Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий флуоресцентными методами

    Имеются указания о возможности точного определения урана в его сплаве с алюминием рентгено-флуоресцентным методом [1043]. [c.355]

    Для определения менее 0,005% алюминия в цирконии применяют флуоресцентный метод [177]. Цирконий выделяют из кислого раствора осаждением салициловой кислотой, а алюминий определяют в аликвотной части фильтрата измерением [c.196]


    Применение. В микроскопии в качестве флуоресцентного красителя для выявления бериллия в неорганических компонентах тканей fl] и кальция флуоресцентным методом. В гистохимии для выявления гидроксида алюминия образующаяся внутрикомплексная соль дает интенсивную зеленоватую флуоресценцию [2] путем предварительной обработки объекта кислотой можно отделять сали алюминия от солей кальция. [c.241]

    А. И. Черкесов и Т. С. Жигалкина описали флуоресцентный метод определения бериллия в бронзе с применением в качестве реагента З-окси-2-нафтойной кислоты. Ими показано, что при взаимодействии ионов бериллия с этим реагентом при pH от 2,5 и выше возникает яркая голубая флуоресценция, позволяющая констатировать присутствие 0,002 мкг бериллия в 1 мл раствора. Реакции мешают значительные концентрации ионов Ре , иОГ, гасящие флуоресценцию. Алюминий и борная кислота образуют с З-окси-2-нафтойной кислотой соединения флуоресцирующие также голубым цветом. Мешающее влияние алюминия может быть устранено прибавлением к раствору комплексона П1. Эта реакция выгодно отличается от описанных выше тем, что может быть проведена в достаточно кислой среде и в присутствии практически неограниченных количеств меди. Это может оказаться полезным при анализе ряда сплавов, например бериллиевых [c.253]

    Чувствительность определения алюминия рентгеновским флуоресцентным методом обычно указывается согласно авторам работы [620] — 10" %. Относительная ошибка определения алюминия при содержании 10—40% составляет 1,5—2%. [c.167]

    А. М. Утевский описал адсорбционно-флуоресцентный метод определения адреналина. Адреналин адсорбируется на окиси алюминия при pH=8,0 и вымывается после окисления иодом в адренохром, который в этих условиях не адсорбируется. [c.176]

    Некоторые лаки алюминия сильно флуоресцируют, поэтому было предложено несколько методов, основанных на этом свойстве. В таких методах наряду с основной трудностью, обусловленной образованием лаков, встречаются еще и затруднения, связанные с измерением флуоресценции. В отдельных случаях такие флуоресцентные методы могут иметь некоторые преимущества. [c.201]

    Для качественного обнаружения алюминия обычно используют образование окрашенных соединений, осаждение труднорастворимых соединений, флуоресцентные реакции, капельный метод. В табл. 6 приведены наиболее важные методы качественного обнаружения алюминия. [c.29]


    Бронзы безоловянные. Метод спектрального анализа по окисным стандартным образцам с фотографической регистрацией спектра Бронзы безоловянные. Метод рентгеноспектрального флуоресцентного определения алюминия Бронзы жаропрочные. Метод определения меди Бронзы жаропрочные. Методы определения кремния Бронзы жаропрочные. Методы определения хрома Бронзы жаропрочные. Метод определения фосфора Бронзы жаропрочные. Методы определения железа Бронзы жаропрочные. Метод определения никеля Бронзы жаропрочные. Метод определения свинца Бронзы жаропрочные. Методы определения циркония Бронзы жаропрочные. Метод определения кобальта Бронзы жаропрочные. Методы определения титана Бронзы жаропрочные. Определение хрома, никеля, кобальта, железа, цинка, магния и титана методом атомно-абсорбционной спектрометрии [c.576]

    Метод основан на флуоресцентной реакции алюминия с эриохромом сине-черным В при pH 5 [2—4]. [c.235]

    Метод основан на удалении основы дистилляцией олова в виде хло рида и определении алюминия по флуоресцентной реакции с салицилаль-о-аминофенолом. [c.344]

