Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбция аппараты

    Поскольку соотношение жидкость — газ при этом способе очистки очень мало, целесообразно использовать для абсорбции аппараты с колпачковыми или клапанными тарелками. Насадочные абсорберы в данном случае неприемлемы, так как для смачивания насадки необходимо значительно большее количество жидкости, чем следует по условиям равновесия. [c.333]


    Промыватель газа абсорбции. Аппарат служит для улавливания рассолом аммиака из газов, поступающих из первого абсорбера. В этих газах содержится около 85% Oj, до 5% аммиака, воздух и пары воды. Подобно промывателю воздуха фильтров, промыватель газа абсорбции собран из шести чугунных царг, между которыми установлены четыре барботажные тарелки. Между двумя верхними царгами днище не установлено, верхняя царга образует пространство для отделения капель от газа, выходящего из аппарата. [c.173]

    Поверхностные абсорберы используются для поглощения хорошо растворимых газов. Газ проходит над поверхностью жидкости. Поверхность соприкосновения в этих абсорберах мала. Для увеличения поверхности устанавливают несколько последовательно соединенных аппаратов, в которых газ и жидкость движутся противотоком. Чтобы обеспечить движение жидкости самотеком, каждый последующий аппарат устанавливается ниже предыдущего. Для отвода тепла, выделяющегося при абсорбции, аппараты снабжаются змеевиками, по которым циркулирует вода либо другой охлаждающий агент. [c.68]

    Рассчитать диаметр сетки Pt/Rh катализатора для контактного аппарата, обеспечивающего получение азотной кислоты 82 т в сутки. Степень превращения аммиака в N0 0,96, а степень абсорбции NOa 0,98. Окисление аммиака происходит при давлении 10 Па. Напряженность катализатора 605 кг/м в сутки. Используется смесь с объемной долей аммиака 0,112%. Активная поверхность [c.168]

    При анализе химической абсорбции в насадочной колонне — основная трудность заключается в учете изменения состава газовой и жидкой фаз вдоль колонны. В отличие от процессов физической абсорбции, должны быть рассмотрены условия противотока и прямотока, потому что последний с успехом можно применять в колонных аппаратах. В ряде случаев применение прямотока наиболее целесообразно, так как он позволяет достигать более высоких скоростей потоков по колонне данного сечения и исключает возможность захлебывания. Обе фазы в этом случае движутся в одном направлении под действием перепада давления по колонне. [c.79]

    Обзор различных лабораторных аппаратов, применяемых для исследования кинетики абсорбции, приведен в кн. В, Л. Р а м м, Абсорбция газов, Изд. Химия , 1966, стр, Ъ, — Прим. редактора.] [c.92]

    Современные ректификационные аппараты классифицируются в зависимости от их технологического назначения, давления, способа осуществления контакта между паром и жидкостью и внутреннего устройства, обеспечивающего этот контакт. По технологическому назначению на современных комбинированных установках АВТ ректификационные аппараты делятся на колонны атмосферной перегонки нефти, вакуумной перегонки мазута, стабилизации легких фракций, абсорбции жирных газов переработки нефти, вторичной перегонки широкой бензиновой фракции и др. По проводимому процессу различают следующие ректификационные колонны атмосферные, вакуумные, стабилизаторы и др. В зависимости от давления колонны делятся на вакуумные, атмосферные и работающие под давлением. В качестве контактного устройства в колоннах применяют тарелки. Часто эти колонны именуются тарельчатыми. По способу контакта между паром (газом) и жидкостью все ректификационные аппараты на установках первичной перегонки нефти характеризуются непрерывной подачей обеих фаз. [c.50]


