Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пассивация анодная никель

    Продвижение анионов через пленку менее вероятно, чем продвижение катионов, обладающих значительно меньшими размерами. Для прохождения ионов через кристаллическую решетку оксидов при комнатной температуре необходим градиент потенциала порядка 10 В/см. В то же время скачок потенциала при пассивации многих металлов обычно составляет 0,5—1,5 В. Следовательно, толщина пленки не должна превышать 5—15 10" см. При этом металлы, например железо, никель, хром, в пассивном состоянии продолжают медленно растворяться, а толщина пленки стабилизируется. По мере утолщения пленки все в большей степени затрудняется продвижение через нее ионов. Соответственно, если сохранить неизменной плотность тока, произойдет сдвиг анодного потенциала в [c.368]


    До сих пор рассматривалась скорость коррозии, лимитируемая катодными реакциями. Однако иногда коррозия может контролироваться и анодными реакциями. Обычно это наблюдается на металлах, способных пассивироваться, таких, как хром, алюминий, титан, цирконий, никель, тантал и др. Пассивностью металла называется состояние его повышенной коррозионной устойчивости, вызванное торможением анодного процесса. Согласно термодинамическим расчетам, пассивный металл может подвергаться коррозии, но практически не корродирует из-за того, что анодное растворение его протекает крайне медленно. Например, стандартные потенциалы алюминия (Еар+/а1 = = —1,66В), циркония (Е г +/2г= —1,54 В), титана (Ет =+/т1 = = —1,63В), хрома (Есг"+/сг = — 0,74 В) значительно отрицательнее потенциалов кислородного и водородного электродов, поэтому можно было бы ожидать, что они будут корродировать как с выделением водорода, так и с поглощением кислорода. Однако они отличаются высокой коррозионной стойкостью благодаря склонности к пассивации. Пассивность в основном вы- [c.233]

    Анодный выход никеля по току не равен 100%, вследствие пассивации он даже несколько ниже катодного для принятого состава электролита, что ведет к постепенному обеднению раствора никелем (дефицит никеля) и понижению pH анолита (2—2,5) вследствие расхода части тока на реакцию НгО—> - 0,5 02+2Н++2е. [c.406]

    Барьерный механизм по своему существу должен быть чувствителен к конкретной природе и состоянию поверхностного слоя, включая покровные пленки, и поэтому при взаимодействии тела с активной средой может приводить как к повышению пластичности, так и к ее снижению (с упрочнением) в зависимости от результата протекания поверхностных химических (электрохимических) реакций. Так, при растяжении монокристалла никеля в растворе серной кислоты под анодным током поляризации при потенциалах пассивации наблюдалось упрочнение и снижение пластичности по сравнению с деформацией на воздухе вследствие образования прочных фазовых окисных пленок (толщиной около 5 нм) [127] в результате анодной реакции в области потенциалов пассивации. [c.144]

    Эффект торможения анодного процесса окислителями, означающий, что их роль при растворении металлов может, в частном случае, не ограничиваться деполяризующим действием, а сводиться и к непосредственному взаимодействию окислителя с поверхностными атомами металла, обнаружен и для хромистых сталей при их растворении в серной кислоте [ 64] При введении в хромистые стали никеля их поведение, по-видимому, приближается к поведению никеля, для которого, как указывалось выше [58], специфического влияния окислителей на процесс растворения не проявляется. Так, по данным [65] в случае саморастворения нержавеющей стали, содержащей никель, в азотной кислоте окислительные добавки, в том числе и кислородсодержащие (бихромат, перманганат), оказывают на процесс только деполяризующее действие, вызывая смещение потенциала коррозии в область пере-пассивации. [c.14]


    Способность к пассивации делает алюминий весьма стойким во многих нейтральных и слабокислых растворах, в окислительных средах и кислотах. Хлориды и другие галогены способны разрушать защитную пленку, поэтому в горячих растворах хлоридов, в щелевых зазорах алюминий и его сплавы могут подвергаться местной язвенной и щелевой коррозии, а также коррозионному растрескиванию. Коррозионная стойкость алюминия понижается в контакте с медью, железом, никелем, серебром, платиной. Столь же неблагоприятное влияние оказывают и катодные добавки в сплавах алюминия. Для алюминия характерно высокое перенапряжение водорода, которое наряду с анодным торможением (окисная пленка) обеспечивает высокую коррозионную стойкость. Примеси тяжелых металлов (железо, медь) понижают химическую стойкость не только из-за нарушения сплошности защитных пленок, но и вследствие облегчения катодного процесса. [c.73]

