Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Остовов отталкивание

    НОЙ энергии. По мере приближения атома С к молекуле АВ из бесконечности потенциальная энергия системы остается в долине, почти параллельной оси (см. рис. 1-4). Эта долина постепенно сглаживается до тех пор, пока не начнут проявляться силы отталкивания. В определенном положении систему из трех атомов при их достаточном сближении можно рассматривать как нечто целое, по своим свойствам похожее на нестойкую трехатомную молекулу Х=АЗС. Это произойдет на перевале [c.48]


    Остановимся предварительно на некоторых отличиях свойств, присущих положительному водородному иону Н+. Водородный атом обладает той особенностью, отличающей его от всех остальных атомов, что, отдавая свой электрон, он остается в виде ядра без электронов, т. е. в виде частицы, диаметр которой в тысячи раз меньше диаметра остальных атомов. Кроме того, вследствие отсутствия у него электронов ион Н+ не испытывает отталкивания от электронной оболочки другого атома или иона, а, наоборот, притягивается ею. Это позволяет ему ближе подходить к другим атомам и вступать во взаимодействие с их электронами (и даже внедряться в их электронную оболочку). Поэтому в жидкостях водородный ион Н+ большей частью не сохраняется в виде самостоятельной частицы, а связывается с молекулами других веществ. В воде он связывается с молекулами Н2О, образуя ион HoO" , называемый ионом гидроксония-, с молекулой аммиака он связывается, образуя ион NHi — ион аммония и т. д. [c.82]

    На отрезке — к молекулы А и В не взаимодействуют между собой, поэтому Е, Е% и Ег остаются постоянными. В момент и молекулы подходят на расстояния, на которых начинают проявляться межмолеку-лярные силы притяжения Ван-дер-Ваальса (3-5- 10 1 м). На этих расстояниях интегралы перекрывания МО практически равны нулю. Энергетическое возмущение электронов невелико. При дальнейшем сближении молекул происходит перекрывание МО. Если на МО находятся по два электрона, между ними возникают силы отталкивания, обусловленные принципом Паули. Дальнейшее сближение молекул приводит к изменению расположения ядер и электронной плотности в молекулах. При сближении молекул А и В, когда силы притяжения между молекулами преобладают над силами отталкивания, внутренняя энергия понижается, энергия поступательного движения молекул возрастает. Когда начинают преобладать силы отталкивания, а молекулы А и В в силу инерции продолжают сближаться, кинетическая энергия 2 поступательного движения молекул по линии, соединяющей их центры, уменьшается, внутренняя энергия Ез возрастает. На рис. 186 кривая 1 отражает изменение Е-1 и Еъ при чисто упругом столкновении кривая 2 — столкновение, при котором доля кинетической энергии поступательного движения, переходящая во внутреннюю энергию, невелика, и молекулы разлетаются с незначительно повышенной внутренней энергией кривая 5 характеризует изменение внутренней энергии при столкновениях, когда происходит значительное увеличение внутренней энергии Ел. Вероятность таких столкновений невелика. При столкновениях, заканчивающихся значительным увеличением внутренней энергии, расположение ядер атомов и распределение электронной плотности в молекулах А и В существенно меняется. Когда внутренняя энергия реагирующих молекул достигает максимума (интервал Д/), рас-. [c.560]


    Таким образом, вопрос предсказания фазового перехода вириальным уравнением состояния для модели с потенциалом отталкивания остается открытым. [c.178]

    Создание количественной теории полярографических максимумов 1-го рода встречает значительные математические трудности, которые вызваны главным образом сложными геометрическими условиями. Строгая теория тангенциальных движений была разработана для свободной капли в электрическом поле. Рассмотрим вначале идеально поляризуемую каплю (рис. 105, а). Если ртутная капля в электролите оказывается во внешнем электрическом поле, то она приходит в движение. Механизм этого движения отличается от механизма электрофореза, а скорость его может превышать скорость электрокинетического движения при равных условиях на пять порядков. Из-за наличия двойного электрического слоя ток, проходящий через раствор, обтекает каплю и распределение электрических силовых линий вне двойного слоя оказывается таким же, как и вблизи изолятора. Однако внутри капли благодаря металлической проводимости потенциал остается постоянным. Чтобы это условие выполнялось, скачок потенциала в правой части капли должен быть выше, чем в левой. В результате возникает градиент пограничного натяжения, который приводит к вихревым движениям в капле (рис. 105, б). Эти движения вызывают реактивное отталкивание капли от окружающей среды и движение положительно заряженной капли по направлению поля, а отрицательно заряженной — в обратном направлении. Скорость этого движения [c.193]