    Керосиновая фракция с 31-ой или 29-ой тарелок основной колонны поступает в первую секцию отпарной колонны 9. Пары из отпарной колонны 9 направляются в основную колонну 8 под 30-ую тарелку. С низа первой секции отпарной колонны 9 фракция прокачивается через холодильник в мерники. С 14-ой тарелки основной колонны 8 во вторую секцию отпарной колонны 9 отводится флегма дизельного топлива. Пары из этой секции возвращаются под 16-ую тарелку основной колонны, а дизельное топливо с низа отпарной колонны насосом через теплообменники и холодильники откачивается в мерники. В низ основной колонны 8 и в отдельные секции отпарной колонны 9 подается перегретый водяной пар. Мазут — остаток основной ректификационной колонны 8 забирается горячим насосом и прокачивается через печь 13 в вакуумную колонну 12. В случае временного отключения вакуумной части мазут направляется на другие процессы, в частности на термический крекинг. Остальные технологические узлы установки — вакуумная перегонка мазута, стабилизация, абсорбция и выщелачивание компонентов светлых продуктов — работают по описанной выше схеме установки АВТ производительностью 1,0 млн. т/год. Главным аппаратом установки является основная ректификационная колонна диаметром 3,8 м с 40 тарелками желобчатого типа. Из них шесть расположены в отгонной части, а 34 в концентрационной. В колонне осуществлено два циркуляционных орошения с отбором флегмы. [c.88]

    Блок абсорбции и стабилизации верхнего продукта первой ректификационной колонны 6. Основным аппаратом блока является фракционирующий абсорбер 13, разделенный глухой перегородкой на две части нижнюю — абсорбер-десорбер с 31 тарелкой и верхнюю— абсорбер второй ступени с 6 тарелками. В абсорбере-де-сорбере из газа поглощаются пропан и бутаны, а из жидкой фазы отпариваются метан и этан. Абсорбентом служит фракция н. к.— 85 °С. Абсорбер второй ступени предназначен для поглощения паров бензина, увлеченных сухим газом из абсорбера-десорбера. Абсорбентом служит фракция 140—240 °С. Насыщенный абсорбент из абсорбера второй ступени насосом подается в первую ректификационную колонну б сухой газ, выходящий с верха абсорбера второй ступени, поступает в топливную сеть завода. Тепло абсорбции в абсорбере-десорбере снимается в трех точках по высоте абсорбционной части аппарата циркуляцией абсорбента через холодильники. [c.107]

    Необходимость сооружения абсорбционного блока определяется при разработке технологии с учетом характеристики перерабатываемой нефти. На рис. 56 приведен общий вид стабилизатора и фракционирующего абсорбера, применяемых в блоках стабилизации и абсорбции современных комбинированных установок АВТ. Эти цилиндрические аппараты колонного типа оборудованы фракционирующими тарелками (до 40 шт.), штуцерами-патрубками для-ввода и вывода продуктов, люками-лазами для ремонтных и монтажных работ. Высота и конструктивные данные указанных аппаратов во всех случаях сохраняются одинаковыми, а диаметр их меняется в зависимости от углеводородного состава перерабатываемой нефти. Конструкция нижней части аппаратов зависит от вида теплоносителя (пар высокого давления, циркулирующая че- [c.151]

    Теплообменники кожухотрубчатые с U-образными трубами (ГОСТ 14245—69). Диаметр кожуха теплообменника — от 325 до 1400 мм, условное давление 16, 25, 40, 64 кгс/см , температура от — 30 до 450 °С. Применяются для нагрева и охлаждения жидких и газообразных сред на нефтеперерабатывающих и нефтехимических заводах. Теплообменники могут изготовляться из гладких труб или из труб с накатанными ребрами. Основные размеры и конструкции этих аппаратов мало отличаются от аппаратов, описанных выше. Особенность их — отсутствие плавающей головки. Вместо нее один конец труб имеет U-образную форму, что позволяет свободно перемещаться им при температурных напряжениях. Концы закругленных труб закреплены в неподвижной решетке теплообменника. Аналогичные подогреватели применяются в кипятильниках, устанавливаемых в блоках стабилизации, абсорбции или вторичной перегонки бензина. Все конструктивные элементы [c.174]

    Процесс десорбции осуществляется в массообменных аппаратах, называемых десорберами, конструктивно мало отличающихся от абсорберов. Абсорбент, освобожденный в процессе десорбции от целевых компонентов, называется регенерированным. Регенерированный абсорбент после охлаждения снова подается насосом на абсорбцию. Таким образом, получается замкнутый абсорбционно-десорбционный процесс. [c.71]

    В процессе абсорбции теплота вносится в аппарат и выносится из него только потоками газа и абсорбента. Но при поглощении целевых компонентов абсорбентом выделяется так называемая теплота абсорбции, теплота растворения. Количество теплоты абсорбции пропорционально количеству поглощенных компонентов. [c.75]


