Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натрия хлорид электропроводность растворо

Рис. 57. Кривые кондуктометрического титрования а — раствора хлорида бария раствором сульфата натрия, б — раствора нитрата серебра раствором х.лорида калия, в — раствора соляной кислоты раствором едкого натра, г—раствора уксусной кислоты раствором едкого натра, д — раствора хлорида аммония раствором едкого натра, < —смсси соляной и уксусной кислот раствором едкого натра V—объем прибавленного рабочего раствора, X — удельная электропроводность) Рис. 57. <a href="/info/285060">Кривые кондуктометрического титрования</a> а — <a href="/info/149635">раствора хлорида</a> <a href="/info/1594265">бария раствором сульфата</a> натрия, б — <a href="/info/173191">раствора нитрата серебра раствором</a> х.лорида калия, в — <a href="/info/56032">раствора соляной кислоты раствором</a> <a href="/info/17596">едкого натра</a>, г—<a href="/info/264339">раствора уксусной кислоты раствором</a> <a href="/info/17596">едкого натра</a>, д — <a href="/info/782364">раствора хлорида аммония раствором</a> <a href="/info/17596">едкого натра</a>, < —смсси соляной и уксусной <a href="/info/1032898">кислот раствором едкого натра</a> V—объем прибавленного <a href="/info/7931">рабочего раствора</a>, X — удельная электропроводность)

    Для электролиза раствора хлорида калия используют те же самые электролизеры, что и для электролиза хлорида натрия. Раствор, используемый для электролиза, содержит хлорида калия 345—370 кг/м , ионов кальция и магния в сумме не более 7-10 3 кг/м (больше, чем в растворе хлорида натрия из-за более высокой растворимости солей кальция в растворе КС1). В электролизерах получают электрощелока, содержащие 140— 175 кг/м гидроксида калия и до 0,35 кг/м хлората калия КСЮз. Хлор и водород по составу близки к газам, получаемым при электролизе раствора хлорида натрия. Выход по току гидроксида калия составляет 94,5—95%. Напряжение электролиза несколько ниже из-за более высокой электропроводности раствора хлорида калия. Так как молекулярная масса гидроксида калия больше, чем у гидроксида натрия, то соответственно ниже расход электроэнергии на тонну продукта. [c.82]

    Исторический обзор возникновения интереса к неводным растворителям, а следовательно, и к выяснению роли растворителя в природе растворов, дан в известных монографиях Вальдена 121 иЮ. И. Соловьева [3]. Еще в середине XVI в. Бойль заинтересовался способностью спирта растворять хлориды железа и меди. Позднее ряд химиков отмечает и использует растворяющую способность спирта. В 1796 г. русский химик Ловиц использует спирт для отделения хлоридов кальция и стронция от нерастворимого хлорида бария, как будто положив начало применению неводных растворителей в аналитических целях. В первой половине XIX в. подобные наблюдения и их практическое применение встречаются чаще, причем химики устанавливают случаи химического взаимодействия растворителя с растворенным веществом, показывая, что и в органических жидкостях могут образовываться сольваты (Грэхем, Дюма, Либих, Кульман). Основным свойством, которое при этом изучалось, была растворимость. В 80-х годах XIX в. Рауль, исследуя в целях определения молекулярных весов понижение температур замерзания и повышение температур кипения нри растворении, отмечает принципиальное сходство между водой и неводными средами. Но систематическое физико-химическое изучение неводных растворов наряду с водными начинается только в самом конце столетия, когда Каррара осуществляет измерение электропроводности растворов триэтилсульфония в ацетоне, метиловом, этиловом и бензиловом спиртах, а также ионизации различных кислот, оснований и солей в метиловом спирте. В этот же период М. С. Вревский проводит измерения теплоемкостей растворов хлорида кобальта в смесях воды и этилового спирта [4], а также давлений и состава паров над растворами десяти электролитов в смесях воды и метилового спирта [5]. Им впервые четко установлено явление высаливания спирта и определено как .. . следствие неравномерного взаимодействия соли с частицами растворителя . Несколько раньше на самый факт повышения общего давления пара при растворении хлорида натрия в смесях этанола и воды, на первый взгляд противоречащий закону Рауля, обратил внимание И. А. Каблуков [6]. Пожалуй, эти работы можно считать первыми, в которых подход к смешанным растворителям, к избирательной сольватации и к специфике гидратационной способности воды близок современному пониманию этих вопросов. Мы возвратимся к этому сопоставлению в гл. X. [c.24]