    В случае анодного растворения никель при малых плотностях тока корродирует, а при большой — пассивируется, образуя окись никеля и кислород. С повышением концентрации ионов N1 + и рН-электролита ускоряется пассивирование (рис. 5). Это объясняется тем, что никель имеет незаполненную Зс1-оболочку и как переходной элемент способен хемосорбировать кислородные анионы. Потенциал пассивации никеля Н-0,43 В для pH = 3,4. [c.22]

    Известны разные способы обновления поверхности твердых электродов внутри раствора, являющиеся вариантами механической очистки поверхности. Эти методики особенно интересны при изучении явлений пассивации [286, 517, 518] а также адсорбции кислорода и водорода [594, 161]. Томашов и Вершинина [567] исследовали кинетику различных электродных процессов (например, разряд водорода, восстановление кислорода, анодное растворение металла) на электродах с непрерывно обновляемой поверхностью и на таких металлах, как железо, никель и палладий, и наблюдали значительные уменьшения перенапряжений. Кроме того, на некоторых из этих металлов при достаточно быстрой очистке их поверхности исчезало ингибирующее влияние адсорбированных ионов галогенов и катионов тетрабутиламмония на водородное перенапряжение. По-видимому, в этих условиях повторная адсорбция ионов не успевала происходить. [c.170]

    Эллипсометрические свойства окисных пленок, образующихся на никеле, изучены Бокрисом, РеДДи и Pao [54]. Основные результаты приведены на рис. 16 и 17, где показано изменение Д и с потенциалом по мере развития пассивации, а на рис. 18 приведено соотношение между Д и при пассивации никеля в водном растворе H SO (pH 3,15). Критическое изменение Д и происходит в области потенциалов от -0,025 до О В (относительно нормального водородного электрода) в точности там, где другие критерии, например вольтамперная характеристика, указывают на пассивацию. Вначале, в области потенциалов от -0,25 до -0,025 В (относительно нормального водородного электрода) никель просто анодно растворяется, так что параметры д и остаются постоянными (рис. 16 и 17). [c.436]

    Установлено, что присутствие" хлор-ионов в растворе сернокислого никеля в значительной мере снижает степень анодной поляризации никеля, заметно повыщает ток пассивации, одновременно повышая степень катодной поляризации. Так, в 1-н. растворе сернокислого никеля, не содержащего хлор-ионов, при определенных условиях электролиза анодная поляризация равна 1,78 в, а катодная 0,56 в, тогда как при наличии в этом растворе хлор-ионов в количестве, соответствующем 0,25-н., анодная поляризация снижается до 0,39 в, а катодная возрастает до [c.142]

    В качестве анодов следует применять прокатанный никель, поскольку при его анодном растворении образуется меньше шлама, чем при растворении литых анодов. Аноды, содержащие небольшие примеси N 0 и С, в меньшей степени подвергаются пассивации. [c.223]

    Железо и никель весьма склонны к пассивации, для них характерно замедление ионизации металла уже при сравнительно низких плотностях тока, при этом потенциал металла смещается в положительную сторону, т. е. наступает пассивация. Причиной пассивного состояния никеля и железа является образование окисных соединений. При этом, чем выше анодный потенциал металла, тем прочнее связь кислорода с металлом, толще и плотнее поверхностный окисный слой и, следовательно, полнее пассивация. Наиболее устойчива пассивация при потенциале выделения кислорода. Скорость и степень пассивации повышаются также с увеличением плотности анодного тока, уменьшением концентрации щелочи (до определенного предела) и снижением температуры. [c.207]

    Никель, как и железо, способен к пассивации. Его пассивность в отличие от железа более устойчива и может возникать на воздухе, в водных растворах щелочи и при анодной поляризации. Добавка никеля к стали или чугуну обычно оказывает облагораживающее действие а черные металлы, их сплавы с никелем более стойки к коррозии. Пассивность никеля обусловлена образованием стойких окисных пленок, закрывающих поверхность металла и затрудняющих переход его ионов в раствор. В зависимости от способа пассивации строение и состав окисных пленок могут быть различны. Пассивность никеля может вызываться хемосорбцией гидроксильных или кислородных ионов иа поверхности металла, образованием его окислов и гидроокисей или других нерастворимых в данном растворе соединений. Пассивирование никеля при анодной поляризации определяется свойствами анионов электролита и сильно зависит от величины pH раствора чем больше его pH, тем скорее и полнее пассивируется металл . Пассивации способствуют также повышение анодной плотности тока, снижение температуры и наличие в растворе ионов никеля. Противоположное влияние на пассивацию никеля оказывает присутствие в электролите хлор-иона, сульфатов, карбонатов и других кислотных анионов 5 З", а также наличие примесей в металле Агрессивное действие ионов хлора и кислородсодержащих анионов проявляется тем сильнее, чем меньше концентрация щелочи. В растворах карбонатов никелевый анод нестоек. [c.212]