    Процесс десорбции (регенерации) абсорбента прямо противоположен процессу абсорбции. При десорбции из насыщенного абсорбента отпариваются целевые компоненты, т. е. из жидкой фазы переводятся в газовую. Газовая фаза в десорбере создается подачей в нижнюю часть аппарата инертного газа (газа отпарки). Если счет тарелок в десорбере вести снизу вверх, а фактор абсорбции заменить фактором десорбции (отпарки) 8 = то можно получить формулу десорбции, аналогичную [c.82]

    Процесс масляной абсорбции для извлечения жидких углеводородов из нефтяных газов впервые был применен в 1913 г. в США. Абсорбция осуществлялась в горизонтальных аппаратах при давлениях 0,2—0,25 МПа и температурах окружающей среды. [c.159]

    Для снижения потерь абсорбента с отбензиненным газом осуществляют дополнительное охлаждение отбензиненного газа или применяют двухступенчатую абсорбцию. При двухступенчатой абсорбции растворенный в газе абсорбент поглощается в верхней части аппарата более тяжелым абсорбентом, который подается на верхнюю тарелку и выводится с четвертой, пятой тарелки через верхнюю часть аппарата. В этом случае более легкий основной абсорбент подается на тарелку, расположенную ниже уровня отбора тяжелого абсорбента. [c.160]

    Метод НТА применим для переработки газов различного состава (от жирных до тощих). При переработке жирных газов в процессе охлаждения перед абсорбцией конденсируется большая часть углеводородной жидкости, которая, отделяясь в сепараторе, снижает нагрузку на абсорбционный аппарат. [c.161]

    При очистке газа с низким содержанием тяжелых углеводородов абсорбция происходит при высоком давлении и при температуре ниже температуры окружающей среды, при этом в одном аппарате с использованием одного растворителя из газа удаляются сернистые компоненты и жидкие углеводороды. Растворимость СО2 в ТБФ не высока. Для утилизации метана, поглощенного ТБФ в абсорбере, насыщенный абсорбент подвергается двухступенчатому выветриванию. На второй ступени выветривания поддерживается давление 0,77 МПа. Газ выветривания сжимается и подается в абсорбер несколько ниже ввода 182 [c.182]

    В практике инженера-химика встречается также большое количество других задач, которые могут быть сведены к экономическому сравнению. Для получения желаемого продукта из многих принципиально различных методов, при использовании которых образуются различные побочные продукты или применяется различное сырье, нужно выбрать один. На установленном производстве можно испробовать многие технологические варианты. Например, для предварительного нагревания сырья из ряда греющих агентов можно выбрать пар, органические теплоносители, расплавленные металлы или соли, электрический ток, топочные газы и т. д. Аналогично при абсорбции надо делать выбор из нескольких растворителей. Когда окончательно выбрана технологическая схема, следует еще при проектировании произвести наиболее удобную серийную расстановку машин и аппаратов. В подобных случаях часто применимы описанные выше статистические методы. Следует определить стоимость одного варианта, а затем сравнивать с ним остальные (подробно эта задача в настоящей книге не рассматривается). Необходимо учитывать, что оптимальными будут те технически возможные альтернативы, при которых себестоимость будет минимальной. [c.354]

    Абсорбция газов может быть разомкнутым и циркуляционным процессом. В первом случае жидкий поглотитель используется однократно без десорбции уловленных соединений. Во втором случае поглотитель циркулирует в цепи абсорбция — десорбция. Растворимость в поглотителе извлекаемого соединения определяет выбор схемы очистки. От этого параметра зависят количество поглотителя, расход энергии и теплоты на регенерацию поглотителя, габариты аппаратов. [c.488]

    Впоследствии было предложено для очистки газа применять аммиачные растворы. Проведенные изменения технологии позволили добиться более стабильной работы систем абсорбции, так как забивка аппаратов солями прекратилась. Однако при этом воз- [c.57]

    Паровоздушная смесь, нагреваясь до 110°С в подогревателе 5, поступает в реактор 6 с катализатором. Чтобы избежать термического разложения формальдегида, реакционные газы сразу же направляют в холодильник 7. Абсорбция формальдегида проводится в аппарате 8 водным раствором метанола. Первая стадия абсорбции является экзотермическим процессом. Поэтому при определен- [c.325]