    Определение постоянной электролитической ячейки. В ка честве стандартного раствора для определения постоянной электролитической ячейки используют раствор хлорида калия разной концентрации, насыщенный раствор хлорида натрия или сульфата кальция, приготовленные на бидистилляте. Удельные электропроводности этих растворов при различных температурах определены с большой точностью и приведены в справочных таблицах. Постоянную ячейки типа Х38, предназначенную для определения малой удельной электропроводности растворов, рекомендуется устанавливать по Хст и Rx, -i 0,001 н. раствора КС1. Для ячеек других конструкций стандартный раствор указывается в соответствующей лабораторной работе. [c.102]

    Приборы и реактивы. (Полумикрометод.) Прибор для определения электропроводности растворов. Стаканы на 50 мл. Сахар (порошок). Поваренная соль кристаллическая. Ацетат натрия. Хлорид аммония. Цинк гранулированный. Индикаторы лакмусовая бумага, спиртоной раствор фенолфталеина, метиловый оранжевый. Спирт метиловый. Глюкоза. Окись кальция. Полупятиокись фосфора. Растворы соляной кислоты (2 и 0,1 н.), серной кислоты (2 и 4 н., 1 1), уксусной кислоты (2 и 0,1 н., концентрированный), едкого натра (2 и 4 н.), трихлорида железа (0,5 н.), сульфата меди (II) (0,5 н.), дихлорида магния (0,5 н.), сульфата натрия (0,5 н.), силиката натрия (0,5 н.), хлорида бария (0,5 н.), хлорида кальция (0,5 н.), нитрата серебра (0,1 н.), иодида калия (0,1 н.), карбоната натрия (0,5 н.), хлорида аммония (0,5 н.), перманганата калия (0,5 н.), сульфата калия (0,5 н,), трихлорида алюминия (0,5 н.), хлорида цинка (0,5 н.), аммиака (0,1 н.), ацетата натрия (2 н.). [c.55]

    При электролизе водных растворов соляной кислоты на графитовом аноде происходит выделение хлора и кислорода. Соотношение между этими процессами определяется концентрацией соляной кислоты (рис. У-35). При концентрации соляной кислоты выше 6% выход хлора по току достигает 95%, т. е. анодный процесс протекает с теми же показателями, что и при электролизе растворов хлорида натрия. С целью уменьшения омических потерь на электролиз поступает 15—20%-ная кислота при температуре 60—80°С. Эти параметры соответствуют максимальной электропроводности раствора. [c.180]

    Задания. 1. Определить удельную и эквивалентную электропроводности и коэффициент электропроводности водных растворов хлорида натрия разных концентраций. 2. Вычислить эквивалентную электропроводность раствора при бесконечном разведении и константу А в уравнении (VIII.28), используя график Хс=1(Ус)т. [c.107]

    Сопоставим свойства характерных представителей неорганических и органических веществ. Поваренная соль МаС1 — типичное неорганическое вещество — характеризуется высокой точкой плавления (800 °С), легко растворяется в воде, причем в растворе обнаруживаются ионы (это можно установить по электропроводности раствора). Другое соединение органическое — углеводород состава QoH42 (углеводороды примерно такого состава находятся в парафине) представляет собой вещество с низкой точкой плавления — около 37 °С, Оно нерастворимо в воде, не диссоциирует на ионы. Можно подумать, что все дело в составе обоих веществ, но это не так. Если, например, хлор, входящий в состав хлорида натрия, может быть открыт при помощи качественной реакции с нитратом серебра, то тот же хлор в составе органического вещества, например хлороформа СНС1з, не переходит непосредственно в ионное состояние, не реагирует с нитратом серебра. [c.77]

    При титровании удельная электропроводность раствора уменьшается (на рис. 25, й от точки N до точки эквивалентности А), так как у ионов Ыа+, заменяющих в процессе титрования иоиы Н+, абсолютная скорость, а следовательно, эквивалентная электропро-иодпость при бесконечнодг разведении раствора значительно меньше, чем у иона Н+ (точнее Н3О+) Яц+, о = 349, а Яка+, о = 50,1 Ом Х Хсм -г-.экв" . Ионы Н+ (и ОН ) в отличие от других ионов переносят заряды через раствор путем специ([)ического обмена с молекулой воды. Когда в титруемую соляную кислоту введен эквивалентный объем раствора гидроокиси натрия и реакция нейтрализации завершена, электропроводность исследуемой системы становится минимальной, равной электропроводности раствора хлорида нат- [c.115]