    Образование прочной окисной пленки при пассивации никеля делает его практически нерастворимым во многих агрессивных средах и широко используется в промышленности, в частности для защиты анодно работающих поверхностей электродов и деталей при электролизе воды. [c.213]

    Отмечена следующая зависимость скорости растворения никеля в указанной выше области потенциалов от концентрации щелочи чем выше концентрация, тем медленнее наступает пассивация, причем с повышением температуры сильнее сказывается влияние концентрации. По-видимому, растворение никеля связано с непосредственным участием в реакции ионов ОН", которые облегчают переход никеля в раствор. При малой концентрации щелочи (например, 0,2% КОН) и низких плотностях тока никель начинает интенсивно разрушаться . Это, вероятно, является причиной быстрой коррозии никелированных анодных поверхностей в тупиковых зонах и местах скопления шлама, где интенсивность циркуляции электролита замедлена, в результате чего он обеднен ионами 0Н . [c.214]

    Для выяснения роли никеля в сплавах было изучено анодное поведение опытных сплавов никеля с хромом. Как видно из анодных поляризационных кривых (рис. 146), пассивация этих сплавов облегчается при увеличении содержания в них хрома. Никель, а также сплавы его с небольшим содержанием хрома быстро активируются при анодной поляризации в растворах хлористого натрия. [c.301]

    В работе [76] отмечается, что пассивации вообще благоприятствует малая скорость анодной реакции, т. е. малый ток обмена. У серебра ток обмена велик, ввиду чего оно не пассивируется при шлифовке, даже если анодный ток достигает — 1 а см . Это показывает, что пассивационное торможение растворения хрома и никеля связано с замедлением анодной реакции вследствие адсорбции, а не образования фазовых окислов. Пассивация же серебра невозможна за счет этих факторов и требует образования окисного слоя. [c.254]

    Предварительная катодная поляризациясвежезачищенного никелевого электрода замедляет наступление пассивации, анодная поляризация заметно ускоряет ее. До начала выделения кислорода протекает один анодный процесс с участием металла — растворение никеля с одновременным окислением его поверхности до образования фазового окисла. Этот процесс начинается в области потенциалов от +0,1 в и выше, имеет максимальную скорость прн потенциале +0,2 в, а затем замедляется. С течением времени переход ионов никеля в раствор полностью прекращается и наступает пассивация. При этом потенциал электрода быстро смещается в положительную сторону и начинается выделение кислорода. Длительность и интенсивность растворения никеля в щелочи до наступления пассивации зависят от условий анодной поляризации. Как и для железа, повышение температуры и концентрации щелочи тормозит пассивацию. В интервале температур 60—90°С скорость растворения никеля до наступления пассивации почти в 2 раза больше, чем при 20—60° С, хотя абсолютное увеличение растворимости никеля с повышением температуры невелико. При 130° С растворение никеля продолжается в течение 5 ч без заметной пассивации. [c.213]

    Имеется, однако, много примеров, когда потенциал иассивации нельзя связать с образованием ни одного из известных для данного металла оксидов. Так, иапример, для железа потенциал пассивации < п=+0,58 В, в то время как наиболее положительный из всех возможных потенциалов железооксидных электродов, отвечающий системе Fe, FeO, FeaOa, равен всего лишь 0,22 В. Казалось бы, что, поскольку железный электрод здесь является анодом, такая разница обусловлена значительной анодной поляризацией. Но такое объяснение отпадает, потому, что потенциал активации железа также равен +0,58 В, хотя железный электрод поляризуется в данном случае катодно. В связи с этим предположили, что, несмотря на преимущественное растворение железа в виде двухвалентных ионов, оксидная пленка может образоваться при участии иоиов железа с валентностью более трех. Это возможно при условии постепенного окисления железа избытком кислорода в поверхностном слое. В подобном оксидном слое могут поэтому находиться наряду с оксидами F O и РегОз также высшие оксиды, наиример КеОг, которым отвечают более положительные потенциалы. Аналогично объясняется и пассивация никеля. [c.482]

