Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции переноса электронов, скорость

    Электролитический процесс можно рассматривать как гетерогенную реакцию переноса электрона. Скорость реакции в такой гетерогенной системе может определяться скоростью любой из следующих стадий  [c.401]

    Особенностью большинства реакций органических соединений в отличие от неорганических является их необратимость и низкие скорости взаимодействия. Вследствие этого в органической химии ведущее место занимает химическая кинетика, теория реакционной способности и механизмов реакций, Тем не менее существуют типы химических реакций с участием органических соединений, которые являются обратимыми. Химические реакции целесообразно классифицировать на 1) реакции переноса единичных электронов с изменением окислительных состояний атомов (окислительновосстановительные реакции) 2) реакции переноса электронных пар с образованием комплексных соединений 3) реакции переноса протонов с изменением кислотных и основных свойств частиц (реакции кислотно-основного взаимодействия) 4) реакции переноса атомно-молекулярных частиц без изменения числа связей (реакции атомно-молекулярного обмена) 5) реакции переноса атомно-молекулярных частиц с изменением числа связей (реакции диссоциации, ассоциации и агрегации). Сложные химические реакции могут включать сразу несколько типов простых реакций. [c.133]


    Обрыв цепей происходит вследствие образования по реакции (7) стабильного свободного радикала ингибитора In, сравнительно мало активного и не способного к продолжению цепи окисления, но в то же время легко взаимодействующего по реакции (8) с активными радикалами R или ROO и обрывающего цепи окисления. Причем константа скорости реакции (8) на несколько порядков выше, чем для реакции (7) [ 7=10 - -- 105 л/(моль-с), Й8 107+10 л/(моль-с)]. Очевидно, что радикалы In являются более активными ингибиторами окисления по сравнению с исходной молекулой ингибитора. Высокая эффективность ингибирующего действия свободных радикалов при окислении топлив и масел обусловлена также участием радикалов In в реакциях переноса электрона и в реакциях тушения возбужденных состояний углеводородов. [c.40]

    При увеличении концентрации нафталина компоненты СТС уширяются. Так как время жизни ион-радикала по отношению к реакции переноса электрона связано с шириной линии, то по зависимости последней от концентрации нафталина может быть рассчитана константа скорости. [c.250]

    Роль этого фактора можно наглядно продемонстрировать при сравнении простейших реакций переноса электрона между частицами А и В в газовой фазе и в полярной жидкости. Пусть энергетические уровни электрона в ионах А и В в газовой фазе равны соответственно бд и ев. При переходе электрона от одного иона к другому в соответствии с законом сохранения энергии изменение энергии электрона ед — ев должно компенсироваться изменением скоростей сталкивающихся частиц А и В. Так как время перехода электрона (Ю- —10-1 с) существенно меньше времени, в течение которого ядра могут изменить свое положение (>10 1 с), то в газовой фазе переход электронов может происходить лишь между частицами с близкими энергиями электронных уровней. Этот вывод известен под названием принципа Франка — Кондона. [c.86]

    Ионные реакции. Перенос электрона между комплексами, в которых лиганды прочно связаны с центральным ионом, чаще всего происходит по внешнесферному механизму. Скорость реакции в этих случаях много больше скорости изменения лигандного окружения. Константа скорости такого переноса электрона изменяется в широких пределах. Например  [c.108]

    При увеличении концентрации нафталина комиоиенты СТС уширяются. Так как ширина линии определяется временем жизни ион-радикала но отношению к реакции переноса электрона, из величины уширения может быть рассчитана константа скорости реакции переноса электрона. [c.46]


    При длительности вспышки -1 мкс можно исследовать кинетику расходования радикалов с /1/2с . Это позволяет изучать кинетику бимолекулярной реакции с Л К]о 10 с или А 10 ек при длине реактора 10 см к[К ]о 0,1. Обычно ея 102+10 лДмоль с) и для измерения доступны константы вплоть до 10 1 лДмоль с). Метод широко используют для измерения констант скорости рекомбинации атомов и радикалов в растворе, реакций молекул в возбужденном триплетном состоянии, реакций переноса электрона между радикалами, быстрых реакций радикалов с молекулами (см. гл. 8). [c.203]

    Обработка данных производится с помощью компьютера. Метод широко используется для изучения кинетики кислотноосновного равновесия, межмолекулярного переноса, образования комплексов металлов, реакций переноса электрона, ферментативного катализа. Метод позволяет измерять константы скорости вплоть до 10 лДмоль с). [c.323]