    Поскольку точное значение ионной электропроводности нона хлора известно, то ионные электропроводности водорода, лития, натрия, калия и других катионов могут быть вычислены путем вычитания электропроводности иона хлора из значений предельной эквивалентной электропроводности растворов соответствующих хлоридов. На основании этих данных можно вычислить ионные электропроводности других анионов, а следовательно, и других катионов. Таким образом были вычислены значения, приведенные в табл. 13. [c.185]


    В опыте Г при смешивании растворов двух сильных электролитов — соляной кислоты и едкой щелочи — происходит уменьшение электропроводности раствора смеси за счет того, что в результате химического взаимодействия помимо сильного электролита хлорида натрия образуется очень слабый электролит — вода, [c.65]

    Выполнение. Опустив электроды в стаканы, продемонстрировать хорошую электропроводность раствора хлорида натрия, малую электропроводность растворов уксусной кислоты и гидроксида аммония. После этого в пустой стакан слить уксусную кислоту и гидроксид аммония по половине объема. Протекает реакция [c.280]

    Для работы требуется Прибор для определения электропроводности (см. рис. 49). — Прибор для определения электропроводности расплавленных солей (см. рис. 50). — Прибор для наблюдения за передвижением ионов (см. рис. 51). — Прибор для криоскопии (рис. 48). — Штатив с пробирками. — Цилиндр мерный емк. 10 мл. — Пипетки емк. 1 мл и 10 мл. — Ацетат натрия кристаллический.— Нитрат калия кристаллический. — Уксусная кислота безводная. — Хлорид аммония кристаллический. — Хлорид калия перекристаллизовакный (готовые навески). — Хлорид натрия технический. — Иодид калия, 0,5 н. раствор. — Спирт, 5%-ный раствор. — Сахар, 5%-ный раствор. — Соляная кислота, 10%-ный раствор. — Нитрат калия, 5%-ный раствор. — Едкий натр, 5%-ный раствор.—Аммиак, 25%-ный и 1%-ный растворы. — Раствор фенолфталеина. — Раствор метилового оранжевого. — Раствор лакмуса. — Раствор крахмала. — Вода дистиллированная. — Вода дистиллированная прокипяченная.— Снег или лед. — Навески хлорида калия около 0,050 г следует брать на аналитических весах с точностью до 0,001 г. [c.120]

    Приборы и реактивы. Прибор для сравнения электропроводности растворов. Стаканы вместимостью 50 мл. Сахар (порошок). Хлорид натрия. Мрамор (мелкие кусочки). Ацетат натрня. Хлорид аммония. Цинк. Индикаторы лакмусовая [c.64]

    Чем вызвана электропроводность раствора хлорида натрия  [c.119]

    Опыт 415. Электропроводность растворов солей хлорида натрия и ацетата аммония. [c.280]

    Реакции нейтрализации. Рассмотрим, что происходит, когда 0,01 н. раствор соляной кислоты титруют 0,1 н. раствором едкого натра. Вначале электропроводность велика вследствие высокой подвижности ионов водорода. Из табл. 1 (стр. 14) следует, что 82% проводимости приходится на долю ионов водорода и только 18%—на долю хлорида. Электропроводность, обусловленная ионами хлорида, остается постоянной в течение титрования, в то время как для ионов водорода она уменьшается, доходя до нуля в точке эквивалентности. Ионы водорода заменяются таким же количеством ионов натрия, имеющих очень малую подвижность. Благодаря этому общая электропроводность около точки эквивалентности резко снижается. За точкой эквивалентности электропроводность снова увеличивается вследствие накопления в растворе как ионов натрия, так и гидроксил-ионов. [c.23]

    Приборы и реактивы. Прибор для сравнения электропроводности растворов. Криоскоп. Стаканы емкостью 50 мл. Сахар (порошок). Хлорид натрия. Хлорид калия. Иодид калия. Нитрат калия. Нитрат натрия. Мрамор (мелкие кусочки). Ацетат натрия. Хлорид аммония. Цинк. Индикаторы лакмусовая бумага, метиловый оранжевый, фенолфталеин Растворы соляной кислоты (2 п. 0,1 н.  [c.85]