    Алюминий является примером типичного металла. /С-спектр этого металла в области около 8 А приведен на рис. 9 [13]. Края испускания и поглощения можно описать кривой арктангенсов точки перегиба на них соответствуют пределу Ферми. Полоса К была исследована методом флуоресцентного возбуждения [13, 52]. [c.136]

    Допустим, требуется открыть в смеси ионов двухвалентное железо, алюминий и кадмий. Алюминий можно открыть алюминоном. Однако вывод следует проверить по более детальному описанию этой реакции. Реакция с алюминоном проходит в аммиачной среде, в которой гидроксид кадмия растворим и мешать не будет. Но в двухвалентном железе всегда можно ожидать примесь трехвалентного, которое мешает определению, следовательно, оно должно быть удалено или замаскировано. Для разделения железа и алюминия можно использовать амфотерность алюминия. Двухвалентное железо можно открыть а,а -дипиридилом. Этому определению не мешает ни алюминий, ни кадмий. Кадмий проще всего было бы обнаружить полярографическим методом, так как при определениях другими методами, в том числе и флуоресцентным, сказывается мешающее влияние элементов, правда, если они присутствуют в значительном избытке по сравнению с кадмием. Этот пример показывает, что к выбору реакций определения без разделения ионов следует подходить очень осторожно. Не всегда можно применять и методы маскирования, приходится использовать методы группового разделения. [c.297]

    Таким путем многие сорта обычной фильтровальной бумаги можно сделать пригодными для разделения различных смесей неорганических веществ. Елисеевой доказана возможность применения хроматографии на бумаге в качественном химическом анализе. Распределительную хроматографию целесообразно при этом сочетать с дробным методом анализа Н. А. Тананаева, употребляя специфические органические реактивы для открытия отдельных ионов. На одной хроматограмме можно обнаружить несколько катионов одним и тем же реактивом, например дающим характерные флуоресцентные реакции. Распределительная хроматография на бумаге для катионов показала большую разрешающую способность этого метода анализа. Можно разделять смеси, содержащие ионы щелочных металлов, благородных металлов от меди, разделять смеси ионов бериллия, алюминия, цинка и циркония и другие смеси. [c.115]

    Оксихинолиновый метод (флуоресцентный) . Оксихинолят галлия из водного раствора, имеющего pH—2,6—3,0, экстрагируют хлороформом и содержание галлия в экстракте устанавливают по интенсивной желтоватой флуоресценции, возникающей в ультрафиолетовом свете. Индий также реагирует при рН=3, но относительно слабо (флуоресценция 1 мг индия соответствует флуоресценции 0,002 мг галлия). Алюминий и железо (И) определению не мешают. [c.509]

    В ряде статей опубликованы результаты сравнительного анализа, проведенного методами фотометрии, флуориметрии, эмиссионной спектрометрии, атомно-абсорбционной спектроскопии, рентгеновского флуоресцентного и нейтронно-активационного анализа, вольтамперометрии и полярографии следующих элементов алюминия, бериллия, брома, хрома, германия, ртути, никеля, селена, олова и др. В табл. 62 приведены полученные для различных материалов усредненные результаты анализа, относительные стандартные ошибки и пределы обнаружения. [c.186]

    Метод отличается исключительно высокой чувствительностью— порядка 10- —10 7 моль/л и чаще всего используется для определения низких концентраций ионов металлов, связанных в форме, подходящих флуоресцирующих комплексов, а также для определения некоторых органически веществ типа рибофлавина, витаминов группы В, алкалоидов и др. Так, комплексы 8-оксихинолина с рядом таких ионов металлов, как А1 , Оа +, Мд +, используются для ояределения этих ионов при концентрациях, достигающих 0,01 мкг/мл. Алюминий определяется при помощи флуоресцентных методов с 8-оксихинолином, морином или понтахромом сине-черным Р при содержании от Ы0- до 1% в различных сплавах и минералах. Флуоресцентный метод можно использовать не только для анализа растворов, но и для анализа веществ в твердой фазе. Так, уран в абсолютных количествах порядка Г-10- г можно определить при помощи-сплавления исследуемого вещества с бо-раксом или фторидом натрия до маленьких бусинок, облучения бусинок ультрафиолетовым светом и измерения вторичной эмиссии в видимой области спектра. .  [c.399]


