Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическое статистический

    Одной из задач, стоявших перед автором, было не только желание ознакомить студента с основами химической статистической термодинамики, но и дать почувствовать красоту термодинамических уравнений и предложить единый математический подход к выводу тех или иных соотношений. [c.7]

    Протодьяконов О. И., Богданов С. П. Статистическая теория явлений переноса в процессах химической технологии.— Л. Химия, 1983. — 400 с. [c.198]


Рис. 74. Простейшая схема основных этапов создания нового производства в химической промышленности (цифра над стрелкой—средняя статистическая суммарная продолжительность этапов в месяцах нил<няя цифра в скобках в квадрате — среднестатистическая продолжительность этапа н месяцах). Рис. 74. <a href="/info/69155">Простейшая схема</a> <a href="/info/1422232">основных этапов создания</a> <a href="/info/110145">нового производства</a> в <a href="/info/69739">химической промышленности</a> (цифра над стрелкой—<a href="/info/25829">средняя статистическая</a> суммарная продолжительность этапов в месяцах нил<няя цифра в скобках в квадрате — среднестатистическая продолжительность этапа н месяцах).
    На рис. 74 представлена простейшая схема основных этапов работ по созданию новых производств в химической промышленности (по данным зарубежной литературы). В прямоугольниках наряду с названием этапа проставлен его порядковый номер и продолжительность работы (в скобках) в месяцах (средняя статистическая), над стрелкой — общая продолжительность с начала работы. Следует отметить, что формирование проблемы здесь взято за начало отсчета, хотя иа выполнение его требуется достаточно продолжительное время, поскольку именно на этом этапе проводится обоснование целен и потребности в новом производстве. [c.232]

    Уравнение (УП.З) является наиболее общим и служит основой для составления уравнений большинства статистических моделей химических процессов в стационарных условиях. [c.136]

    Д и л ь м а н В. В., Статистический анализ ячеечной и диффузионной моделей продольного перемешивания.— Химическая промышленность , 1964, № 8. [c.167]

    К а ф а р о в В.В. п др. Об оценке параметров математических моделей гидродинамической структуры потоков статистическими методами.— Теоретические основы химической технологии , 1968, 2, № 2. [c.168]

    Специальная большая часть книги посвящена вопросам статистической физики и кинетической теории газов, которые должны быть известны занимающемуся химической кинетикой. Строго говоря, этот материал можно было бы и не включать в книгу, поскольку эти вопросы излагаются обычно в курсах или статистической и молекулярной физики, или физической химии. [c.6]

    Эти данные получают, вводя изучаемое соединение в организм следующими путями вдыхание поступление в желудок введение в брюшную полость нанесение на кожный покров. Исследования как правило, проводятся на белых мышах массой 18—24 г и белых крысах массой 180—240 г. [1.9]. Однородность животных в экспериментальных группах — одно из обязательных условий получения достоверных результатов. Для правильной статистической обработки в испытуемой группе должно быть не менее 6 животных на каждую исследуемую концентрацию или дозу. Наиболее надежные результаты могут быть получены при ингаляционном поступлении химических соединений в организм. Вещества должны подаваться в том же агрегатном состоянии, в каком они находятся в производственном помещении. Время затравки для мышей 2 ч, для крыс [c.12]


    Определение некоторых физико-химических свойств вещества при известных значениях ог и е. Использовать при проведении технических расчетов точные методы, основанные на принципах статистической механики, очень трудно. Поэтому Гиршфельдер и его сотрудники предложили ввести в уравнения для определения физико-химических постоянных вещества функции от а и е, значения которых они рассчитали и свели в таблицы (см., например, табл. IV 5), исключив тем самым необходимость частого выполнения сложных вычислений. [c.72]