    Метод кондуктометрического титрования можно использовать в количественном анализе при кислотно-основном титровании и в методах осаждения. Например, при титровании гидроксида натрия соляной кислотой концентрация щелочи в растворе постепенно уменьшается. Но так как электропроводность хлорида натрия ниже электропроводности гидроксида натрия и соляной кислоты, то по мере прибавления реагента электропроводность раствора будет уменьшаться. В точке эквивалентности она будет наименьшей, а при лишней капле титранта снова увеличится. Изменение электропроводности позволит определить точку эквивалентности. [c.406]

    Концентрация хлорид-ионов не изменяется, ионы водорода (X = 350) постепенно исчезают, замещаясь ионами натрия (Я = 50) в результате электропроводность раствора падает. [c.494]

    Измерение электропроводности раствора карбоната. Большое распространение имеет достаточно чувствительный косвенный метод, состоящий в барботировании анализируемого газа через раствор едкого натра или смеси едкого натра с хлоридом бария, или гидроокиси бария. Затем измеряют электропроводность раствора. [c.1053]

    Большую опасность представляет коррозия из-за утечки тока по трубопроводам вследствие хорошей электропроводности растворов щелочи и хлорида натрия. Б цехе этому виду коррозии подвергаются аппараты, трубопроводы, арматура железобетонных строительных конструкций. Для снижения коррозионного разрушения следует наблюдать за исправностью изоляторов, защищать металлические трубопроводы резиной, эбонитом, фторопластом-4. [c.105]

    Растворимые в кетонах соли щелочных и щелочноземельных металлов можно титровать раствором хлорида лития в кетонах, при этом в осадок выпадают нерастворимые в кетонах хлориды щелочных или соответственно щелочноземельных металлов. Особенно хорошие результаты дает использование осциллометрии для индикации точки эквивалентности. Однако ход осциллограммы нельзя объяснить на основе различия в подвижностях ионов, как в случае водных растворов. Из-за низкого значения диэлектрической проницаемости растворителя растворы солей диссоциированы неполностью, и поэтому ход осциллограммы в значительной степени определяется различием степени диссоциации соединений. При титровании солей натрия электропроводность раствора до точки эквивалентности может уменьшаться или возрастать в зависимости от того, является ли образующееся соединение более электропроводным. Рис. Д. 147. Кривые осциллометриче- чем соответствующая соль лития, ского титрования 0,206 мг-экв КЗЬРв или менее электропроводным. При раствором ЬЮ1 в различных раство- титровании одной и той же соли в рителях различных растворителях это влия- [c.350]

    Так как табл. 35 дает значения эквивалентной электропроводности растворов смесей сульфатов натрия и кальция без учета присутствия гидрокарбонатов и хлоридов, которые всегда имеются в природной воде, то результаты будут несколько занижены. С целью компенсации этого принимается среднее значение между начальным завышением общей минерализации, найденным по электропроводности, и полученным после пересчета  [c.90]

    Оборудование и материалы. 1. Прибор для наблюдения электропроводности (см. рис. 141). 2. Четыре стакана на 250 мл с палочками. 3. Соляная кислота (2 н.). 4. Гидроксид натрия (2 и. раствор). 5. Хлорид натрия (2 н. раствор). 6. Дистиллированная вода. [c.275]

    Поведение сильных электролитов в растворах не соответствует их полной ионизации, что обнаруживается экспериментально. Так, для растворов хлорида натрия, который полностью распадается на ноны, следовало бы ожидать, что изотонический коэффициент i 2. Однако этого не наблюдается. Только в предельно разбавленных растворах Na l значение i приближается к двум. Эквивалентная электропроводность растворов сильных электролитов не остается постоянной при изменении концентрации, как этого можно ожидать при полной диссоциации, а увеличивается при разбавлении растворов. [c.268]

    В настоящее время существует много электролитов для никелирования, различных как по составу компонентов, так и по их концентрации. Наибольшее распространение получили сернокислые электролиты, основной составной частью которых является сернокислый никель. Кроме того, для улучшения свойств электролитов в них вводятся сернокислые соли натрия или магния, борная кислота и хлориды. Добавление сернокислого натрия или магния увеличивает электропроводность растворов, введение хлоридов предотвращает пассивирование анодов в процессе электролиза. Борная кислота служит в качестве вещества, препятствующего быстрому изменению кислотности электролита. [c.75]