    Флуоресцентные методы определения алюминия с помощью кверце-тина и морина .  [c.305]

    Этот реактив образует труднорастворимые внутрикомплексные соли с большинством металлов. Комплексы имеют общую формулу Me"+( 9HsON) (некоторые исключения приведены в табл. 11). Определение выполняют обычно весовым или объемным путем 29, но возможно также и колориметрическое определение металлов. Большинство оксихинолатов растворимо в хлороформе с интенсивной окраской [железо (III) и ванадий окрашены в зеленовато-черный, алюминий и другие металлы — в желтый цвет] и таким образом некотврые металлы можно определить посредством прямой колориметрии . Оксихинолаты многих металлов, особенно алюминия, галлия, индия и цинка, в хлороформенном растворе имеют сильную флуоресценцию и их можно определять флуоресцентным методом (стр. 198). [c.117]

    Д а в ы д о в А. Л., Девекки В. С. Количественный флуоресцентный метод определения алюминия. Бюллетень Всесоюзного химического общества им. Менделеева № 2, 134. (1941) Зав. лаб. 10, 134 (1941). [c.537]

    Флуоресцентный метод определения остаточных количеств корала применяют для всех типов животной ткани, включая жиры. Образцы мяса обрабатывают при размалывании ацетоном или бензолом. Полученную при экстракции водную фазу отбрасывают. После добавления хлороформа отделяют фильтрованием остатки воды и нерастворимые веш ества. Затем растворитель удаляют, остаток растворяют в н-гексане и при помопщ экстракции ацетонитрилом отделяют жир. Хлорметилумбеллифероп удаляют при пропускании хлороформного раствора через колонку, заполненную промытой кислотой окисью алюминия. Корал и его кислородный аналог элюируют хлороформом. После упаривания элюата остаток гидролизуют водным раствором едкого кали. Из гидролизата амиловым спиртом экстрагируют примеси, подавляющие флуоресценцию. Флуоресценцию раствора измеряют при 410 ммк, используя для активации свет с длиной волны 330 ммк. [c.347]

    Флуоресцентный метод определения алюминия в этих породах основан на экстракции его 8-оксихинолята хлороформом Описаны также и колориметрические методы определения (с помощью ализарина 5) [c.218]

    Единственный серьезный недостаток флуоресцентного метода определения урана заключается в том, что значительное число элементов может гасить флуоресценцию урана, что приводит к ошибочным результатам. Элементы, которые гасят флуоресценцию урана, можно классифицировать следующим образом сильногасящие (1—10 у такого элемента уменьшают флуоресценцию урана на 10% и более) Сг, Мп, Со, N1, Ag, Ли, Pt, РЬ,. .а, Се, Рг, Ыс1 умеренногасящие (10—50 у уменьшают флуоресценцию урана на 10%) Ре, Си, 2и, 5п, ТЬ слабогасящие (50—1000 у уменьшают флуоресценцию урана на 10%) Т1, У/. Приводимые данные относятся к 2 г флюса смеси фторида, карбоната натрия и карбоната калия. О влиянии некоторых других элементов нет данных. Щелочноземельные металлы, магний, алюминий, иттрий, цирконий, ванадий, кремний, мышьяк и фосфор не уменьшают интенсивности флуоресценции урана. [c.815]

    Оказалось, что при использовании сравнительного флуоресцентного метода [233] для оценки содержавия БаП Б/сФ гораздо лучшие результаты получаются при элюировании экстрактов воздушных загрязнений с активированного оксида алюминия толуолом [104], чем при элюировании с дезактивированного оксида алюминия циклогексаном. Был предложен пробный стандартный метод определения БаП—БгеФ в атмосфере [47]. По опубликованным данным, с помошью этого метода возможно а) детектировать О—0,25 мкг БаП или БкФ в 1 мл раствора б) определять [c.166]

    Оксид алюминия —целлюлоза (2 1), толуол — эфир (7 3) (первое направление), диметилформамид — вода (35 65) (второе направление). Описанные выше пять методик используют для определения 9-акридона в атмосфере городов с последующим детектированием флуориметрическим способом [37]. На рис. 5.26 изображены двумерные хроматограммы. Зоны веществ с близкими к / чистого 9-акридонз (внутренний стандарт), экстрагировали из сорбента для последующего детектирования флуоресцентными методами. [c.225]