    Если ртутная капля в электролите оказывается во внешнем электрическом поле, то она приходит в движение. Механизм этого движения отличается от механизма электрофореза, а скорость его может превышать скорость электрокинетического движения при равных условиях на пять порядков. Из-за наличия двойного электрического слоя ток, проходящий через раствор, обтекает каплю и распределение электрических силовых линий вне двойного слоя оказывается таким же, как и вблизи изолятора. Однако внутри капли благодаря металлической проводимости потенциал остается постоянным. Чтобы это условие выполнялось, скачок потенциала в правой части капли должен быть выше, чем в левой. В результате возникает градиент пограничного натяжения, который приводит к вихревым движениям в капле (рис. 105, б). Эти движения вызывают реактивное отталкивание капли от окружающей среды и движение положи- [c.205]

    Второй недостаток теории Аррениуса связан с игнорированием ион-ионного взаимодействия. Ионы рассматривались как частицы идеального газа, а следовательно, не учитывалось обусловленное кулоновскими силами притяжение катионов и анионов и отталкивание одноименно заряженных ионов. Пренебрежение ион-ионным взаимодействием, совершенно непонятное с физической точки зрения, приводило к нарушению количественных соотношений теории Аррениуса. Так, например, строгая проверка уравнения (1.7) показывала, что константа диссоциации К не остается постоянной, а изменяется с концентрацией электролита. Наиболее отчетливо этот эффект проявляется в растворах сильных электролитов, истинная степень диссоциации которых о. близка к единице (так называемая аномалия сильных электролитов ). Но даже в ра-2 19 [c.19]

    Следующее ограничение (не абсолютное) связано с тем, что при расчетах по методу молекулярных орбиталей непредельных и ароматических систем зачастую не учитываются орбитали, образующие ст-остов молекулы. Некорректность данного ограничения связана с тем, что безусловно может происходить обменное взаимодействие между л- и сг-орби-талями внутри молекулы. Существует также кулоновское отталкивание между я- и а-электронами, что взаимно меняет их плотность, т. е. ведет к поляризации. [c.46]

    Для ионов, содержащих одинаковое число электронов (изоэлектронных ионов), радиус иона уменьшается с ростом его заряда. Так, в ряду СГ, К , Са + радиусы равны соответственно 1,74 1,81 1,33 0,99 А. Это уменьшение сильнее для положительных ионов. Оно обусловлено в основном двумя причинами во-первых, при увеличении заряда иона электроны сильнее притягиваются к центру иона во-вторых, ионы большего заряда сильнее взаимодействуют с ионами противоположного знака, что ведет к уменьшению межионных расстояний и, следовательно, радиусов ионов. В случае отрицательных ионов при увеличении заряда электроны, наоборот, сильнее отталкиваются от центра иона однако влияние второго фактора остается тем же самым, и оно, как правило, превышает действие отталкивания электронов от центра иона. [c.83]

    Так, в молекулах Н2О, ЫНз, СН4 атомы О, N, С окружены четырьмя парами электронов, которые в соответствии с моделью отталкивания электронных пар должны быть направлены к вершинам тетраэдра (рис. 26). Молекула Н2О должна быть угловой, причем две пары электронов образуют связи атома О с двумя атомами Н, а две другие пары остаются неподеленными. В молекуле МНз три пары [c.70]


    Так, в молекулах Н2О, ЫНз, СН4 атомы О, Н, С окружены четырьмя парами электронов, которые в соответствии с моделью отталкивания электронных пар направлены к вершинам тетраэдра (рис. 26). Молекула Н2О угловая, причем две пары электронов образуют связи атома О с двумя атомами Н, а две другие пары остаются неподеленными. В молекуле ННз три пары электронов связывают атом N с тремя атомами И, а четвертая пара не участвует в образовании связи. Молекула ННз имеет пирамидальное строение. [c.78]

    Дальнейшее сближение атомов (на расстояние меньше Го) требует больших затрат энергии вследствие взаимного отталкивания. одноименно заряженных ядер атомов. Поэтому ядра связанных атомов остаются на расстоянии го и совершают колебания относительно друг друга. Равновесное межатомное расстояние Го называют длиной химической связи длина является одной из главных характеристик связи. Для молекулы Н2 = 0,074 нм при радиусах атомов водорода 0,053 нм. [c.47]