    Зонная плавка может применяться также и для очистки солей, которые не разлагаются при плавлении. За ходом очистки можно следить, используя различные физические методы (электропроводность, твердость и т. д.), а также проводить анализ состава конца слитка и загрязненного. Например, кристаллогидраты сульфата натрия, хлоридов кобалр>та и никеля легко плавятся (растворяются в кристаллпзациопноп воде). Примеси солей железа оттесняются к концу слитка. [c.70]

    Методика определения. Для титрования аликвотную часть анализируемого раствора соли переносят в электролитическую ячейку, Кондуктометрическое титрование ацетата натрия проводят 1,0 н. раствором НС1, а хлорида аммония 1,0 н. раствором NaOH (см. 9), Изменение электропроводности раствора при титровании солей зависит от сравнительной подвижности ионов, замещающих друг друга в растворе в процессе взаимодействия (см, стр. 84). При титровании электропроводность раствора до точки эквивалентности немного увеличивается (рис. 17, кривая Л). При титровании NH4 I основанием, наоборот, электропроводность раствора до точки эквивалентности немного понижается (рис. 16, кривая 2). [c.109]

    Английский ученый Генри Кавендиш (1731—1810) обнаружил, что электропроводность воды значительно возрастает при растворении в ней соли. В 1884 г. молодой шведский ученый Сванте Аррениус (1859— 1927) опубликовал докторскую диссертацию, которая включала измерения электропроводности растворов СОлей и соображения относительно интерпретации этих данных. Эти первые представления были довольно неясными, однако позже он сформулировал их более четко, а затем в 1887 г. опубликовал подробную статью об ионной диссоциации. Аррениус предположил, что в водном растворе хлорида натрия присутствуют ионы натрия Na+ и хлорид-ионы С1 . Если, в такой раствор опустить электроды, то иоиы натрия будут притягиваться катодом и двигаться по. направлению к ему, а хлорид-иоиы будут притягиваться анодом и перемещаться к нему. Такое движение ионов в растворе в противоположных направлениях и объясняет механизм прохождения электрического тока через раствор. [c.150]

    Добавить немного воды в стаканы с хлоридом натрия, сахаром и уксусной кислотой и измерить электропроводность растворов. Хлорид натрия является сильным электролитом, поэтому раствор ЫаС1 в воде показывает высокую электропроводность (лампа горит очень ярко), раствор уксусной кислоты проводит ток слабее. При погружении электродов в раствор сахара лампа не загорается. [c.33]

    Если известна зависимость удельных электропроводностей растворов от концентрации, то кольраушевскую концентрацию с можно определять т ондуктометрически [68]. Хартли [б9] предложил остроумный прибор с так называемой уравновешенной границей и использовал уравнение (32) для сравнения чисел переноса ионов водорода, калия и натрия в растворах соответствующих хлоридов с числом переноса иона лития в растворе хлористого лития, применявшемся в качестве индикаторного раствора. Расхождения между результатами, полученными Хартли, и данными Лонгсворта [52а] не превышают 0,5%. Метод уравновешенной границы является практически важным, так как с его помощью можно непосредственно определять числа переноса ионов с очень малой подвижностью. Этот метод был применен для изучения солей, катионы которых содержали парафиновые цепи с числом атомов углерода, доходившим до шестнадцати [70]. С помощью метода Хартли получены интересные экспериментальные результаты, которые послужили основой для объяснения свойств коллоидных электролитов [71]. [c.160]

    Приборы и реактивы. Прибор для сравнения электропроводности растворов. Бюретка (на 10 мл). Фарфоровая чашка (диам. 3—4 с ,(). Колба коническая (емк. 50 М./1). Пипетка (на 3 мл). Стакан (емк. 50 мл). Сахар (порошок). Хлорид натрия. Мрамор (мелкие кусочки). Ацетат натрия. Хлорид аммония. Цинк. Индикаторы лакмусовая бумага, метиловый оранл1евый, фенолфталеин. Растворы соляной кислоты (2 н. и 0,1 и.), серной кислоты (2 и.), уксусной кислоты (2 н. и 0,1 н.), едкого натра (2 н. и 0,1 н.—титрованный), едкого барита (насыщенный), аммиака (2 и. и 0,1 н.), хлорида трехвалентного железа (0,5 н.), сульфата меди (0,5 н.), сульфата магния (0,5 н.), сульфата натрия (0,5 н.), силиката натрия (0,5 н.), молибдата аммония, хлорида бария (0,5 н.), хлорида [c.59]