    В секции абсорбции и стабилизации, обслуживающей данную крекинг-установку, имеются следующие аппараты колонного типа фракционирующий абсорбер, обычный абсорбер, десорбер и дебутанизатор. Схема этой секции представлена в правой части рис. 117. В десорбере бензин широкого фракционного состава разделяется на нестабильный легкий бензин с концом кипения 121° и тяжелый бензин. Легкий бензин направляется в дебутанизатор с целью выделения фракций Сд и 4 и получения физически стабильного продукта, а тяжелый охлаждается, дважды обрабатывается раствором щелочи и промывается водой. Легкий стабильный бензин по выходе из дебутанизатора охлаждается и также подвергается иромывке щелочным раствором и водой. К смеси этих бензинов добавляется антиокислитель. [c.278]

    Например, на старых фабриках соляной кислоты абсорбция хлористого водорода проводилась в большом количестве маленьких аппаратов из керамики (это был единственно доступный коррозионностойкий конструкционный материал, но с низкой теплопроводностью). Таким образом достигалась большая поверхность [c.405]

    Конструкция гидрохлоратора сходна с конструкцией испарителя. Разница заключается лишь в наличии в нижней части гидрохлоратора штуцеров для подачи пара или газа и смесительной камеры, в которой происходит абсорбция. Аппарат рассчитан на избыточное рабочее давление каждой из сред до 3 ащ. В графитовой части гидрохлоратора имеется для среды 30 отверстий диаметром 28 мм и для воды 392 отверстия диаметром 12 мм. [c.106]

    Польше" чпт-ро,- рс1ставля пт абсорберы с орошаемыми стенками, в которых жидкость стекает пленкой по поверхности стенок. На рис. 49 показан пример конструкции такого абсорбера, выполненного в виде системы вертикальных труб, закрепленных в трубных решетках наподобие кожухотрубного теплообменника. Жидкость стекает пленкой по внутренней поверхности труб она направляется к стенкам труб специальными направляющими устройствами. Газ проходит по трубам снизу вверх, соприкасаясь со стекающей жидкостью. В межтрубном пространстве циркулирует охлаждающий агент, с помощью которого осуществляется отвод тепла, выделяющегося в процессе абсорбции. Аппараты такого типа применяются для абсорбции аммиака в абсорбционных холодильных установках [103]. [c.167]

    Колонные аппараты для массообменных процессов. Разнообразие свойств жидких и газовых сред, в которых протекают массообменпые процессы при ректификации, абсорбции, экстракции и дистилляции в различных отраслях химической иромьпплен-иости, потребовало применения специальных конструкций колонной аппаратуры. [c.44]

    В настоящее время все больше появляется работ, в которых собственно химическое превращение веществ осуществляется совместно с целенаправленным разделением реакционной смеси в одном и том же аппарате. Сюда можно отнести работы, посвященные исследованию хроматографического эффекта в реакторах, реакционно-абсорбционным и реакционно-экстракционным процессам, а также процессам, в которых химическое превращение успешно сочетается с ректификацией или отгонкой. Известны реакционноосмотические процессы, реакционно-отделительные процессы и многие другие случаи направленного совмещения. В любом из перечисленных процессов химическая реакция составляет единую сложную систему с массопереносом. Естественно, монография Дж. Астарита далеко не восполняет пробела, образовавшегося за последнее время в данной области. Ее задача более скромна — систематизировать в основном знания в области химической абсорбции и дать некоторые толкования механизма столь сложного процесса. Отметим, что наряду с предпочтительностью изложения вопросов, в решении которых принимал непосредственное участие автор, в предлагаемой вниманию читателей монографии существуют и другие крайности. Так, например использованные автором модели массопереноса если и нельзя считать устаревшими, то во всяком случае, далеко не адекватными наблюдаемым явлениям, которые необходимо уточнить. Кроме того, библиография по затронутым в книге вопросам более чем скромна и за редким исклю- Йнием не включает многие исследования, выполненные отечественными исследователями хотя бы в последнее десятилетие. Однако эти серьезные недостатки не обесценивают рассматриваемую монографию, так как представленный в ней в обобщенном виде материал все же дает некоторое представление о современном совтоя-нии затронутых вопросов. [c.5]

