкотемпературной , или первичной , смолой, не содержит бензола, толуола, нафталина и антрацена, а содержит вместо них алканы и циклоалканы (гексагидромезитилен, гексагидрофлуорен и другие) и большое количество фенолов (крезолов, ксиленолов 20—50%). Первичная смола является сырьем, из которого образуется высокотемпературная смола. При контакте с накаленными массами угля и стенками реторт пары первичной смолы подвергаются пиролизу и дегидрированию и превраш,аются в ароматические углеводороды, более устойчивые при высоких температурах. При таком пиролизе значительная часть первичной смолы обугливается выделяющийся водород находится в светильном или коксовом газе. Бензол и толуол высокотемпературных смол образуются большей частью из фенолов первичных смол, подвергающихся гидрированию в процессе пиролиза СеНвОН-ЬНа СвНв-ЬНаО. Непредельные соединения (циклопентадиен) и высшие ароматические углеводороды (антрацен, пирен и т.д.) являются характерными продуктами пиролиза (см. Термическое разложение углеводородов ). Азотсодержащие или сернистые гетероциклические соединения образуются в процессе пиролиза в результате реакций промежуточных непредельных углеводородов с аммиаком или сероводородом. [c.324]

    При гидроочистке из сырья удаляются прежде всего серу-, азот- и. кислородсодержащие соединения, происходят превращения (в основном гидрирование) непредельных углеводородов и смолисто-асфальтеновых веществ. В результате гидроочистки серусодержащих соединений образуются сероводород и углеводороды. Азотсодержащие соединения при гидрировании выделяют аммиак. При пидроочисвке кислородсодержащих соединений образуется вода. Кроме того, разлагаются металлорга-нические соединения с выделением металлов, оседающих на поверхности катализаторов и снижающих их активность. В процессе гидрокрекинга полнота превращения металлорганических соединений достигает 85—90%, что делает необходимым при промышленной переработке остаточного сырья применять защитные реакторы для его предварительной гидроочистки, загруженные более дешевым и менее активным катализатором. [c.157]

    Среди азотсодержащих углеводородов циклические соедине — ния подвергаются гидрогенолизу значительно труднее, чем содер — жасще азот в аминогруппах. [c.207]

    Нефть [1 нефтепродукты относятся к числу наиболее распространенных и опасных загрязняющих веществ природных вод. Помимо углеводородов в них находятся кислород-, серо- и азотсодержащие соединения. Малосернистые нефти содержат до 0,5% серы, В111с0к0ссрннстые — свыше 2%- Содержание азота и кис,лорола колеблется от десятых долей до 1,2—1,8%. В нефтях обнаружено свыше 20 различных элементов (V, N1, Са, Mg, Ре, Л1, 51, Ма и др.). [c.74]

    В условиях каталитического гидрооблагораживання удаление кислорода происходит из кислородсодержащих соединеш1Й за счет их восстановления до соответствующих углеводородов. Механизм их гидрирования такой же, как и для азотсодержащих соединений [37]. Например, если предположить, что кислород удаляется из фенолов или бензофурана, то вначале потребуется насыщение аренового кольца и расход водорода составит 4-6 моль на моль образующейся воды. [c.56]

    Для предотвращения образования перекисных соединений и их разрушения при хранении диеновых углеводородов применяют различные соединения. Для стабилизации бутадиена при хранении в качестве ингибитора используют алифатические меркаптаны, содержащие от 6 до 10 атомов углерода. Представителем этих соединений является н-гептилмеркаптан. Для предотвращения образования полимера при хранении бутадиен обрабатывают азотсодержащими соединениями. Из ароматических аминов применяют анилин и аминофенолы. [c.297]

    Значительное место отведено расчету равновесий реакций синтеза важнейших мономеров и полупродуктов, являюш,ихся исходным сырьем для производства различных высокомолекулярных продуктов и пластиков в их числе ацетилен, этилен, пропилен, дивинил, изопрен ароматические углеводороды — бензол, толуол, ксилолы и другие алкилбен-золы — стирол, винилнафталин альдегиды — кетоны, кислоты, спирты, некоторые азотсодержащие соединения и др. [c.5]

    Термодинамические характеристики около двадцати серусодержащих углеводородов к настоящему времени даны в различных публикациях Американского нефтяного института но проекту № 48 А. В программу дальнейшей работы института включен сбор и постеиенная публикация термодинамических характеристик кислород- и азотсодержащих углеводородов. [c.372]

    Изучение состава азотсодержащих веществ различных нефтей показало, что азот находится в них в виде соединений, обладающих основным, нейтральным или кислым характером. К числу азотистых соединений основного характера относятся пиперидин, пиридин и хинолин к нейтральным — бензпиррол, или индол, и карбазол 1 кислотным — пиррол и др. Реагируя со щелочными металлами, азотистые соединения образуют соответствующие соли. Особое место среди азотистых соединений нефтей занимают порфирины. Это комплексы из соединений азота с высокомолекулярными углеводородами, включающие металлы — ванадий и никель. Доказано наличие в нефтях кислых и основных порфиринов. В числе прочих азотистых соединений нефтей следует назвать аминокислоты и аммонийные соли. Они интересны как добавки, способные повышать адгезионные свойства битумов. [c.30]