    Дрейли и Разер 2, 8] объясняют наблюдаемые факты тем, что выделяющийся на поверхности раздела металл—оксид газообразный водород разрушает защитную оксидную пленку. Если алюминий контактирует с более электроотрицательным металлом либо легирован никелем или железом, то можно предполагать, что ионы Н+ разряжаются на катодных участках, а не на алюминии, и оксидная пленка остается неповрежденной. Однако полезное действие катодных участков можно также объяснить [91 анодной пассивацией или катодной защитой алюминия. Это влияние сходно с действием легирующих добавок платины и палладия (или контакта с ними) на нержавеющую сталь аналогичным образом эти металлы пассивируют также титан в кислотах (см. разд. 5.4). [c.344]

    При введении в никель хрома он приобретает стойкость в окислителях (в частности, НЫОз и Н2СГО4). Определенное по измерениям критической плотности тока минимальное массовое содержание хрома, необходимое для анодной пассивации сплава в серной кислоте, составляет 14 % [3]. Однако сплавы с хромом более чувствительны к воздействию С1 и НС1. В неподвижной морской воде на них образуются более глубокие питтинги. Хром повышает также стойкость никеля к окислению при повышенных температурах. Широкое применение нашел сплав, содержащий 20 % Сг и 80 % N1 (см. разд. Ю.11.3). [c.361]

    Кобальт можно анодно запассивировать в 0,5 т растворе H2SO4. Для этого необходима минимальная плотность тока 5000 А/м , что в 14 раз больше соответствующей плотности тока для никеля [1 ]. Легирование кобальта хромом приводит к уменьшению плотности тока для пассивации сплава с 10 % Сг требуется плотность тока лишь в Ю А/м (1 мА/см ). Сплав, содержащий 10—12 % Сг, почти не подвергается коррозии в горячем и холодном 10 % растворе HNO3, однако в 10 % растворе H2SO4 ИЛИ НС пассивации не происходит, и скорость коррозии достигает очень высоких значений. Легирование сплавов Со—Сг молибденом или вольфрамом ослабляет воздействие на них серной или соляной кислоты, но не азотной. i [c.369]

    Так как айодное растворение никеля сопровождается большой поляризацией, то уже при малой плотности тока (рис. 105, участок АБ) наблюдается электрохимическое образование закиси никеля NiO. Растворение металла при этом тормозится, и начинается пассивация анода (участок БВ). Адатомы никеля, участвующие в образовании окисной пленки, не теряя связи с кристаллической решеткой металла, обусловливают тем самым прочное сцепление фазовой пленки с металлом и со- j j здают надежную изоляцию его от электролита. В результате анодный потенциал возрастает вплоть до У разряда гидроксильных [c.275]

    Все эти результаты, хорошо согласующиеся с данными последних исследований, позволяют связать пассивное состояние металлов с наличием на их поверхности хемосорбированных слоев кислородсодержащих частиц I 8,80 > 108]. Для хрома [ 109, 110] и никеля [ 1Ц] установлено, что пассивация обеспечивается наличием на поверхности металла примерно монослойных покрытий. Для железа, по-видимому, характерно образование более толстых слоев [112]. Уже сравнительно давно было отмечено [ 1,3,8] J что отсутствие зависимости (или слабая зависимость) стационарной скорости растворения пассивного металла от потенциала ни в коей мере не характеризует истинную кинетику самого процесса растворения. В этом случае влияние потенциала является более сложным, поскольку его рост 1фиводит не только к обычному ускорению анодного растворения металла, но и к изменению состояния металлической поверхности, которое равноценно повышению перенапряжения того же процесса. По-видимому, в случае железа и хрома эти эффекты полностью компенсируют друг друга, что и приводит к независимости стационарной скорости растворения этих металлов в пассивном состоянии от потенциала. Поскольку, однако, характерное для каждой величины потенциала стационарное состояние поверхности устанавливается относительно медленно, эти два эффекта удается разделить, если применить метод быстрого наложения поляризации. Так, например, для хрома ШО показано [ 8], что при быстрых измерениях (постоянное состояние поверхности) сохраняется [c.25]

