Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экструдер цилиндры

    Смешение в одночервячных экструдерах. Расплав полимера (ньютоновская жидкость) с вязкостью 620 Па-с и плотностью 0,63 г/см перерабатывают на одночервячном экструдере. Диаметр червяка 63,5 мм LiD = 24 1 в сечении червяк имеет форму прямоугольника глубина нарезки червяка постоянная, ранная 10,16 мм ширина винтовой нарезки 6,35 мм зазор между гребнем нарезки червяка и стенкой цилиндра пренебрежимо мал. Производительность экструдера 72 кг/ч частота вращения червяка 100 об/мнн. Рассчитайте среднее значение деформации сдвига в полимере. [c.415]


    Это означает, что возрастание давления в экструдере равно снижению давления в головке. Однако изменения массового расхода и давления представляют интерес не только как параметры процесса. С величиной генерируемого давления связаны также изменения те 1-пературы и мощности, потребляемой червяком экструдера. Наконец, мы заинтересованы в увеличении степени смешения, которая характеризуется функциями ФРД и ФРВ, или, другими словами, интерес представляют средняя деформация сдвига и среднее время пребывания материала в экструдере. Математические модели подсистем позволяют определить связь между основными интересующими нас технологическими параметрами (т. е. объемным расходом, распределением давлений и температуры, потребляемой мощностью, средней деформацией сдвига и временем пребывания) и всеми влияющими на процесс геометрическими (т. е. конструктивными) параметрами, реологическими и теплофизическими свойствами расплава, а также регулируемыми параметрами процесса (т. е. частотой вращения червяка, температурой червяка, цилиндра, головки). Эти зависимости можно использовать как при проектировании новых машин, так и для анализа работы существующих. В дополнение к основным регулируемым параметрам желательно исследовать и другие, такие, как изменение температуры в головке, изменение объемного расхода, однородность экструдата, разбухание и стабильность формы экструдата и параметрическую чувствительность процесса. В гл. 13, посвященной формованию методом экструзии, рассматриваются некоторые из этих параметров. [c.419]

    Анализ процесса экструзии расплавов. Рассмотрим процесс экструзии (см. рис. 12.1) при гранулировании расплава с производительностью 8000 кг/ч. Червяк имеет зону гомогенизации, диаметр червяка 40 см, L/D = 12, сечение канала червяка — прямоугольное, шаг — диаметральный. Зона питания состоит из 13 витков глубиной 7,5 см, зона гомогенизации — из 6 витков глубиной 2,5 см. Ширина гребня витка составляет 3 см, зазор между гребнем витка и поверхностью цилиндра пренебрежимо мал. Наличием в головке экструдера решетки и пакета сеток пренебрегаем. Головка состоит из плоской фильеры с 1000 отверстий, форма отверстий показана на рис. 12.1, ii = io = I.-, = 1 см, = 0,5 см, R = 0,25 см. Экструдируемый полимер представляет собой несжимаемую ньютоновскую жидкость с вязкостью 10 Па-с и плотностью 0,75 г/см . [c.457]


    Кроме того, дегазацию иногда необходимо проводить непосредственно перед формованием изделий, доводя концентрацию летучих в полимере до очень низкого уровня, что гарантирует высокое качество и нетоксичность готовых изделий. При экструзии, например, удаление летучих производят в зоне дегазации, где расплав полимера заполняет цилиндр экструдера только частично, вакуумируя слой расплава, поступающий на внутреннюю поверхность цилиндра. Летучие компоненты диффундируют к границе полимер—газ, переходят в газовую фазу и удаляются через отводной канал. На поверхности полимера концентрация летучих одинакова в газовой фазе и в растворе. Ее величина зависит от парциального давления паров, температуры и взаимодействия полимер—растворитель [101. [c.112]

    Получение полипропиленовых пленок методом экструзии через кольцевую щель с последующим раздувом трубчатой заготовки можно осуществлять на том же оборудовании, которое используется для экструзии пленок из полиэтилена, если только оно позволяет установить температурный режим переработки, соответствующий пределам температур 220—250° С. Прогрев материала до достижения вязкотекучего состояния обеспечивается при его движении через цилиндр экструзионной машины. При изготовлении пленок методом экструзии с раздуванием расплавленный полипропилен обычно выдавливается через угловую головку, конструктивно сходную с головкой для экструзии разветвленного полиэтилена. Температура в головке экструдера обычно на 10—20°С ниже, чем на конце червяка [71]. Расплав выходит из головки в виде трубчатой заготовки и тотчас же раздувается сжатым воздухом в рукав до заданной толщины. Сжатый воздух для раздувания полипропиленовой трубы подается через дорн. С наружной стороны труба охлаждается воздухом, благодаря чему предотвращается чрезмерная деструкция полимера [76]. Раздувание трубы можно производить азотом. В этом случае готовая пленка имеет предел прочности при растяжении до 353 в то время как [c.263]