    Химическая абсорбция в кинетическом режиме или в переходном от диффузиопного к кинетическому режиму может быть изучена в лаборатории при использовании малых насадочных колонн или абсорберов, которые воспроизводят характеристики насадочной колонны (см. раздел 8.2). Эти же процессы могут протекать в диффузионном режиме, если использовать абсорберы с большими значениями Ф, так что для исследования кинетики реакции лучшими аппаратами являются насадочные колонные абсорберы. [c.84]

    Гоеттлер и Пигфорд [4] исследовали рассматриваемую в этой главе проблему в режимах быстрой реакции и в переходном режиме от быстрой к мгновенной реакции. Был рассмотрен ряд проме-, жуточных случаев, поскольку реагируют два газа, которые могут иметь различные значения констант скорости k . Действительно, если константы скорости сильно различаются, то при промежуточных значениях времени диффузии для обоих газов может реализоваться не один и тот же режим абсорбции. В частности, если условия мгновенной реакции применимы только для одного газа, то концентрация b жидкого реагента в окрестности границы раздела фаз равна нулю, но другой газ диффундирует за фронтальную плоскость реакции. Привлеченный для решения этой проблемы математический аппарат довольно сложен и Гоетлером и Пигфордом быЛо получено только численное решение для выбранного ряда значений величин, подходящих безразмерных параметров. Общее поведение пока описывается лишь качественно, просто на основе известных физических представлений. [c.115]

    В связи с этим интересно отметить, что при высоком значении ао(1 —20), по-видимому, в практических случаях будет устанавливаться режим быстрой реакции. Для постепенно более карбонизированных растворов величина ао(1—20) уменьшается и вероятно изменение механизма вплоть до режима мгновенной реакции, что можно ожидать при достаточно низких значениях ао 1 — 20). При дальнейшем увеличении степени карбонизации, где 0 будет > 0,5, механизм реакции опять изменяется с переходом в режим медленной реакции. Такое поведение системы наблюдалось. Астарита, Ма-рруччи и Джойя в экспериментах по абсорбции в аппарате периодического действия с мешалкой. Результаты, полученные в этом абсорбере при значениях 0 > 5, отчетливо указывают на существование диффузионного режима. Эти результаты полностью согласуются с теорией, так как величина для такого абсорбера составляла 600 сек, а величина времени реакции составляет порядка 40 сек. [c.151]

    Нунге и Гиль [28] представили некоторые данные по скорости абсорбции СОг чистым диэтаноламином. Эти данные, полученные при абсорбции в аппарате с мешалкой, указывают н осуществление кинетического режима. Скорость реакции пропорциональна концентрации СОг и квадрату концентрации свободного амина. [c.153]

    Обычно абсорбция и десорбция объединяются в единый производственный процесс, В процессе абсорбции при повышенном давлении и иоииженпой температуре в массообменном аппарате — абсорбере осуществляется поглощение целевых компонентов специально подобранным растворителем-абсорбентом. Абсорбент с растворенными в нем целевыми компонентами называется насыщенным или отработавшим. Насыщенный абсорбент направляется на десорбцию, т, е, удаление из него целевых комионентов в результате снижения давления и (или) повышения темиературы. [c.71]

    Для определения равновесных концентраций с целью построения кривых равновесия и (или) определергия движущей силы процесса абсорбции или десорбции, необходимо знать температуру. Температуру процесса можно рассчитать из уравнения теплового баланса. Тепловой баланс — это равенство теплоты, вносимой в аппарат и уносимой из него. [c.75]

    Задаваясь произвольно концентрацией х между концентрациями хн И Хк, можно найти температуру абсорбента в любом сечении абсорбера и вычислить среднюю температуру абсорбции. В случае, если теплота абсорбции достаточно велика, повышение средней температуры абсорбции может помешать достижению требуемого извлечения целевых компонентов. В этом случае необходим промежуточный отвод теплоты, т. е. в одном-двух сечениях аппарата абсорбент охлаждается для отжения его температуры. [c.76]