    Исходя из этого, всю кривую ВО можно было бы назвать кривой питтингообразования (несовершенной полировки). Повышение анионной концентрации приводит к тому, что переход от пассивного состояния к анодному полированию наступает при менее ооложительных потенциалах. Интересно отметить, что в окрестностях точки В при относительно не-, больших вариациях потенциала и концентрации анионов следует ожидать всех трех типов поведения металлического анода, т. е. активного растворения, пассивации и анодной полировки. Верхняя часть диаграммы Хора относится к переходам от пассивного состояния к так называемой перепассива-ции. Такие переходы, однако, возможны для металлов, обладающих несколькими ступенями окисления, наподобие железа, никеля или хрома, для которых явление перепасси-вации изучено наиболее достоверно. [c.103]

    Так, для никеля в растворах H IO4, по данным, представленным на рис. 37, видно, что в чистой хлорной кислоте на анодной поляризационной кривой обнаруживается один максимум тока при потенциале, близком к 0,1 в. Введение серной кислоты приводит к тому, что после начала первичной пассивации наблюдается временное активирование растворения, после которого- вновь происходит пассивация. Этот второй критический потенциал пассивации близок к 0 2 в. Такое активирование поверхности никеля в области потенциалов [c.121]

    Влияние pH на анодное поведение никеля исследовано при концентрации хлористого никеля 20 г/л. При pH = 2. .. 4 никель подвергается только активному растворению при pH = = 4,5. .. 5,5 на кривых обнаружены два максимума, области пассивации и перепассивации. Перепассивация, по-видимому, связана с окислением анода сульфаминовой кислоты, продукты окисления которой разрушают пассивную плеику на поверхности никеля [40 J. [c.141]

    В большом числе водно-органических и неводных растворов изучено анодное поведение никеля (спирты, АЦ, АН, ФМ, ДМФ, ДМСО, ПК, ТГФ, НАс) [600, 51, 125, 126, 4, 779, 106, 1129]. Во всех изученных растворах при низких плотностях тока (почти во всех случаях применялись кислые растворы) наблюдалось активное растворение никеля со 100 %-ным выходом при расчете на N 2+. Процесс необратимый, его протекание связано с участием анионов, молекул растворителя и осложнено адсорбционными явлениями [1200, 779]. При высоких плотностях тока (аотенциалах) в присутствии кислородсодержащих анионов (например, СЮ4 ) и воды наступает пассивация электрода. В ДМСО скорость анодного растворения никеля на несколько порядков ниже, чем в других растворителях, в том числе и воде. Торможение анодной реакции, вероятно, обусловлено хемосорбцией ДМСО [4, 1, 779]. Сделана попытка корреляции анодного поведения никеля с физико-химическими свойствами протолитических и апротонных растворителей 125, 126, 636]. В водно-органических смесях состав смешанного растворителя влияет на поведение никелевого анода в определенной области концентраций воды [636]. [c.121]

    При наличии всех качественно общих свойств для пассивирующихся материалов титан существенно отличается от них. Плотность анодного тока, при которой происходит пассивация титана, почти на два порядка меньше, чем у коррозионностойких сталей, хрома и никеля в аналогичных условиях. Значения потенциалов начала и полной пассивации у титана более отрицательны, а начала перепассивации и пробоя пленки положительнее. [c.188]

    Для понимания процессов анодной пассивации и ингибирования растворения металлов, коррозионных процессов, ингибирования анодного окисления водорода и органического топлива чрезвычайно существенно знать свойства пассивирующей пленки. Ингибирующие пленки, состоящие из окислов металлов, обычно изучают различными методами, основанными на тонкопленочной катодной кулонометрии, химическом десорбировании и анализе, дифракции рентгеновских лучей (в случае тонких окисных пленок на никеле и железе), а также оптическими методами с использованием эллипсометра. Существенное преимущество последнего подхода в том, что он является методом in situ и легко применим к изучению гладких металлических поверхностей, на которых происходит анодное растворение, окисление или пассивация. В ряде случаев удается получить информацию не только о толщине пленки, но и о ее диэлектрических свойствах и о высокочастотной проводимости, и это помогает выяснить роль изменений электрических и физических свойств защитных или пассивирующих пленок. Особенный интерес представляет выяснение критических [c.400]