    Обычно нахождение функции распределения активных мест по теплотам адсорбции для каталитической неоднородной поверхности очень затруднено. Кроме того, часто отсутствуют физико-химические данные, характеризующие реагенты. Поэтому кинетические зависимости, основанные на статистической теории неоднородной поверхности, здесь рассматриваться не будут. Некоторыми понятиями этой теории мы пользовались, разбирая сорбционные явления на поверхности катализатора. [c.280]

    В целях упрощения структурно-групповой анализ обычно проводится путем определения легко измеримых физических констант. Таким образом, при проведении повседневных анализов можно избежать трудностей, связанных с точным анализом углеводородов. Так как между физическими свойствами и химическим составом существует сложная взаимосвязь, то надежное соответствие может быть получено лишь путем изучения свойств большого количества масляных фракций и (или) чистых соединений разнообразными точными методами независимо от их трудоемкости. Таким образом, основой для химического анализа по физическим постоянным могут послужить статистические данные. Чем больше изучено соединений и чем больше получено основных данных, тем надежнее метод структурно-группового анализа. [c.366]

    Реактор является самой важной и одновременно наиболее трудно исследуемой частью установки. Простые физические методы измерения производительности, использованные нами при обследовании других аппаратов, в данном случае неприменимы, так как в реакторе протекают многочисленные и взаимосвязанные химические реакции. Здесь нужен полный теоретический анализ кинетики процесса (см. главу И) или его эквивалент в форме уравнений, полученный статистически, методом регрессионного анализа экспериментальных данных.  [c.74]

    Налимов В. В., Статистические методы в исследовании химических [c.159]

    Установление статистического характера второго закона термодинамики является великой заслугой Л. Больцмана, объяснившего таким путем противоречие между обратимостью механического движения и необратимостью и направленностью реальных физических и химических процессов эта направленность является следствием молекулярного строения материального мира. [c.106]

    Успехи в изучении строения молекул и развитие квантовой статистической физики привели к созданию нового метода расчета термодинамических функций и, в частности, химических равновесий. Этот метод дает возможность вычислять значения внутренней энергии (сверх нулевой), энтропии и теплоемкости газообразных веществ в широком интервале температур (до 4000— 6000 °С), исходя из величин энергий всех квантованных состояний молекулы, связанных с ее вращением, колебаниями, электронным возбуждением и другими видами движения. Для вычисления энергии каждого из состояний молекулы необходимо знать молекулярные параметры моменты инерции, основные частоты колебания, уровни электронного возбуждения и др. Эти величины находятся главным образом путем изучения и расшифровки молекулярных спектров. Вычисление же термодинамических величин проводится методами квантовой статистической физики. Здесь будут кратко изложены основы статистического метода расчета термодинамических функций. [c.327]

    Со статистической точки зрения все химические реакции протекают одновременно в сторону равновесия и в противоположном направлении. Скорость реакции в сторону равновесия больше скорости в противоположно.м направлении, в результате система приближается к равновесию. При равновесии обе реакции имеют одинаковые скорости, так что скорость суммарного процесса равна нулю. Таким образом, в общем случае химические реакции являются двусторонними или, как часто говорят, обратимыми. Понятие обратимая реакция в изложенном выше смысле следует отличать от термодинамического понятия обратимый процесс (см. т. I, гл. I, 6). Последний характеризуется бесконечно малым различием скоростей прямого и обратного процессов и, следовательно, бесконечно малой скоростью результирующего процесса и бесконечно малым отклонением системы от положения равновесия. [c.15]


    В основе метода переходного состояния лежат три предположения. Во-первых, протекание реакции суш,ественно не нарушает распределения молекул по состояниям, так что распределение статистически отвечает равновесному распределению Максвелла— Больцмана. Расчеты, на которых мы останавливаться не будем, показывают, что это предположение справедливо в очень большом числе случаев. Кроме того, результаты, полученные методом переходного состояния для скоростей химических реакций, находятся в соответствии с опытом, что косвенно также подтверждает это предположение. [c.144]