    Жебот [1,] исследовал содержание хлорфенолов в различных пестицидах и гербицидах методом ТСХ и флуоресцентными методами, используя в качестве сорбентов силикагель, оксид алюминия и сорбент фирмы Gelman типа SG. Пластинки со слоем сорбента толщиной 0,3 мм высушивали на воздухе и активировали при 65 °С в течение 60—90 мин. В качестве стандартов использовали растворы хлорфенола в ацетоне с концентрацией 1 мкг/мл. Несколько литров проб воды экстрагировали петролейным эфиром (5—10 порций по 100 мл). Экстракт упаривали до объема 0,1 мл и пробы объемом 2 мкл наносили вместе со стандартами на слой силикагеля. После разделения на участке длиной 15 см пластинки высушивали и облучали коротковолновым УФ-светом (254 нм). Чувствительность составляла 0,5 мкг на пятно. При разделении на оксиде алюминия в качестве элюента использовали систему петролейный эфир — бензол (1 1), детектирование проводили также с помощью УФ-света. Разделение на пластинках фирмы Gelman проводили смесью бензола, петролейного эфира и уксусной кислоты (20 10 1). Хроматограммы проявляли, опрыскивая 0,05%-ным раствором родамина Б в этаноле. При облучении УФ-светом (350 нм) на пурпурном фоне проступали оранжево-розовые пятна. Чувствительность метода составляла 0,5 мкг на пятно. [c.601]

    Минимальная концентрация алюминия, определяемая флуоресцентн лм методом, равна 0,001%. [c.197]

    В XIX в. был разработан метод колориметрического определения железа(П1) с помощью тиоцианата (Герапат, 1852 г.) и описано титриметрическое определение серебра с использованием этого же реагента (Фольгард, 1877 г.). Для титрования борной кислоты рекомендовался глицерин (Томсон, 1893 г.) в различных реакциях применялись следующие органические реагенты морин — во флуоресцентной пробе на алюминий (Гоппельсрёдер, 1867 г.), флуоресцеин — в качестве кислотно-основного индикатора (Крюгер, 1876 г.), анилин — для каталитического обнаружения ванадия (Гвийяр, 1876 г.), 1-нитрозо-2-нафтол — как осадитель кобальта (Ильинский, фон Кнорре, 1885 г.), 2,2 -дипиридил и 1,10-фенан-тролин-—в качестве реагента на железо(П) (Блау, 1888 г.). [c.20]

    Флуорохромы (люмогены) используют отнюдь не только в люминесцентной микроскопии их с успехом применяют и во многих других случаях, например для получения флуоресцентных адсорбентов при хроматографировании бесцветных и нелюминесцирующих соединений. Зоны вен ества на хроматограмме обнаруживают по отсутствию люминесценции адсорбента в тех местах, где вследствие абсорбции веществом возбуждающего излучения адсорбент не люминесцирует. Брокман и Байер [31 ] рекомендуют морин для покраски адсорбента, но только если хроматографируют на окиси алюминия, на окиси магния или на карбонате кальция если адсорбент — кремнезем, пользуются берберином применение натриевой соли 3-оксипирен-5,8,10-трисульфокислоты для покраски подкисленной соляной кислотой окиси алюминия (80 мг на 1 кг) позволяет выявлять вещества, спектр поглощения которых простирается в область коротких длин волн. В другой работе [32] описан метод получения твердых флуоресцентных колонок их преимущество в отсутствии стеклянных стенок, препятствующих выявлению зон вещества, спектр поглощения которых лежит в той же области длин волн, где поглощает стекло (230 — 290 ммк). [c.74]