    Соединения, содержащие тяжелые атомы, тушат триплетные состояния, но с существенно меньшей эффективностью, чем синглетные. Различают два эффекта тяжелых атомов внутренний эффект тяжелого атома (тяжелый атом, например атом галогена, находится в возбужденной молекуле) и внешний эффект тяжелого атома (тяжелый атом находится в соединении, добавленном в растворитель). Внутренний эффект тяжелого атома проявляется, например, в дезактивации триплетных молекул антрацена и его дихлор- и дибромпроизводных. При переходе от антрацена к 9,10-ди-хлорантрацену и 9,10-дибромантрацену увеличивается константа скорости дезактивации триплетных состояний от 1,1-10 до 2,3-с-. Внешний эффект тушения триплетных состояний существенно проявляется только при больших концентрациях тушителей и сильно зависит от донорно-акцепторных свойств триплетной молекулы и тушителя. Тушение тяжелыми атомами резко возрастает при образовании комплексов донорно-акцепторного типа между триплетной молекулой и молекулой, содержащей тяжелый атом. Возбужденные донорно-акцепторные комплексы могут распадаться па ион-радикалы в полярных средах. Так, при импульсном фотолизе водного раствора сульфоантрахиионов в присутствии KI наблюдается образование антрасемихинона с максимумом поглощения 520 нм, образующегося в результате реакции переноса электрона  [c.167]

    В ряде случаев реакция идет без преодоления активационного барьера посредством туннельного эффекта, квантовомеханического просачивания сквозь барьер. Это имеет место, в частности, в реакциях переноса электрона или протона (ср. 13.4). В этом случае скорость реакции практически не зависит от температуры. [c.176]

    Реакция переноса электрона протекает с высокой константой скорости (5 10 с ). [c.562]

    Таким образом, в настоящее время невозможно определенно предположить, как будет зависеть скорость реакции переноса электрона от природы растворителя. Экспериментальные данные показывают, что в отсутствии процесса кристаллизации металла (т. е, при выделении его на ртути или амальгаме) и комплексообразования в растворе наблю- [c.11]

    Исследование скорости разряда-ионизации лития и натрия в ПК и ТГФ показало [36], что на непрерывно зачищаемой поверхности щелочного металла токи обмена значительно выще. Например, для лития в 1 М растворе щелочного металла ток обмена равен 37 мА/см в ТГФ и 16 мА/см в ПК, для натрия —20 мА/см (ТГФ) и 21 мА/см (ПК)- Из сравнения этих результатов следует, что скорость реакции переноса электрона слабо зависит от природы щелочного металла и растворителя, так как диэлектрические постоянные последних сильно отличаются (см. табл. 1). [c.19]

    Реакции с переносом группы или электрона в растворе рассматривать с точки зрения теории нелегко, поскольку растворитель принимает участие в реакции не только путем изменения сольватации, но также и в результате изменения растворителя, непосредственно окружающего реагирующие вещества и переходный комплекс. Тем не менее диаграммы изменения потенциальной энергии оказались весьма полезными для описания изменения энергии Б этих реакциях, а также факторов, влияющих на их скорости [3]. Конечно, необходимо провести такое же разграничение влияния отдельных факторов, как это было сделано при обсуждении рис. 6. Недавно Гальперн опубликовал обзор [4] экспериментальных и теоретических работ по реакциям переноса электрона и рассмотрел изменение энергии а) в реакциях неадиабатического переноса электрона, когда реагирующие молекулы находятся в энергетически одинаковых состояниях и переносу электрона предшествует некоторая перегруппировка атомов в реагирующих веществах  [c.86]

    Константы скорости реакций переноса электрона комплексных ионов [c.61]

    СКОРОСТИ РЕАКЦИЙ ПЕРЕНОСА ЭЛЕКТРОНА [c.147]


    Реакции переноса электрона обычно исследуются путем использования меченого центрального атома металла комплекса в одном из окислительных состояний и измерения скорости переноса меченого изотопа в другое окислительное состояние. Кроме того, для очень быстрых реакций сейчас для этой цели используются методы парамагнитного резонанса и ядерного магнитного резонанса. В отдельных случаях может быть использован обмен лиганда, например обмен с (инерт- [c.147]

    В реакциях переноса электрона, как и в случае любых других химических реакций, существует энергетический барьер реакция проходит после преодоления этого барьера. Когда энергия активации этой стадии велика, процесс переноса электрона может становиться стадией,, лимитирующей скорость всего процесса. i [c.403]

    СКОРОСТИ И РАВНОВЕСИЯ РЕАКЦИЙ ПЕРЕНОСА ЭЛЕКТРОНА [c.196]

    Такие процессы могут иметь значение и для обычных реакций переноса электрона, протекающих с небольшими скоростями. [c.105]