    В зависимости от условий эта реакция может протекать самопроизвольно как в прямом, так и обратном направлении. Химическая реакция протекает самопроизвольно до тех пор, пока не достигнуто химическое равновесие между реагирующими веществами. Условия химического равновесия, как и всякого равновесия, могут определяться термодинамическим или молекулярно-статистическим методом. [c.246]

    Термодинамически химическое равновесие определяется как соотношение концентраций исходных веществ и продуктов реакций, при котором свободная энергия системы имеет минимальное значение. Молекулярно-статистически химическое равновесие определяется как такое состояние, ири котором скорости прямой и обратной реакций равны друг другу, при этом равновесие наступает тогда, когда состав [c.246]

    В этом отношении большую помощь мне оказал мой ученик, горный инженер И. Л. Гуревич, подобравший для первой части курса весь необходимый иллюстрационный материал, снабженный им надлежащим описанием. Кроме того, он внес некоторые дополнения в ту часть курса, где трактуется о физических и химических свойствах нефти, в особенности о ее переработке, и освежил в некоторых случаях статистический материал. Вследствие того, что за последние годы в области нефтяной геологии появилось очень много нового, весьма интересного материала в виде переводной литературы, содержащей сведения об иностранных нефтяных месторождениях, в особенности о месторождениях Соединенных Штатов, а также полученного в результате непосредственного изучения нефтяных месторождений Советского Союза и систематического наблюдения над разработкой старых нефтяных районов СССР, вторая часть курса, трактующая об условиях залегания нефти в земной коре, подверглась коренной пере- [c.5]

    Статистический контроль качества является, таким образом, одним из элементов комплексной системы управления качеством химической продукции, которая должна обеспечить гарантии качества выпускаемой продукции в процессе ее проектирования, производства и эксплуатации. Общая схема алгоритма статистического контроля представлена на рис. VII. 1. [c.124]

    Внедрение статистических методов контроля на химических предприятиях тесно связано с работами по стандартизации. При разработке комплексных систем управления качеством продукции 124 [c.124]

    Гл. 15-19 образуют третий учебный цикл, в котором рассматриваются вопросы термодинамики и химическое равновесие. Материал, касающийся первого и второго законов термодинамики, не изменился по сравнению с прежними изданиями книги, но теперь он разбит на три главы, что облегчит усвоение материала. Статистическое описание энтропии дано в более простой форме. Добавлена новая, 18-я глава по фазовым равновесиям. Поскольку этот материал излагается с привлечением количественного описания, он часто оказывается трудным для начинающих студентов в связи с этим мы значительно увеличили число примеров в тексте, пересмотрели имевшиеся упражнения и добавили новые. [c.10]

    Физико-химический подход исторически возник ранее остальных. Его стратегия состоит в том, что последовательно определяется сначала скорость элементарного акта как функция параметров, характеризующих реагирующие объекты (и среду в целом — для непростых кинетик), затем скорость элементарного процесса как функция скоростей элементарных актов и, наконец, скорость н все макроскопические характеристики сложного процесса как функция скоростей элементарных процессов. Для этого сначала решается динамическая задача расчета сечений реакций, затем статистическая задача нахождения функций распределения и, наконец, кинетическая задача нахождения макрохарактеристик процесса. [c.4]

    Аналогичный результат можно получить и при статистическом рассмотрении, если ввести, следуя [10], понятие атомарного химического потенциала связанного с химическим потенциалом л из (1.59) простым соотношением [c.45]

    Физико-химический подход основан на рассмотрении процесса на микроскопическом уровне с последующим переходом к изучению его макроскопических свойств. Для простой реакции, т. е. процесса, протекающего с преодолением одного энергетического барьера, задача расчета коэффициента скорости реакции может быть разделена на две — динамическую задачу расчета сечения реакции и статистическую задачу нахождения функции распределения. В первом случае необходимо определить вероятность того, что в процессе соударения и обмена энергией взаимодействующие частицы (молекулы, атомы, радикалы, ионы и т. д.) изменяют свою химическую индивидуальность. Во втором случае нужно найти, как меняется во времени распределение частиц по различным энергетическим состояниям, и рассчитать макроскопический коэффициент скорости химической реакции в зависимости от этого распределения. [c.48]