    Проведение электролиза при высоких концентрациях хлорида натрия способствует снижению потенциала выделения хлора, сокращению потерь тока на выделение кислорода и увеличению выхода по току гипохлорита натрия. Помимо этого повышение концентрации хлорида натрия увеличивает электропроводность электролита и тем самым снижает напряжение на электролизере. Однако, если учитывать все показатели, влияющие на экономику процесса, то оказывается, что повышение концентрации Na l в электролите увеличивает удельный расход хлорида натрия, так как снижается экономически оправданная степень превращения хлорида в гипохлорит. Обычно электролизу подвергают растворы, содержащие 50—100 кг/м Na l, а в некоторых случаях и около 20 кг/м (морская вода). [c.140]

    Приборы и реактивы. Прибор для сравнения электропроводности растворов. Бюретка (на 10. чл). Фарфоровая чагака (диам. 3—4 с.с). Колба коническая (емк. 50. НА). Л ерная колба (емк. 50 мл). Пипетки (на 3 мл и 5 л1л). Ста-кан (емк. 50 м.г). Сахар (порошок). Хлорид натрпя. Мрамор (мелкие кусочки). Ацетат натрия. Хлорид аммония. Цинк, Индикаторы лакмусовая бумага. [c.72]

    Для практических работ по определению удельной электропроводности мастер производственного обучения подготавливает точные растворы серной и соляной кислот, гидроксида натрия, хлорида натрия, сульфата меди, сульфата натрия с концентрацией в пределах от 5 до 20%. Каждый учащийся получает от мастера производственного обучения две или три колбы с растворами под номерами, определяет их сопротивление и вьиисляет удельную электропроводность. [c.220]

    Приборы и реактивы. Техно-химические весы и разновес. Стаканы емкостью 100 мл. Мерный цилиндр емкостью 100 мл. Криоскоп. Прибор для демонстрации электропроводности растворов типа ОХ-6 (ЭПМ МХТИ им. Менделеева). Снег и лед. Хлорид натрия. Иодид калия, Нцтрат натрия. Нитрат калия. Раствор уксусной кислоты (более 70%), [c.88]

    Заметное влияние на основные показатели электролиза (расход электроэнергии, выход по току, износ анодов) оказывает концентрация хлорида натрия в рассоле. Прежде всего необходимо учитывать изменение электропроводности растворов в зависимости от их концентрации. С увеличением концентрации хлорида натрия электропроводность раствора возрастает сначала линейно, а начиная с концентрации 20% (масс.) Na l — несколько медленнее. В растворах хлорида натрия, близких к насыщению, с уменьшением концентрации Na l на каждые Юг/дм электропроводность понижается примерно на 0,5%. [c.183]

    Например, для определения концентрации раствора хлорида натрия предварительно готовят раствор, содержащий 200 г/.г этого вещества. Затем, разбавляя раствор, приготовляют серию стандартных растворов, содержащих 40, 60, 80 и 100 г/л хлорида натрия. В электролитической ячейке, постоянная которой была определена раньше (см. формулу б), определяют удельную электропроводность этих растворов х равна соответственно 0,0510, 0,0730, 0,0940 и 0,1140 ом- -с.и-. Строят график, откладывая на оси абсцисс концентращш, а на оси ординат з дельную электропроводность. При помощи этого графика, или калибровочной кривой, можно определить содержание хлорида натрия в растворе, содержащем от 40 до 100 г/л. [c.361]

    Рис, 36. Калибровочная кривая для определения концентрации раствора хлорида натрия по его злектропроводности (С — концентрация раствора хлорида натрия, г/л, у. — удельная электропроводность раствора. [c.361]


Смотреть страницы где упоминается термин Натрия хлорид электропроводность растворо: [c.326]    [c.420]    [c.569]    [c.130]    [c.32]    [c.84]    [c.221]    [c.420]   
Производство хлора и каустической соды (1966) -- [ c.45 , c.50 , c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Натрий растворов

Натрия хлорид

Хлорид растворах КОН

Хлориды, электропроводность

Электропроводность растворов ПАВ



© 2025 chem21.info Реклама на сайте