    Дальнейшее сближение атомов (на расстояние меньше г ) требует больших затрат энергии вследствие взаимного отталкивания одноименно заряженных ядер атомов. Поэтому ядра связанных атомов остаются на расстоянии Гд и совершают колебания относительно друг друга . [c.58]

    Коллоидные частицы всегда имеют одноименный заряд, возникающий в результате избирательной адсорбции одного из ионов электролита, присутствующего в системе. Наличие у частиц электрического заряда одного и того же знака обусловливает их взаимное отталкивание и препятствует сближению на такие расстояния, на которых могут действовать достаточно большие силы сцепления. Кроме даго, наличие на частицах сольватной оболочки из молекул дисперсионной среды также препятствует сближению частиц до расстояний, на которых начинают превалировать силы притяжения (см. гл. IV и VI). Однако пока в системе не началась агрегация или в результате агрегации произошло лишь незначительное укрупнение частиц, - система сохраняет кинетическую устойчивость, а частицы,-находясь в тепловом движении, остаются во взвешенном состоянии и не оседают на дно сосуда. [c.13]

    При термодинамическом описании предполагают, что система находится в относительном покое ( кин = 0) и воздействие внешних полей пренебрежимо мало ( пот = 0). Тогда полная энергия системы определяется запасом ее внутренней энергии Е=0). Последняя складывается из кинетической энергии поступательного и вращательного молекулярного движения, энергии притяжения и отталкивания частиц, энергии электронного возбуждения, энергии межъядерного и внутриядерного взаимодействия и т. п. Количественный учет всех составляющих внутренней энергии невозможен, но для термодинамического анализа систем в этом нет необходимости, так как достаточно знать лишь изменение внутренней энергии при переходе из одного состояния в другое, а не ее абсолютные величины в этих состояниях. В соответствии с законом сохранения энергии, выражающим первое начало термодинамики, общий запас внутренней энергии системы остается постоянным, если отсутствует тепловой обмен с окружающей средой. В ходе процессов, протекающих в изолированной системе, возможно лишь перераспределение внутренней энергии между отдельными составляющими системы. [c.203]

    Кроме потенциала (XI. 8), не учитывающего короткодействующего отталкивания, И. Н. Боголюбовым рассмотрены случаи, когда молекулы можно считать идеально упругими шарами, или упругими шарами со слабым притяжением между ними. Показано, что появление сверхтекучести обусловлено соотношением между силами отталкивания и притяжения. Силы отталкивания благоприятствуют сверхтекучести, силы притяжения — препятствуют . Кроме того, когда потенциал не имеет радиальной симметрии, теория тоже остается верной. [c.244]

    Пространственная конфигурация молекулы С1Рз находится в полном согласии с моделью локализованных электронных пар (см. табл. 7). В молекуле С1Рз три электронные пары участвуют в связи (одна пара за счет двухцентрового взаимодействия, две пары—за счет трехцентрового взаимодействия) и две пары остаются неподелен-ными при атоме хлора. Взаимное отталкивание пяти электронных пар отвечает расположению их в вершинах тригональной бипирамиды (см. рис. 51). [c.270]

    Поляризационные представления оказались полезными для объяснения устойчивости, кислотно-основных и окнслительно-вос-сталовнтельных свойств комплексных соединений, но многие другие их свойства остались необъясненными. Так, с позиций электростатической теории все комплексы с координационным числом 4 должны иметь тетраэдрическое строение, поскольку именно такой конфигурации соответствует наименьшее взаимное отталкивание лигандов. В действительности, как мы уже знаем, некоторые по- добные комплексы, например, образованные платиной(И), построены в форме плоского квадрата. Электростатическая теория не в состоянии объяснить особенности реакционной способности комплексных соединений, их магнитные свойства и окраску. Более точное и полное описание свойств и строения комплексных соеди- нений может быть получено только на основе квантовомеханиче- ских представлений о строении атомов и молекул. [c.594]