    Здесь АЕ — изменение внутренней энергии частиц при переходе ij kl. (Если соударение ведет не к химической реакции, а лишь к рассеянию, то m lm" = 1.) Переходя от статистических весов к статистическим суммам для процесса типа (2.9), можно получить окончательную статистическую формулировку принципа детального равновесия в случае, если равновесная функция распределения не [c.63]

    И. И. Иоффе, Л. M. Письмен, Статистические методы исследования кинетики химических процессов, сб. Мйделирование и оптимизация каталитических процессов . Изд. Наука , 1965. [c.118]

    В книге изложены математические и физико-химические основы моделей химических реакторов. Рассмотрены модели идеального смешения и идеального вытеснения, диффузионная и ячеистая модели, комбинированные модели, двухфазная модель реактора с псевдоожиженным слоем катализатора, статистические модели. Знач>1тельное внимание уделено физической интерпретации процессов в реакторах, составлению основных уравнений, выбору граничных и начальных условий, качественному и количественному анализу типов моделей. [c.4]

    Определение пороговых величин в хроническом эксперименте — очень важная задача, так как их оценка позволяет выявить особенности действия химического соединения, явления адаптации и компенсации, определить статистическую достоверность изменений [1.14], они служат основой для выбора значений ПДК. Переход к ПДК от пороговых величин осуществляется при помощи коэффициентов запаса, которые обычно колеблются от 3 до 20. Его более высокие значения применяются при увеличении абсолютной токсичности при увеличении значений КВИО, при уменьшении зоны острого действия, при увеличении коэффициента кумуляции, при увеличении зоны хронического действия, при увеличении зоны биологического действия, при значительных различиях в видовой чувствительности подопытных животных, при выраженном кожно-резорбтивном действии. [c.14]

    На первом этапе эксперимента изучаются пороговые концентрации рефлекторного действия — порог запаха и в некоторых случаях порог раздражающего действия. Эти исследования проводятся с волонтерами на специальных установках (типа ПОО-1), обеспечивающих подачу в зону дыхания строго дозируемых концентраций химических соединений. В результате статистической обработки полученных материалов устанавливается пороговая величина. Эти материалы затем используются для обоснования ПДКм. р. [c.15]

    Молекулярный подход к описанию эластомеров не исключает необходимости учета возникающих в ряде случаев различных надмолекулярных образований [6]. Надмолекулярная структура полимеров, в том числе эластомеров, проявляется, как известно, в трех разновидностях в виде определенного рода упорядоченностей и морфологически обусловленных неоднородностей в аморфном полимере в виде кристаллических образований и, наконец, в виде сегрегированных областей микроскопических либо субмикроско-пических размеров (доменов), возникающих в эластомерных композициях, а также в блок-сополимерах, а в некоторых случаях и в статистических сополимерах вследствие несовместимости компонентов либо участков цепи, различающихся по химической природе. Наличие и конкретная роль того или иного типа надмолекулярных образований зависит от химической природы и молекулярной структуры эластомеров, а также от условий их получения, переработки и эксплуатации. [c.42]

    Для этих полимеров, имеющих практически фиксированную микроструктуру, определяющую роль с точки зрения технологических свойств невулканизованных смесей и физико-механических свойств резин играют такие параметры, как ММР и геометрическое строение полимерных цепей — степень и характер их разветвленности. Эти параметры зависят от типа каталитической системы, ее физико-химических свойств (в частности, растворимости) и условий проведения процесса полимеризации. В случае растворимых (гомогенных или близких к ним) каталитических систем образуются линейные и статистически разветвленные полимеры. В случае гетерогенных систем возможно образование микрогеля специфического строения (см. рис. 1) С точки зрения общих представлений о технологических свойствах резиновых смесей и процесса вулканизации строение растворных микрогелей является более благоприятным, чем строение микрогеля эмульсионной полимеризации. [c.59]