    Большое число работ носвя1цепо определению а л ю м и н и я. Здесь мы имеем типичный пример флуоресцентной реакции, претерпевшей сложную эволюцию были опробованы различные реагенты, уточнены условия проведения реакции, проверены мешающие факторы и в результате разработаны методы, оказавшиеся достаточно специфичными, чувствительными и точными для качественного и количественного определения следов алюминия в бериллии [24, 59], в металлическом магнии [114], морской воде [60], сталях и сплавах [61—63], в пиве [64]. Одной из первых была описана реакция алюминия с морином, известная в литературе иод названием реакции Гоппельшредера [65]. Реакция проводится в уксуснокислом растворе при рН = 3,0—4,5, и так н е широко применяется, как капельная. В разных работах чувствительность реакции с морином оценивается но-разному и зависит она от качества реактива. Гото считает возможным с нрименением морина открыть в капле раствора 0,01 у А1, [16], в то время как еще в 1901 г. М. С. Цвет определял алюминий морином в количестве 0,0001у в капле раствора [66]. В условиях проведения реакции на алюминий морин флуоресцирует и в присутствии Zn, Ве, Са, Зс [29]. Количественное определение алюминия морином приводится в работе [67]. [c.171]

    В настоящее время удалось разработать еще более чувствительный метод количественного определения галлия. Божевольнов, Лукин и Гра-динарская изучали влияние заместителей на флуоресцентные свойства внутрикомплексных соединений галлия с диоксиазосоединениями и нашли, что 2,2, 4 -триокси-5-хлор-1,1 -азобензол-З-сульфокислота, при ее применении в водной среде, является реактивом на галлий более чувствительным, чем сульфонафтолазорезорцин, и, кроме того, ее комплекс с галлием извлекается изоамиловьш спиртом и флуоресцирует после этого более интенсивно [89—91]. В интервале значений рН=1,7—3,5 интенсивность флуоресценции комплекса галлия с этим реактивом практически постоянна. В случае равенства объемов изоамилового спирта и испытуемого водного раствора интенсивность флуоресценции извлеченного комплекса увеличивается в 3,5 раза. Интенсивность флуоресценции растворов реактива в присутствии галлия как в водных растворах, так и в изоамиловом спирте пропорциональна концентрации галлия, если последняя не превышает 0,5 у в 5 лл раствора. В водном растворе чувствительность реакции 0,01 у в 5 мл. При применении изоамилового спирта для извлечения комплекса и соотношении объемов изоамилового спирта и водного раствора 1 10 можно в последнем открыть галлий в количестве 0,0005 у в 5 мл, что соответствует предельному разбавлению 1 10 ООО ООО г/г. Детальное исследование влияния различных катионов и анионов на интенсивность флуоресценции галлиевого комплекса показало, что при количествах, в 100 раз-больших, чем содержание галлия, к тушению приводят Зи, Zг, Рг, а при количествах, в 10 раз больших,—Си, Ге, V, Мо. Остальные катионы не тушат даже нри 1000-кратном содержании. Алюминий способен образовывать флуоресцирующий комплекс, однако его флуоресценция менее интенсивна. При соотношении количеств галлия и алюминия 1 1 можно пренебречь присутствием последнего и выполнять измерения при pH раствора 1,7—3,5. В случае десятикратного избытка алюминия необходимо работать при pH растворов 1,7—2,7, а в случае стократного избытка— в еще более узком интервале значений рН = 1,7—2,2. Применение метода добавок (см. приложение УП, стр. 396 — определение алюминия в уксуснокислом натрии) позволяет проводить определения и в присутствии гасящих примесей. Реакция с морином применена для определения следов галлия в минералах [29, 100], нефтяных водах [100], метеоритах [100], биологических объектах [101]. От основной массы посторонних катионов освобождаются путем извлечения галлия эфиром из солянокислого раствора. С целью увеличения специфичности реакции применяют обычные аналитические приемы, например флуоресценцию, обусловленную алюминием, уничтожают прибавлением раствора, содержащего в 100 мл воды 3 г фтористого натрия, 1,8 г буры и 5 ледяной уксусной кислоты [29]. В [100], с целью повышения специфичности реакции, приводится метод определения галлия, основанный на измерении яркости флуоресценции хлороформенного раствора купферон-морин-галлиевого комплекса ). Авторы указывают, что разработанный ими метод чувствительней применяемого в спектральном анализе и позволяет определять галлий в количествах от 1 до-6 у в 6 мл хлороформа. [c.174]