    Проведение гидроочистки дистиллята 370—500°С в сравнительно мягких условиях, не вызвавшее деструкции углеводородов, позволило в результате гидрирования неуглеводородных компонентов сырья снизить глубину последующей фенольной очистки и повысить отбор рафината на установке НК НПК в среднем на 5% 67]. Кроме того, при фенольной очистке гидрооблагороженного сырья в результате меньшего содержания в нем смолистых веществ, серо-, кислород- и азотсодержащих соединений, подлежащих удалению, повышается четкость экстракции и снижается отношение фенола к сырью с 1,7 1 до 1,5 1, что увеличивает производительность установки на 10% (по сырью). Данные об этом процессе приведены ниже  [c.108]

    Как установлено Л. Г. Гурвичем [1],, к0М П0ненты масляных фракций по адсорбируемости их природными алюмосиликатными адсорбентами располагаются в следующий ряд смолистые вещества >кислородсодержащие соединения> азотсодержащие соеди-нения>олефиновые углеводороды> ароматические углево-дороды>нафтеновые углеводороды> парафиновые углеводороды. [c.265]

    Схема реакций гидрирования азотсодержащих соединений показывает, что оно идет с разложением молекулы гетеросоединения в результате разрыва связей углерод — азот и сопровождается образованием молекулы аммиака и соответствующего углеводорода. В этом смысле реакции азотсодержащих соединений сходны с реакциями гидрирования соединений серы. Существенное различие заключается в том, что соединения азота заметно более устойчивы в условиях гидрирования, разложение их наступает при более высоких температурах и давлениях. Так, многие серосодержащие соединения довольно легко разлагаются уже при температуре 280 °С и давлениях до 5 МПа разложение пиридина и хинолина наблюдается при температурах выше 350°С и давлениях 10—20 МПа. Нейтральные азотистые соединения более устойчивы, чем основные. Пиррол и его производные гидрируются при высоком давлении и температуре 400 °С, еще более устойчивы производные карбазола. С увеличением молекулярной массы устойчивость соединений азота надает, так что разложение высокомолекулярных соединений азота наблюдается уже при простом нагревании. Тем не менее для осуществления деазотирования в целом требуются более жесткие условия гидрогенизациоиного процесса. При проведении процесса в конкретных условиях глубина очистки от азотсодержащих соединений, как правило, меньше глубины обессеривания. [c.295]

    Разработанные и внедренные в ряде стран процессы гидрирования масляных дистиллятов и деасфальтизатов дают возможность в одном каталитическом процессе достичь результатов, получаемых сочетанием глубокой селективной очистки и гидроочистки. Процесс обычно осуществляют под давлением 15— 30 МПа, при температуре 340—420°С, скорости подачи сырья 0,5—1,5 ч и объемном отнощении водородсодержащего газа к сырью 500— 1500. В качестве катализаторов можно применять катализаторы гидроочистки или более активные — сульфидновольфрамовый, ни-кельвольфрамовый на окисноалюминиевом носителе (алюмони-кельвольфрамовый) и др. Для повышения активности применяют промотирующие добавки, придающие катализатору кислотные свойства, — двуокись кремния, галоиды. Введение такой добавки способствует более интенсивному гидрированию азотсодержащих соединений и конденсированных ароматических углеводородов. Благодаря применению высокого давления и активных катализаторов реакции гидрирования протекают весьма глубоко — практически все компоненты, удаляемые при селективной очистке в виде экстракта, превращаются в целевые продукты. Гидрированием под высоким давлением в промышленном масштабе производят базовые высококачественные масла различного назначения индустриальные, турбинные, моторные, гидравлические, веретенные. В зависимости от вида сырья выход масел с одинаковым индексом вязкости при гидрировании равен или несколько выше, чем при селективной очистке. Вырабатываемые масла по эксплуатационным свойствам превосходят масла селективной очистки, особенно по стабильности и, следовательно, по сроку службы. [c.308]

    Гидроизомеризация олефинов, т. е. прямое превращение их в изопарафины протекает только на сульфидированном катализаторе. В отсутствие серы идет только миграция двойной связи и диспропорционирование. Если в качестве носителя использовать 810а гидроизомеризация не идет Главные продукты — углеводороды Сз- -С4. Изучено влияние азотсодержащих соединений на скорость гидрокрекинга Присутствие серы понижает кажущуюся энергию активации с 44 до 36 ккал/моль Гексадекан быстрее всего расщепляется до Се-Только после 100%-ного превращения в заметной степени протекают вторичные реакции, приводящие к углеводородам С4—Си (преобладают С7 — Се). Циклизация незначительна (12—16 моль на 100 моль превращенного сырья). и-Гептан дает в основном продукты Сз —С4. У докозана боле заметны вторичные реакции. Гексадецен превращается аналогично гексадекану. Непревращенное сырье изомеризовано Расщепление происходит в основном по центральным связям [c.309]