    Молекулярно-массовое распределение жидких тиоколов определяется реакциями межцепного обмена. Процесс получения жидких полимеров с концевыми 5Н-группами, осуществляемый химической деструкцией 5—5-связей и протекающий по статистическому закону, должен привести к равновесному распределению по молекулярным массам, а для линейных полимеров — к наиболее вероятному распределению Флори. Однако, в связи с тем, что этот процесс осуществляется на границе раздела фаз, распределение может быть случайным и равновесное распределение достигается лищь в результате реакций межцепного обмена, присущих этому классу полимеров [10, с. 477]. [c.560]

    Историю физической химии в XX веке нет возможности изложить в кратком очерке. Поэтому будет дана лишь обш,ая характеристика развития физической химии в XX веке. Если для XIX века было характерно изучение свойств веш,еств без учета структуры и свойств молекул, а также использование термодинамики, как основного теоретического метода, то в XX веке на первый план выступили исследования строения молекул и кристаллов и применение новых теоретических методов. Основываясь на крупнейших успехах физики в области строения атома и используя теоретические методы квантовой механики и статистической механики, а также новые экспериментальные методы (рентгеновский анализ, спектроскопия, масс-спектрометрия, магнитные методы и многие другие), физики и физико-хидшки добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.15]

    Истинную химическую константу / можно найти по уравнению (IV, 64) i So— f, )/R, где S —энтропийная константа [см. уравнение (III, 20а)], котораи может быть вычислена для газов с несложными молекулами методами статистической физики, [c.320]

    Таким образом, наблюдается переход от статистической однородности, когда по узлам геометрически правильной решетки атомы распределены в каотическом беспорядке, к однородности кристалла индивидуального химического соединения, т. е. к геометрически правильной решетке, в узлах которой правильно чередуются образующие ее атомы. Это превращение протекает при постоянной температуре п сопровождается тепловым эффектом, подобно фазовому переходу первого рода. Если общий состав твердого раствора близок к составу Р1С[1б, но не совпадает с ним, то кристаллическая решетка тоже перестраивается, но эта перестройка протекает уже в некотором интервале темпера- [c.413]

    Джозайя Уиллард Гиббс (1839—1903) — выдающийся американский физик, одии из основателей химической термодинамика а статистической физики. [c.199]

    Третье издание практикума существенно отличается от первых двух изданий. Получили значительное развитие работы по молекулярной спектроскопии, а работы по атомным спектрам сокращены — в связи с изменениями учебных планов. В практикум введены новые работы, знакомящие со спектральными методами изучения свойств молекул и определения молекулярных констант веществ, работы по расчету сумм состояния и термодинамических функций на основе непосредственно полученных опыть ых данных. Студенты знакомятся с применением методов статистической термодинамики для расчета химических равновесий. Существенно изменены работы, связанные с применением термохимических, рентгеноструктурных и некоторых электрохимических методов исследования. [c.4]

    Хорн и Тролтенье [23], Сторей [25] и другие пользуются еще одним перспективным методом оптимизации, так называемым методом крутого восхождения. Допустим, что объективная функция отимизации М изображена поверхностью в л 4-1 мерном пространстве, параметрами которого служат ка М, так и п переменные Хи Х2,..., Хп. В некоторой точке этой поверхности М достигает экстремального значения и требуется найти соответствующие значения переменных. Метод крутого восхождения, сочетающий ряд численных приемов, особенно удобных при использовании электронно-вычислительных машин, позволяет исследовать поверхность оптимизации наиболее экономичным способом. Для этого не обязательно знать кинетику процесса химических реакций. Бокс и его сотрудники разработали эффективные статистические методы построения такой поверхности и нахождения на ней наивысшей точки, для применения которых вполне достаточно опытных данных, полученных на установке. [c.151]