    Галлий, подобно индию, можно титровать в присутствии морина в качестве флуоресцентного индикатора (стр. 376). Галлий является сопутствующим элементом в алюминиевом сырье и поэтому содержится в сыром алюминии (до 0,2%). Относительно богатым источником галлия является летучая метеоритная пыль, которая может содержать до 1% галлия. Определение галлия в этой пыли проводят методом Патровского [80] следующим образом. [c.494]

    Листки силуфола 254 (производства Kavalier Glassworks) содержат слой макропористого силикагеля, приготовленного по методу Питры и Штербы 148], без индикатора или с флуоресцентным индикатором (на 254 или 366 пм), вкрапленным в макроструктуру сорбента. К этому силикагелю добавляют крахмал в качестве связующего и наносят полученную смесь на листки алюминия. Более подробные данные о свойствах и применении этого материала можно найти в рекламной литературе [52]. [c.99]

    Реакция алюминия с представителем оксифлавонов — морином, лежащая в основе одного из наиболее чувствительных методов определения этого элемента, была описана около 100 лет назад [108] и еще в 1901 г. использована Цветом для открытия 0,0001 мкг А1 в капле раствора [155]. Систематическое исследование и сопоставление ряда реактивов в отнощении их пригодности для флуоресцентного открытия алюминия производили многие авторы. Было установлено, что понтахром синечерный Р (кислотный хром сине-черный) позволяет открывать 0,2 мкг/мл А1 [197, 360]. Из многих изученных азокрасителей флуоресцирующие комплексы с алюминием дали восемь, в том числе — солохромовые красный ERS, фиолетовый RS, синие 6BFA и BS [245, 312] кислотный ализарин гранат Р и понтахром фиолетовый SW [74]. В ходе исследования салицилальде-гида, 2-оксинафтальдегида и 18 их производных установлена 140 [c.140]

    Для флуоресцентного определения циркония в рудах предложен и 3-оксифлавои. Сам реактив флуоресцирует зеленым светом, его циркониевый комплекс — синим, поэтому при измерении яркости свечения растворов используют синий светофильтр. Для отделения от алюминия и некоторых других элементов применено осаждение едким натром, железо удаляют посредством электролиза на ртутном катоде [182]. В развитие более ранних работ по применению в фотометрическом анализе кверцетина [1] описано количественное определение циркония на бумажных хроматограммах в присутствии титана [50, 109]. При флуориметрировании с кверцетином в растворах для отделения от мешающих примесей использована экстракция циркония смесью теноилтрифторацетона с толуолом в зависимости от юстировки флуориметра количественному определению в объеме 25 мл доступны его содержания в пределах от 1 до 25 мкг или от 0,2 до 5 мкг [240]. Недавно разработано определение циркония с еще одним представителем группы флавополов — дати-стином этот метод применен к анализу алюминиевых и магниевых сплавов [49]. [c.190]

    Хиномициновые антибиотики — это пептидные лактоны с хи-ноксалиновым кольцом, отличающиеся друг от друга только своей М-метиламинокислотной долей. Шей [71] подвергал хроматографическому разделению соединения А, В, Во, С, О и Е методом круговой хроматографии на оксиде алюминия, применяя нижнюю фракцию смеси этилацетат—1,1,2,2-тетрахлор-этан—вода (3 1 3). Таким способом удалось разделить все компоненты, кроме В и Во. Хроматографирование проводили на флуоресцентном слое и рассматривали пластинки в УФ-свете. [c.544]

    Если анализируемое вещество, например, алюминий, не обладает в растворе собственной флуоресценцией, переводят его предварительно путем добавки соответствующих реагентов (для г пюминия — морин или кверцетин, добываемый из шелухи лука экстракцией спиртом) в соединение, обладающее интенсивной флуоресценцией. В дальнейшем ведут работу обычным порядком. При подобных количественных флуоресцентных анализах особое значение имеют все замечания относительно стабильности растворов во времени, стабильности методики наблюдения, постоянства состава реактивов и т. д., которые делались выше при разборе колориметрических и нефелометрических методов. Нужно учесть, что флуоресценция сильно зависит от концентрации вo poдныx ионов, присутствия посторонних веществ [c.305]