    Перенос электрона относится к наиболее фундаментальным явлениям физической химии, лежащим в основе большинства окислительно-восстановительных и кислотно-основных реакций, исследуемых в самых различных областях химии и биологии. Их широкое исследование стимулировало развитие как теоретических представлений, так и поиск достаточно простых модельных систем для проверки предсказаний теории. Среди изучаемых моделей особое место принадлежит электродным реакциям, важной особенностью которых по сравнению с гомогенными реакциями переноса электронов в конденсированной фазе является линейная связь энтальпии процесса с потенциалом электрода, позволяющая плавно ее изменять при сохранении остальных условий протекания реакции. Благодаря этой дополнительной степени свободы можно определить не только температурную зависимость константы скорости реакции (например, энергию активации в случае аррениусовской зависимости), но и установить ее связь с энергетикой элементарного акта. Именно по этой причине результаты изучения простейших электродных реакций обеспечивают более всестороннюю проверку выводов теории переноса электронов в полярных средах. [c.202]

    Реакции переноса электрона с электрода на активный центр фермента подчиняются уравнению замедленного разряда, и их скорость определяется структурой двойного электрического слоя и потенциалом электрода [79, 80]  [c.86]

    В третьем издании курса рассмотрены вопросы, которые приобрели фундаментальное значение, но не затрагивались в прежних изданиях. В гл. III ( Элементарные химические реакции ) введен параграф, посвященный вычислению констант скоростей с помощью корреляционных соотношений, рассматриваемые типы элементарных реакций дополнены реакциями переноса электронов, лежащими в основе большого числа окислительно-восстановительных процессов. В параграфе, посвященном методу квазисгяционарных концентраций, подробно рассмотрена общая теория стационарных реакций, введено понятие маршрута и с этих позиций рассмотрены кинетические схемы основных типов сложных реакций — сопрялжнных, каталитических и цепных. [c.6]

    Таким образом, высота чисто диффузионной полярографической волны пропорциональна квадратному корню нз высоты столба ртути. По зависимости предельного тока от высоты столба ртути можно различать также реакции переноса электрона, ограниченные скоростью предшествующей химической реакции (кинетические волны) или скоростью адсорбции субстрата или продукта реакции (адсорбционные волны) Вид зависимости соответствующи.х предельных токов, а также каталитического тока (ограничен влиянием полярографнчески неактивного катализатора) от к приведен ниже. [c.120]

    Оба юка измеряют ири потенциалах, при которых реакции переноса электрона протекают быстро, Коэффициен эффективности Л э меньше единицы даже а отсутствие кинетических осложнений, поскольку только часть молекул, генерированных на дисковом электроде, достигает кольца, в ю время как другая часть удаляется от электрода путем диффузии. Теоретическое значение Мэ зависит от геометрии электродной системы Особенно важно расстояние между двумя электродами. Типичные значения Ns неосложненных реакций переноса электрона на диске (уравнение 3 68) и на кольце (уравнение 3.(39), для которых не зависит от скорости вращения, нриаедены ь табл. 3 7 [c.130]

    Окислительно-восстановительные реакции часто протекают путем туннельного переноса электрона. Представление о туннельном механизме переноса частицы было впервые сформулировано Г.Гамовьш (1928 г.). Модель окислительно-восстановительной реакции между иона.ми как результат туннелирования электрона была сформулирована Б.Зволинским, P.A.Маркусом и Г.Эйрингом в 1955 г. на основе теории абсолютных скоростей. Представления Гамова о туннелировании были использованы Дж.Вейсом при анализе процесса переноса электрона от иона к иону (1954 г.). Р.А.Маркус (1956 г.) рассмотрел реакцию обмена электроном для случая, когда перекрывание электронных орбиталей двух реагентов в активированном комплексе очень мало. Современная квантовая химия реакций переноса электрона развита в работах Р.Р.Догонадзе, А.М.Кузнецова отдельные вопросы этой проблемы рассмотрены в работах А.А.Овчинникова, В.А.Бен-дерского, В.Л.Гольданского, К.И.Замараева, Р.А.Маркуса, Э.Д.Германа, В.М.Бердникова, Л.Д.Зусман. [c.307]

    Первая работа по измерению константы скорости протолити-ческой реакции полярографическим методом опубликотна в 1947 г. (Р.Брдичка). Позднее был разработан ряд других электрохимических способов измерения скорости быстрых ионных реакций. Для электрохимического определения константы скорости реакции необходимо, чтобы в системе существовало химическое равновесие и по крайней мере один из реагентов участвовал в электродном процессе. Скорость реакции переноса электрона на электроде экспоненциально растет с увеличением его потенциала Е, когда Е > Egq, где Egq - равновесный потенциал окисления или восстановления реагента на электроде. Сила тока [c.327]

    Если самой медленной стадией электродного процесса является диффузия (см. разд. 10.1.6), электродный процесс называют обратимым. Дпя обратимых щюцессов характерны высокие константы скоростей гетерогенной реакции переноса электронов. В условиях классической полярографии, т.е. 1фиц>вменижизиикапли 3 сискоростнразверткипотенциала [c.165]