    Принципиальная технологическая схема процессов химической абсорбции не отличается от обычной схемы абсорбционного процесса. Однар(0 в конкретных условиях в зависимости от количества кислых газов в очищаемом газе, наличия примесей, при особых требованиях к степени очистки, к качеству кислого газа, и других факторов технологические схемы могут сун ест-венно отличаться. Так, например, при использовании аминных процессов при очистке газов газоконденсатных месторождений под высоким давлением и с высокой концентрацией кислых компонентов широко используется схема с разветвленными потоками абсорбента (рис. 53), позволяющая сократить капитальные вложения и в некоторой степени эксплуатационные затраты. Высокая концентрация кислых комионентов требует больших объемов циркуляции поглотительного раствора. Это не только вызывает рост энергетических затрат на перекачку и регенерацию абсорбента, но и требует больших объемов массообменных аппаратов, т. е. увеличения капитальнрлх вложений. Вместе с тем из практики известно, что в силу высоких скоростей реакций аминов с кислыми газами основная очистка газа происходит на первых по ходу очищаемого газа пяти—десяти реальных таре, 1-ках абсорбера на последующих тарелках идет тонкая доочистка. Этот факт послужил основанием для подачи основного количества грубо регенерированного абсорбента в середину абсорбера, а в верхнюю часть абсорбера — меньшей части глубоко-регенерированного абсорбента. Это позволило использовать абсорбер переменного сечения (нижняя часть большего диаметра, верхняя — меньшего), что снизило металлозатраты, а также сократить затраты энергии за счет глубокой регенерации только части абсорбента. [c.171]

    На установке абсорбции бензина (шт. Техас, США) вышли нз строя уплотнение насоса и задвижки на трубопроводе, по которому подавался нефтепродукт под давлением 1,25 МПа прн 70—80°С. Пары нефтепродукта воспламенились от сильно нагретого регулятора водяного пара. Обслуживающий персонал пытался потушить пожар пенными огнетушителями, однако возникла новая утечка нефтепродуктов, поскольку перегрелся теплообменник. Подача воздушно-механической пены не дала положительных результатов. Под действием перегрева обрушились незащищенные стальные опоры нефтяного резервуара трубопроводной обвязкойчбыла опрокинута десорбцн-онная колонна высотой 20 м. При падении колонна разрушила многие технологические аппараты. Все это вызвало дальнейшее развитие пожара, который продолжался несколько дней до полного выгорания горючих продуктов. Ущерб составил 3 млн. долл. [27]. [c.71]

    Абсорбцию проводят в вертикальных аппаратах, заполненных насадкой и орошаемых сверху жидкостью — абсорбентом. Абсорбенты должны обладать высокой поглотительной способностью, устойчивостью в процессе работы, легко регенериро-г-пься ири десорбции, не оказывать корродирующего действия па аппаратуру. Об1>1чно в качестве абсорбента используют минеральные масла с молекулярной массой 280—300. [c.70]

    При проектировании производства нитрита аммония на установке абсорбции газовой смеси окислов азота и аммиака были допущены ошибки. При разработке конструкции скруббера штуцер для подвода нитрозных газов расположили очень близко к днищу аппарата, поэтому трудно было поддерживать необходимый уровень жидкости и осуществлять постоянную циркуляцию абсорбента.  [c.129]

    Установка состоит из следующих секций подготовки сырья (компрессор, подогреватель, аппараты для очистки сырья от соединений серы, пароперегреватель и инжекторный смеситель) паровой конверсии (печь паровой конверсии и паровой котел-утилизатор) конверсии оксида углерода в диоксид (реакторы средне- и низкотемпературной конверсии) очистки технологического газа от диоксида углерода (абсорбция горячим водным раствором карбоната калия, регенерация и др.) и секции метаниро-вания. Технологическая схема установки представлена на рис. VI-4. [c.62]


Смотреть страницы где упоминается термин Абсорбция аппараты: [c.2]    [c.4]    [c.95]    [c.157]    [c.224]    [c.335]    [c.115]    [c.362]    [c.415]   
Основы технологического проектирования производств органического синтеза (1970) -- [ c.0 ]

Справочник химика Том 5 Издание 2 (1966) -- [ c.681 , c.708 ]

Справочник химика Изд.2 Том 5 (1966) -- [ c.681 , c.708 ]




ПОИСК







© 2025 chem21.info Реклама на сайте