    При заселении орбиталей с одинаковой энергией (например, пяти 3 /-орбиталей) электроны в первую очередь расселяются поодиночке на вакантных орбиталях, после чего начинается заселение орбиталей вторыми электронами. Это происходит в соответствии с правилом Гунда, согласно которому на орбиталях с одинаковой энергией электроны остаются по возможности неспаренньши. Такая особенность объясняется наличием электрон-электронного отталкивания. Два электрона, один из которых находится на р Орбитали, а другой на р -орбитали, имеют возможность находиться на большем расстоянии друг от друга, чем два электрона, спа--репные на одной р -орбитали (см. рис. 8-22). Следствием правила Гунда является особая устойчивость полузаполненного набора орбиталей (полного набора всех орбиталей с одинаковой энергией, на каждой из которых находится по одному электрону). При заселении набора из пяти -орбиталей шестым электроном он вынужден спариваться с другим электроном, уже находящимся на какой-либо из орбиталей. Взаимное отталкивание отрицательно заряженных электронов приводит к тому, что для удаления (ионизации) этого шестого электрона требуется меньшая энергия, чем для удаления одного из пяти электронов из полузаполненного набора пяти -орбиталей. По аналогичной причине четвертый электрон, заселяющий набор из трех р-орбиталей, удерживается в атоме менее прочно, чем третий электрон. [c.387]

    За пределами строгой количественной теории Дерягина остались такие факторы устойчивости, как сольватация поверхности ч1стиц и структурно-механические свойства адсорбционных слоев. Один из возможных путей учета сольватации в рамках теории устойчивости предложен Ю. М. Глазманом. По его мнению, электростатическое отталкивание соль-ватированных частиц можно рассматривать с позиций расположения внутренней обкладки двойного ионного слоя на внешней стороне сольватного слоя, что равносильно увеличению радиуса действия электростатических сил. Сольватные слои, по определению Дерягина, представляют собой пограничные с дисперсной фазой области среды, обладающие отличными от остальной среды механическими и термодинамическими (или теми и другими) свойствами. [c.8]

    Здесь С — общая концентрация одновалентного > электролита Жидкорастянутое состояние возникает, например, при наличии сильной когезии между группами — СНг— в длинной углеводородной цепи на поверхности раздела воздух — жидкость, если нет электрического отталкивания. Для значительной области площадей когезия остается всегда постоянной и уравнение состояния имеет вид [c.186]

    Для молекул воды характерно образование так называемых водородных связей. Возникновение водородной связи объясняется свойством атома водорода взаимодействовать с сильно электроотрицательным элементом, например с кислородом другой молекулы воды. Такая особенность водородного атома обусловливается тем, что, отдавая свой единственный электрон на образование ковалентной связи с кислородом, он остается в виде ядра очень малою размера, почти лишенного электронной оболочки. Поэтому он не испытывает отталкивания от электронной оболочки кислорода другой молекулы воды, а, наоборот, притягивается ею и может вступипъ с нею во взаимодействие. Наибольшей устойчивостью обладают удвоенные молекулы (НаО)2, образование которых сопровождается возникновением двух водородных связен  [c.10]

    Механизм взаимодействия флокулянта с коллоидной частицей складывается из двух фаз (рис. 52, а и б) (по Г. Зонтхамеру). Сначала полимер адсорбируется на коллоидной частице. При этом фиксируется только один конец флокулянта, а другой остается в растворе. Затем две частицы с адсорбированными молекулами флокулянта объединяются вместе. Полимер становится мостиком между двумя частицами. Такое взаимодействие частиц протекает быстро по всему объему системы. Но если внутри флокулы возникнут силы отталкивания, превышающие силы притяжения, то во -можно ее разрушение, показанное на рис, 52, б знаком обрати-мостн. [c.146]

    По-другому ведут себя молекулы бензола на поверхности ГТС (см. рис. 7.4, 7.7, 8.5). Здесь проявляются сильные неспецифические взаимодействия адсорбат — адсорбент, в результате чего уже при самых малых заполнениях теплота адсорбции бензола на ГТС >L. Межмолекулярные же взаимодействия адсорбат — адсорбат между плоско ориентированными молекулами бензола незначительны (дисперсионное притяжение частично компенсировано электростатическим отталкиванием). Поэтому теплота адсорбции бензола с ростом Г увеличивается лишь незначительно почти вплоть до заполнения всей поверхности ГТС плоскими молекулами бензола, а с дальнейшим ростом Г при переходе к полимолекуляр- ой адсорбции д резко падает, приближаясь к Ь. Соответственно изотерма адсорбции бензола на ГТС в области заполнения первого слоя точки перегиба не имеет и обращена к оси р/ро вогнутостью, подобно изотерме Лэнгмюра, полученной на основе модели, не учитывающей взаимодействия адсорбат — адсорбат. В отличие от модели Лэнгмюра адсорбция бензола на ГТС при комнатной температуре остается нелокализованной. [c.224]