    Особым вниманием в последнее время пользуются методы прямого титрования. Один из подобных методов с резкой точкой эквивалентности предлагают Флашка и Абдин [56(45)]. Они проводят титрование в кипящем сильноуксуснокислом растворе с pH = 3 и СиУ — ПАН в качестве индикатора. Сообщается о проверке метода и о его практическом применении [62(34)]. Тихонов [62(88)] обнаружил некоторую тенденцию метода к заниженным результатам и предложил устанавливать раствор ЭДТА по стандартному раствору А1, если необходима большая точность определений. Ива-мото [61(66)] отмечает, что винная кислота при титровании не мешает и даже создает благоприятные условия, препятствуя заметному образованию гидроксосоединений. Титрование проводят в кипящем растворе при pH = 3,7, причем в качестве индикатора вместо ПАН используют, благодаря лучшей растворимости, ПАР. Тейс [55(26)] и Пауль [56(28)] описывают прямое титрование с хромазуролом 5 в ацетатной буферной среде с.pH =4, однако точка эквивалентности достигается медленно и бывает нерезкой, отчего Тейс предпочитает проводить обратное титрозание раствором соли алюминия. В аналогичных условиях, согласно Тэйлору [55(8)], проводят определение с применением гематоксилина в качестве индикатора. Автор избегает трудностей, связанных с нечеткой точкой эквивалентности, титруя известное количество комплексона анализируемым раствором. Неудобство этого метода очевидно. В короткой заметке Кунду [61(2)] указывает на возможность проведения титрования А1 с алюминоном в кипящем растворе, при рН=4,4. Кристиансен [61 (44)] применяет флуоресцентную индикацию точки эквивалентности. В глициновом буферном растворе с рН =3 в ультрафиолетовых лучах А1 дает с 3-оксинафтойной кислотой синюю флуоресценцию, которая в точке эквивалентности переходит в зеленую. Необходимо подогревать раствор до 50° С, чтобы ускорить переход окраски. [c.186]

    Метод основан на флуоресцентной реакции алюминия с красителем. эриохромом сине-черным В в водноспиртовой среде при pH 5. В ультрафиолетовом свете продукт реакции алюминия с эриохромом дает карминовокрасное свечение. Железо гасит свечение, вызываемое алюминием, ио помехи со стороны железа можно устранить с помощью ортофенантролина. При больших количествах железа его отделяют экстракцией в виде диэти.чдитиокарбамината. Галлий реагирует подобно алюминию, но чувствительность реакции приблизительно в 15 раз слабее. [c.446]

    Метод основан на флуоресцентной реакции галлия с красителем сульфо-нафтолазорезорцином в водносниртовой среде при pH 3. В ультрафиолетовом свете продукт реакции дает оранжево-красное свечение. Алюминий дает подобную реакцию, чншь при содержании бо.чее 2 мкг в анализируемом, растворе. Помехи г)Т железа устраняются гид[)окси.памином. [c.447]

    Для флуоресцентного определения алюминия используют оксин (НОх). При этом хелат АЮхз экстрагируют хлороформом в тех же условиях, что и при фотометрическом определепии алюминия (стр. 272). Измеряют иитенсивиость флуоресценции экстракта интенсивность флуоресценции возрастает с увеличением концентрации алюминия в экстракте. Метод позволяет определять до 0,004 мкг/мл алюминия [776]. Мешающие ионы можно отделить с катионитом, если добавить фторид для маскирования алюминия. Перед определением к раствору для демаскирования алюминия добавляют аммонийно-ацетатный буферный раствор [1527]. Оксинат алюминия экстрагируется в этих условиях при pH = 5,7. Определению не мешает присутствие следующих металлов в 20-кратном избытке Ре 2п, Со, N1, Си, Сс1, 5п, В1, Т1, Мо и и. 1п и Оа мешают определению [1768]. [c.435]


Смотреть страницы где упоминается термин Алюминий флуоресцентными методами: [c.153]    [c.22]    [c.191]    [c.448]   
Колориметрический анализ (1951) -- [ c.305 ]




ПОИСК





Смотрите так же термины и статьи:

флуоресцентное



© 2024 chem21.info Реклама на сайте