    КОРРОЗИОННОСТОЙКИЕ МАТЕРИА л Ы — материалы, отличающиеся повышенной коррозионной стойкостью. Различают К. ы. конструкционные (металлические, неметаллические, композиционные), используемые для изготовления конструкций, и защитные, предохраняющие металлические сооружения от коррозии. Материалы, обладающие повышенной хим. стойкостью к активным газовым средам при повышенных т-рах, обычно выделяют в разряд жаростойких материалов (см. также Коррозия металлов. Коррозия бетона, Защитные покрытия). К м е т а л л и ч е с к и м К. м. относятся стали, чугуны, сплавы на основе никеля, меди (бронзы, латуни), алюминия, титана, циркония, тантала, ниобия и др. Их стойкость против электрохимической коррозии в принципе можно повышать увеличением термодинамической стабильности или торможением катодного и анодного нроцессов. На практике повышения коррозионной стойкости технических сплавов обычно добиваются легированием, тормозящим анодный процесс, т. е. улучшающим пассивационные характеристики (см. Пассивирование), обусловливая возможность самопассивиро-вания сплава в условиях эксплуатации. Наиболее легко пассивируются хром и титан. Повышенная способность хрома к пассивации нри его введении в менее пассивирующиеся металлы, напр, железо, может передаваться сплаву. На этом принципе основано получение нержавеющих сталей. Чем больше введено хрома, тем выше коррозионная стойкость [c.625]

    Если при наложении положительного потенциала весь ток или его большая часть расходуется на растворение металла (его переход в раствор в виде ионов), то металл находится в активном состоянии и, следовательно, не может быть использован в этих условиях в качестве анода. Если же при анодной поляризации ток практически полностью расходуется на другой процесс, для протекания которого требуется более положительный потенциал, чем для раствореция металла (например, выделение кислорода на никеле при электролизе воды), в этом случае металл пассивен и может служить анодным материалом. Пассивация вызывает существенное изменение поверхностного слоя металла, благодаря чему становится возможным протекание процесса, требующего большей затраты энергии, тогда как растворение металла — более легкий процесс в отношении затраты энергии — полностью прекращается или протекает с очень малой скоростью. При этом нарушается закон электрохимической кинетики, согласно которому скорость анодного растворения металла должна возрастать при увеличении потенциала электрода. При изменении условий, в которых находится металл, состояние пассивности в ряде случаев может быть нарушено. Поэтому изменения плотности тока (или потенциала металла), концентрации электролита, температуры или других условий поляризации, иногла совсем незначительные, могут служить причиной перехода металла из пассивного состояния в активное и наоборот. [c.206]

    Защитную окионую пленку на никеле можно получить окислением его поверхности газообразным кислородом при температурах - 800°С или введением в агрессивную среду окислителейОкисление поверхности никеля с соответствующим пассивации смещением потенциала в полол<ительную сторону наблюдается и при насыщении щелочи газообразным кислородом. Следовательно, действие растворенного в щелочи кислорода на никелевый электрод аналогично анодной поляризации. Насыщение щелочи водородом, наоборот, замедляет пассивацию никеля, так как при этом частично восстанавливаются окисные пленки . [c.214]

    В некоторых условиях для металлов и сплавов, склонных к перепассивации (как, например, для коррозионно-стойких сталей), при дальнейшей анодной поляризации при еще более положительных потенциалах за областью перепассивации наблюдается вновь торможение процесса анодного растворения. Это явление получило название вторичной пассивности. В настоящее время, несмотря на ряд работ, посвященных исследованию вторичной пассивности, главным образом, нержавеющих сталей и никеля [20, с. 5] остается еще не вполне ясным механизм этого явления. Согласно представлениям Т. Хоймана и сотрудников вторичная пассивность коррозионностойких сталей обусловлена пассивацией железа, содержание которого на поверхности возрастает вследствие избирательного растворения хрома. М. Пражак и В. Чигал считают, что явление вторичной пассивации связано с образованием на поверхности сложного оксида (содержащего хром и железо) типа шпинели. [c.59]


Смотреть страницы где упоминается термин Пассивация анодная никель: [c.207]    [c.294]    [c.204]    [c.400]    [c.224]    [c.827]    [c.12]    [c.88]    [c.23]    [c.65]    [c.69]    [c.188]    [c.148]    [c.132]    [c.383]    [c.233]   
Новые проблемы современной электрохимии (1962) -- [ c.306 , c.312 , c.317 ]

Новые проблемы современной электрохимии (1962) -- [ c.306 , c.312 , c.317 ]




ПОИСК





Смотрите так же термины и статьи:

Пассивация

Ток анодный



© 2024 chem21.info Реклама на сайте