    Модель свободных, электронов. Она основывается на представлении о том, что валентные электроны в металлических кристаллах обобщаются (делокализируются). При этом, образуется ионный остов из катионов, помещенный в так.,называемую электронную жидкость . Энергия сцепления частиц в рамках этой модели определяется преобладанием энергии кулоновского взаимодействия между катионами и электронами над энергией отталкивания электронов за счет их кинетической энергии и катионов за счет ионного взаимод.ействия, причем последний вклад невелик. Эта теория достаточно хорошо описывает свойства щелочных металлов, качественно объясняет проводимость металлов и другие свойства. [c.129]

    Степень адсорбции ионов электролитов частицами различных минералов неодинакова. Минералы, в которых между структурными элементами решеток действуют преимущественно близкодействующие ковалентные связи (кварц, глинистые минералы) с небольшой долей ионной составляющей (определяется степенью замещения кремния алюминием в полимерных каркасах, слоях) и с малой плотностью ее, характеризуются меньшей степенью воздействия на ионы электролитов. Наоборот, решетки, в которых связь между ее элементами преимущественно ионная (дальнодействующая) и плотность распределения зарядов по поверхности высокая (Са +СОз -, Мд +СОз - и др.), будут сильнее воздействовать на заряженные частицы электролитов. Таким образом, избирательная способность к ионам солей у известняков (а также у полевых шпатов, гематита) выше, чем у кварца и глинистых минералов. Кроме того, поскольку катионы обычно состоят из одной частички, имеющей малый размер и большую подвижность, а анионы чаще всего являются радикалами (СОз -, 5042") более крупных размеров и меньшей подвижности, на поверхности твердых тел быстрее адсорбируются катионы, чем анионы. Какая-то часть катионов Ыа+, К+, Са +, Mg2+ избирательно адсорбируется (в порядке Мд>Са>ЫаЖ) под действием поверхностной энергии Гиббса в первую очередь на поверхности зерен известняка, полевого шпата, затем кварца, сообщая этим зернам положительный заряд. Под непосредственным воздействием этих ионов на поверхности частиц упорядочиваются молекулы ПАВ и воды, создавая вместе с ионами адсорбционную оболочку вокруг зерен. Наличие положительных зарядов на таких адсорбционных комплексах (известняк —катионы — ПАВ — вода) приводит к тому, что вокруг них ориентируются отрицательно заряженные глинистые частицы и ионы 8042-, НСО3-, тоже предварительно адсорбировавшие на себе молекулы ПАВ и воды. Какая-то часть ионов Ыа+, К+, Mg +, Са2+ и 5042-, НСО3- остается в гидратированном виде в жидкой фазе. Таким образом, в суспензии действуют силы электростатического притяжения и отталкивания крупных адсорбционных комплексов (известняк —катионы —ПАВ — вода), мелких катионов и анионов, дипольные взаимодействия между униполярными комплексами, водородная связь между молекулами воды. Свободная же вода, разделяющая все частицы друг от друга, обеспечивает текучесть суспензии. [c.286]

    Если расположить простые вещества в ряду по убыванию восстановительной активности (ряд активностей металлов), то обнаружится несоответствие их последовательности с положением элементов в периодической системе. Так, олово и свинец находятся в системе соответствецно в пятом и шестом периодах, и казалось бы, что более высокими восстановительными свойствами должен обладать свинец (2=82), а не олово (2=50). Однако в ряду активностей олово стоит левее свинца. Ожидаемая последовательность их расположения в ряду активности нарушается, так как при заполнении электронами уровней атомов от 2=50до2=82в атомный остов вошли 14/-электронов (облака новой симметрии, силы отталкивания ослабли) и произошло /-сжатие. Уменьшение радиуса атома привело к увеличению энергии ионизации. [c.45]