    Специфика химической кинетики состоит в том, что элементарные процессы, лежащие в основе сдожного процесса, сопровождаются разнообразными сопутствующими явлениями (неизотермичность, неравновесность, перенос тепла и массы и т. д.), что приводит к тому, что химическая кинетика как научная дисциплина в сущности являет собой комплекс взаимосвязанных проблем на стыке термодинамики, квантовой химии (или кинетики элементарных реакций), газодинамики, статистической физики и классической механики. В связи с этим и само понятие химическая кинетика часто определяют по-разному. В самом узком смысле слова — это учение о механизме сложного процесса и его особенностях. В несколько более широком смысле — это учение об общих закономерностях любых процессов, связанных с изменением химического состава реагирующей системы независимо от причин, вызывающих это изменение,— радиоактивный распад, некоторые биологические задачи и т. д. (В атом случае для описания явлений, не связанных с изменением химиче- [c.3]

    До сих пор рассматривались принципиальные основы статистических методов оценки параметров. Первоначально эти методы возникли в основном не как методы оценки параметров, а как методы получения эмпирических зависимостей, описывающих экспериментальные данные. Впоследствии об этой основной — содержательной — стороне этих методов было забыто. Но именно с этой позиции мы и б удем теперь рассматривать применение данных методов к задачам химической кинетики. [c.203]

    И еще одна цитата, хорошо передаюи1ая суть споров вокруг проблемы физической интерпретации математического аппарата квантовой механики. В лекции Современное состояние атомной физики , прочитанной в Гамбургском университете в фервале 1927 г. немецкий физик А. Зоммерфельд так характеризовал ситуацию в квантовой теории ...В трехмерном пространстве электрон нельзя локализовать. Это подчеркивает Гейзенберг, а Шредингер иллюстрирует это, размазывая заряд электрона в сплошную пространственную массу. Лично я не верю в этот размазанный, растекающийся электрон уже потому, что вне атома корпускулярно концентрированные электроны, обладающие большой скоростью, с несомненностью могут быть установлены экспериментом. С другой стороны, неоспоримый факт, что сплошные плотности Шредингера при расчете физических и химических действий атома оказывают неоценимую помощь и в этом смысле реальны в большей степени, нежели точечно локализованный электрон старой теории. Весьма возможно, что сплошную плотность заряда и связанный с нею сплошной ток заряда в теории Шредингера мы должны понимать статистически в смысле нескольких важных работ Борна...  [c.33]

    В сотрудничестве с Герцфельдом Гайтлер выполнил теоретическую работу, посвященную изучению давления паров и теплот смешения в бинарных жидких системах по методу Ван-дер-Ваальса. Его диссертация была посвящена теории концентрированных растворов. В ней он предложил рассматривать жидкие бинарные системы неэлектролит— растворитель как пространственную решетку кубической симметрии. На осрове своей модели Гайтлер рассчитал методами статистической физики наиболее вероятное расположение молекул растворителя около молекулы растворенного вещества. Допуская, что теплота смешения ие зависит от температуры и что все парциальные моляльные теплоты примерно одинаковы, он получил уравнение состояния системы, по которому можно было определить некоторые ее свойства. Сопоставление с экспериментом показало, что теория дает вполне удовлетворительные результаты. По-видимому, исследование растворов неэлектролитов методами статистической термодинамики привело Гайтлера (не без влияния Герцфельда) к вопросу о природе химических взаимодействий в них. [c.154]


Смотреть страницы где упоминается термин Химическое статистический: [c.210]    [c.8]   
Курс физической химии Том 1 Издание 2 (1969) -- [ c.322 ]

Курс физической химии Том 1 Издание 2 (копия) (1970) -- [ c.322 ]




ПОИСК







© 2025 chem21.info Реклама на сайте