    Реакции окисления, в которых атмосферный кислород реагирует с горючими газами и парами, настолько хорошо известны и часто протекают так быстро, что, естественно, возникает тенденция рассматривать молекулу кислорода как весьма реакционноспособную. В действительности она химически весьма инертна по отношению к другим молекулам, а быстрота процессов горения обусловлена реакцией кислорода со свободными радикалами в стадии роста цепных реакций [1]. Цепные реакции протекают также и при медленном окислении насыщенных, ненасыщенных углеводородов, их производных и некоторых неорганических веществ как в растворах, так и в чистых жидкостях. Цепной характер этих автоокисли-тельных реакций был впервые установлен Бэкстрёмом путем сравнения фотохимического и термического окисления альдегидов и сульфита натрия (см. стр. 359). Подобно всем цепным реакциям, скорости этих реакций можно увеличить, добавляя катализаторы, дающие соответствующие свободные радикалы при термическом или фотохимическом разложении или за счет реакции переноса электрона их скорости можно уменьшить введением ингибиторов, которые заменяют активные радикалы неактивными или молекулами. Некатализируемые реакции автоокисления обычно идут медленно, потому что медленной является начальная стадия взаимодействия между реагентами, приводящая к образованию свободных радикалов. Однако при некоторых обстоятельствах реакции автоокисления обнаруживают самоускорение или автокатализ, обусловленный бирадикальными свойствами молекулы или атома кислорода. Поэтому представляет интерес рассмотреть некоторые общие особенности реакций автоокисления в связи с реакционно-способностью молекулы кислорода. [c.444]

    Реакции окисления — восстановления. При помощи окислительно-восстановительного индикатора была измерена константа скорости реакции переноса электрона между ферроцианид- и фер-рицианид-ионами, равная 1,5-105 л-молъ -сек - [25]. [c.78]

    Влияние комилексообразования на скорость окислительновосстановительных реакций, или реакций переноса электрона, может быть связано с дву.мя эффектами. При использовании комплексующих агентов, заряды которых противоположны заряду центрального ио ш, произведение эффективных зарядов двух реагирующих ионов может быть уменьшено и тем самым гюнижен барьер, который реагенты должны преодолеть, чтобы [c.80]

    Левич, Догонадзе и Чизмаджев рассмотрели в классическом и квантовомеханическом приближениях электрохимические и химические реакции переноса электрона. Ниже дано краткое изложение только теории химических реакций. В рассматриваемых реакциях предполагается, что углы и равновесные длины связей во внутренней координационной сфере не изменяются, а среда за пределами первой (внутренней) координационной сферы реагента рассматривается как непрерывный диэлектрик. Дается квантовомеханический расчет константы скорости в рамках теории возмущений при предположении, что перекрывание электронных орбиталей реагентов мало. Движение вектора поляризации рассматривается при помощи некоторого гамильто ниана. Было использовано уравнение Шредингера в одноэлектронном приближении, причем уравнение было записано в такой форме, чтобы электронная волновая функция была чувствительна к конфигурации ядер в области пересечения поверхностей потециальной энергии реагентов и продуктов. Используется преобразование Фурье для части гамильтониана, описывающего движение ядер. При выводе выражения для константы скорости реакции применяется квантовомеханическое рассмотрение атомной поляризации. [c.305]

    Основные научные работы посвящены исследованию сверхбыстрых химических реакций импульсными методами. Совместно с Р. Дж. Р. Норришем соацал (1950) первую установку импульсного фотолиза. Ими впервые были получены спектры поглощения многих простых свободных радикалов, изучен механизм их превращений, показано существование быстрых рекомбинационных процессов. Им удалось зарегистрировать спектральную картину развития реакции хлора с кислородом, инициируемую световым импульсом. Исследовал быстрые реакции в кондеч-сированной фазе. Предложил метод определения абсолютного квантового выхода триплетных состояний. Разработанные им приемы изучения деградации энергии триплетных молекул позволили представить детальную картину быстрых процессов, следующих за фотовозбуждением. Установил основные кинетические закономерности реакций переноса электрона и атома водорода. Определил константы кислотно-основного равновесия для синглетных и триплег-ных состояний ароматических молекул нашел связь между константами скорости реакций и природой возбужденного состояния. Исследовал механизм первичных фотохимических реакций на модельных системах фотосинтеза. Одним из первых создал установки импульсного лазерного фотолиза. [c.404]


Смотреть страницы где упоминается термин Реакции переноса электронов, скорость: [c.88]    [c.144]    [c.246]    [c.294]    [c.12]    [c.260]    [c.147]    [c.53]    [c.79]   
Физические методы в неорганической химии (1967) -- [ c.322 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции переноса электрона



© 2025 chem21.info Реклама на сайте