    С точки зрения приведенного выше представления о молекулярных орбиталях в молекуле этилена каждый атом углерода должен использовать sp -opбитaли для образования связей с тремя атомами. Эти р -орбитали возникают в результате гибридизации 2з-, 2рх - и 2ру -электронов после перехода одного -электрона на р-орбиту, как было показано в разд. 1.3. Можно полагать, что любой атом углерода, связанный с тремя разными атомами, использует для этих связей sp -opбитaли. Таким образом, каждый атом углерода этилена участвует в образовании трех 0-связей по одной с каждым из двух атомов водорода и одной с другим атомом углерода. Поэтому каждый атом углерода имеет еще один электрон иа орбитали 2рг, которая в соответствии с принципом максимального отталкивания перпендикулярна плоскости р -орбиталей. Две параллельные 2 рг-ор-битали могут перекрываться, образуя две новые орбитали, связывающую и разрыхляющую (рис. 1.5). В основном состоянии оба электрона находятся на связывающей орбитали, а разрыхляющая орбиталь остается вакантной. Молекулярные орбитали, образованные при перекрывании атомных орбиталей, оси которых параллельны, называют л-орбиталями, если они являются связывающими орбиталями, и. п -орбиталями, если они являются разрыхляющими орбиталями. [c.22]

    Два иона (Ма+ и С1 ) с противоположными зарядами притягиваются друг к другу и удерживаются вместе благодаря силе электростатического притяжения f, которая описывается законом Кулона = е е21г , где в и 62 —заряды катиона и аниона г —расстояние между ними. Действие этой силы приводит к образованию устойчивого соединения — хлорида натрия. Отметим, что при сближении ионов противоположного знака, когда расстояние между ними становится очень малым, возникает сила отталкивания. Она обусловлена электростатическим отталкиванием между одинаково заряженныг ми электронными оболочками обоих атомов. По этой причине ионы Ыа+ и С1 в соединении остаются на рц- [c.152]

    Выбор той или иной системы определяется взаимной ориентацией электронных спинов. Если последние ориентированы однотипно (т. н. параллельные спияы), то между электронами действуют магнитные силы отталкивания, что благоприятствует возникновению системы I (движение по эллипсу) с характерным для нее взаимным отталкиванием атомов при всех сочетаниях положений электронов (особенно —2 и 6). Напротив, если спины ориентированы противоположно друг другу (т. и. антипараллельные спины), то между электронами действуют магнитные силы стяжения, что благоприятствует возникновению системы II (движение по восьмерке), характеризующейся почти не меняющимся расстоянием между обоими электронами и наличием ряда сочетаний их положений (2 и 4, 4 и 6, 1 и 3, 5 и 7), при которых между атомами действуют силы притяжения. Так как смена положений электронов происходит крайне быстро —примерно 10 раз за секунду, — и отталкивание (в системе I), и притяжение (в системе II) остаются практически постоянными. [c.91]

    Когда возрастает ф у обеих частиц, силы электростатического взаимодействия вначале меняются пропорционально квадрату потенциала (при постоянном составе электролита и неизменном расстоянии между частицами). По мере роста ф сила отталкивания стремится к некоторому пределу и при ф> 100 мв практически остается постоянной (рис- 47). Это так называемое насыщение сил объясняется тем, что вместе с ростом заряда внутренней обкладки двойного слоя И потенциала поверхности. усиливается и экранировка обкладки противоионами. Дальнейший рост электрического поля в области прекрывания ионных атмосфер и сил взаимодействия обеих частиц прекращается. [c.122]

    Аддитивность энергии взаимодействия выполняется абсолютно строго при электростатическом взаимодействии точечных зарядов. Что касается межмолекулярных взаимодействий, равенство (Х.35) является приближением. Показано, что для дисперсионных сил предположение об аддитивности выполняется с хорошей степенью точности. Этого нельзя сказать об индукционной составляющей. Действительно, взаимодействие между какими-либо двумя частицами в данном случае зависит от их электрических моментов, а последние содержат индуцированную часть, определяемую суммарным полем всех частиц системы. Потенциал отталкивания также не является аддитивным. Так, квантовомеханические расчеты показали, что отталкива-тельная энергия трех атомов гелия, расположенных в вершинах равностороннего треугольника, почти на 20% меньше, чем сумма энергий отталкивания изолированных пар. Имеются и другие основания, как теоретические, так и экспериментальные, считать, что различие между энергией взаимодействия трех частиц и суммой энергий взаимодействия соответствующих изолированных пар не является пренебрежимо малым (эту разницу определяют как энергию трехчастичного взаимодействия). Остается, однако, открытым вопрос о других многочастичных членах в выражении для энергии системы. Успех расчетов (в том числе расчетов для жидкостей и кристаллов), проведенных исходя из аддитивности межмолекулярных сил, позволяет предположить, что результирующая неаддитивность во многих системах совсем мала и что, во всяком случае, допустимо представить энергию системы (пусть даже плотной) в виде суммы некоторых эффективных парных потенциалов, — возможно, несколько отличных от потенциалов взаимодействия изолированных пар и зависящих, вообще говоря, от плотности и температуры системы и г) = и [г, п, Т). Отметим, что почти все выполненные до настоящего времени статистические расчеты для систем, силы притяжения в которых являются ван-дер-ваальсовыми, основаны на допущении об аддитивном характере сил межмолекулярного взаимодействия. [c.284]