    Очень важна для эксплуатации топлив возможность снижать в них осадкообразование. Нерастворимые осадки, образующиеся под влиянием высокой температуры, действия металлов и кислорода воздуха, являются продуктами гл-убоких превращений наименее стабильных углеводородов топлива, а также кислород-, серу-и азотсодержащих соединений в окислительной среде. Значительную роль при осадкообразовании играет изменение коллоидного состояния продуктов окисления топлив под влиянием температуры. Нерастворимые осадки могут образовываться в результате коагуляции коллоидных частиц смол, асфальтенов и других продуктов окисления, происходящей при определенных температурах, характерных для каждого топлива. При дальнейшем повышении температуры эти частицы могут вновь диспергироваться или растворяться в топливе. Поэтому, вероятно, эффективными диспергирующими присадками, используемыми для улучшения условий фильтрования топлив при высоких температурах, могут служить некоторые типичные стабилизаторы коллоидных систем — пептизаторы. [c.253]

    Гидрогенолиз гетероорганических соединений, к числу которых относятся серусодержащие (тиофены, дибензотиофены, нафтобензотиофены, алифатические и циклические сульфиды, дисульфиды, меркаптаны) кислородсодержащие (фенолы, алифатические спирты, нафтеновые кислоты, гидропероксиды) азотсодержащие (пиридины, хинолины, пирролы, индолы, карбазолы) и металлорганические соединения. Серу-, кислород- и азотсодержащие соединения гидрируются с образованием углеводорода [c.233]

    Прямогонное дизельное топливо, полученное в низкотемпературном процессе Фишера — Тропша в реакторах с неподвижным слоем или в трехфазных реакторах, имеет цетановое число около 75, а дизельное топливо, полученное путем селективного гидрокрекинга парафинов, — около 70. В таком дизельном топливе отсутствуют ароматические углеводороды, нафтены, сера и соединения азота. В связи с этим оно перспективно, так как требования к уровню токсичности выхлопных газов постоянно ужесточаются. Достоинством этого дизельного топлива с высоким цетановым числом является возможность смешивать с ним топливо более низкого качества. Например, дизельное топливо, полученное олигомеризацией олефинов Сз—Се па таких кислотных катализаторах, как кизельгур или аморфный алюмосиликат, пропитанный фосфорной кислотой, содержит много соединений с разветвленными структурами. Оно имеет цетановое число всего около 30. Для его улучшения к нему добавляют высококачественное дизельное топливо. В таких смесях по-прежнему отсутствуют ароматические углеводороды, серу- и азотсодержащие соединения. [c.197]

    Органические азотсодержащие соединения Органические кислородсодержащие соединения Органические серусодер-жащие соединения Г алогенированные предельные углеводороды Галогенированные оле-фины [c.117]

    Для азотсодержащих оснований применяется окончание -ин [т в отличие от -упе из правила 9]. Ныне принятая номенклатура моноаминов сохраняется. Для полипминов наименование углеводорода сопровождается префиксами ди-, триамино- и т. д. Для алифатических соединений, содержащих пятивалентный азот, окончание -ин меняется на -оний. Для циклических соединений, содержащих пятивалентный азот в циклической структуре, окончание -чн меняется на -иний, окончание -ол — на -алий. [c.296]

    Прошлые теоретические и экспериментальные работы [7—12] и последние исследования [13—17] показали, что процесс гидрокрекинга, или, как раньше его называли, крегинг в присутствии водорода (деструктивная гидрогенизация), представляет собой совокупность ряда параллельных и последовательных реакций. К ним относятся расщепление парафиновых, нафтеновых и оле-финовых углеводородов, отрыв боковых цепей ароматических и нафтеновых углеводородов, деструктивное гидрирование, или гидродеалкилирование алкиларома-тических углеводородов, гидрогенолиз сероорганических и азотсодержащих соединений, гидрирование продуктов расщепления, изомеризация, уплотнение полупродуктов и коксообразование. Гидрокрекинг, может протекать под давлением водорода от 30 до 700 ат и выше, при этом реакции уплотнения молекул и дегидрирования заметно подавляются. При высоких давлениях (200 ат и более) они могут предотвращаться практически полностью. [c.10]


Смотреть страницы где упоминается термин Углеводороды азотсодержащие: [c.129]    [c.324]    [c.224]    [c.203]    [c.27]    [c.11]    [c.9]    [c.134]   
Курс общей химии (1964) -- [ c.307 , c.309 ]

Молекулярный масс спектральный анализ органических соединений (1983) -- [ c.0 ]

Химия Справочник (2000) -- [ c.365 ]




ПОИСК







© 2024 chem21.info Реклама на сайте