    Действительно, приведенные данные показывают, что сила, действуй-щая на /9-электрон в атомах серии Ые — Кп и сжимающая облако, максимальна в случае Ые и особенно мала для Кг. Одновременно с уменьшением эндо-эффекта взаимного отталкивания при постоянстве второго квантового числа и при отдалении от кайносимметрии (т. е. при увеличении главного квантового числа) идет и некоторое уменьшение экзо-эффекта электронной корреляции, зависящей не только от расширения облака, но и от уменьшения эффекта почти вырождения . В самом деле, геометрическое сближение взаимно возмущающих друг друга орбиталей, хотя и уменьшается слегка при переходе в Системе от одного периода к другому, но все же остается малым  [c.78]

    Остается теперь разобрать причину резкого излома на линии энергий для т. е. понять переход от rdh к Mnd s, который иногда несколько упрощенно трактуют как результат единственного явления — появления эндотермического члена взаимного отталкивания двух -электронов в первой образующейся -электронной паре, т. е. при переходе от к . Это казалось бы естественное объяснение (излом происходит именно при переходе от d к ) следует считать, однако, недостаточным [1]. В частности, не следует забывать, что одновременно с построением пары 3 -элeктpoнoв расстраивается при возбуждении Mn V пара 45-электронов, что отражается на общей энергии атома. Сама величина перепада энергии от г s к Mn s, известная [ ам точно из спектроскопического эксперимента, по смыслу очень сложна, так как зависит не только от ординаты точки rd% но и от ординаты Мп Л последняя, высоко лежащая над точкой Mп V, определяется разностью сложных характеристик обоих состояний (нормального и возбужденного) атома марганца к сожалению, абсолютные значения величин, слагающих энергию атома Мп, до сих пор не поддаются экспериментальному измерению и могут быть лишь вычислены, да и то приближенно. [c.84]

    При переходе от р к Др, т. е. при суммировании разностной алотности заряда, в связывающей области не приходится учитывать всю величину заряда внутренних 15 -электронов и подавляющую часть общей суммы, входящей в кулонов классический интеграл, зависящий от наложения друг на друга неполяризованных атомных облаков, так как энергия их притяжения к ядрам почти нацело компенсируется энергией взаимного расталкивания ядер и взаимного отталкивания электронов. Остается лиш1э электронный обменный интеграл и более тонкие корреляционные эффекты, играющие, как теперь выяснилось, выдающуюся роль в определении энергии связи и имеющие прямое отношение к взаимным электронным возмущениям при тесном сближении электронов друг с другом в области перекрывания. Натекающая часть межъядерного заряда в связевой области имеет самое близкое отношение к значению Др, а потому понятно, что интегрирование Др по связевой области и в особенности в центральной ее части, где заряды в равной степени притягиваются к обоим ядрам, может дать более ясный ответ на энергетическую характеристику связи, чем интегрирование р. Следует помнить, что электронное облако, симметрично окружающее ядро, не оказывает на него силового воздействия только асимметрия этого облака из-за неполной взаимной компенсации дает результирующий силовой вектор и может сместить ядро. Произведя интегрирование Др по обеим областям внутримолекулярного пространства, получаем данные, приведенные в табл. 41. [c.253]


Смотреть страницы где упоминается термин Остовов отталкивание: [c.194]    [c.151]    [c.104]    [c.79]    [c.220]    [c.104]    [c.560]    [c.53]    [c.189]    [c.45]    [c.17]    [c.53]    [c.118]    [c.300]   
Теория молекулярных орбиталей в органической химии (1972) -- [ c.217 , c.561 ]




ПОИСК





Смотрите так же термины и статьи:

ОСТа

Отталкивание



© 2024 chem21.info Реклама на сайте