    Рассмотрим очень упрощенный идеализированный смеситель закрытого типа, состоящий из двух коаксиальных цилиндров бесконечной длины с коротким участком, моделирующим узкий зазор (см. рис. 11.20, а). Пренебрегая кривизной канала (Я// < 1), можно рассмотреть течение в прямоугольных координатах, как показано на рис. 11.20, б. Рассмотрим течение жидкости в зазоре между бесконечной верхней пластиной, движущейся с постоянной скоростью относительно нижней пластины, и выступом на нижней пластине. Такая геометрическая конструкция очень напоминает экструдер, работающий по принципу ступенчатого опорного подшипника (см. разд. 10.4). [c.403]

    В 30-х годах были сконструированы экструдеры, цилиндр которых имел электрический обогрев. Они были предназначены для питания холодной крошкой термопласта. В конце 30-х годов у экструдеров для термопласта была резко увеличена длина шнека (и цилиндра) по сравнению со шнеком машин для переработки резины. В эти же годы была сконструирована двухшнековая машина. Начиная с этого времени успехи, достигнутые в конструировании экструдеров, логически привели к созданию современных типов машин. Здесь следует упомянуть о том, что поршневые экструзионные машины до сих пор применяют для переработки таких материалов, которые не могут перерабатываться на шнековых машинах, и в тех случаях, когда процесс требует применения особо высоких давлений. [c.320]

    Вначале вкратце обсудим некоторые геометрические соотношения, свойственные червякам. Двумя основными геометрическими параметрами, характеризующими червяк экструдера, являются диаметр D, замеренный по наружному размеру гребня, и осевая длина L или отношение длины к диаметру L/D. Обычно это отношение находится в пределах 24—26, хотя иногда бывают червяки с отношением длины к диаметру выше — до 40 или ниже — до 8. Последние обычно встречаются либо в экструдерах для переработки резины, либо в ранних моделях экструдеров для переработки термопластов. Диаметры червяков обычно находятся в диапазоне от 2 до 75 см, но могут быть ниже и выше. Червяк не может быть плотно вставлен в цилиндр из-за трения. Поэтому между гребнем червяка и внутренней поверхностью цилиндра диаметром Оь существует небольшой радиальный зазор б/, равный около 0,2—0,5 мм. Расплав полимера непрерывно течет по этому зазору, играя роль смазки. Диаметр червяка по краю гребня составляет D . = Оь — 26 , Длина одного полного витка гребня, измеренная вдоль оси червяка, называется шагом L . Большинство червяков одночервячных экструдеров является однозаходными с = D . Схема такого червяка представлена на рис. 10.12. Радиальное расстояние между поверхностью цилиндра и основанием червяка называется глубиной канала Я. Основным конструктивным параметром червяков является продольный профиль глубины винтового канала, т. е. Н (г), где z — расстояние. [c.321]


    Для увеличения коэффициента трения материала о поверхность цилиндра в современных экструдерах цилиндры снабжаются пазами. Профиль пазов делают прямоугольным, трапециевидным или в виде полуцилиндра с таким расчетом, чтобы в него входила половина гранулы полимера. Глубина паза по ходу движения материала обычно уменьшается, и на расстоянии =(4 5)0 от бункера поверхность цилиндра становится гладкой. Пазы размещаются параллельно оси цилиндра или по спирали в направлении движения материала. [c.103]

    Смешение производится при 60—65 °С. Дальнейшие стадии процесса определяются целевым назначением получаемых продуктов. Так, для фаолитовой замазки масса уже после смесителя 4 поступает на упаковку. Для получения сырых листов масса из смесителя 3 подается на вальцы 4, вальцуется при температуре горячего валка 90°С и пропускается через каландр 5. Для получения труб и профильных изделий прессмасса после вальцевания поступает в пресс 6 или в экструдер 7. Температура обогреваемого цилиндра экструдера 60—70°С. Затем трубы и другие изделия направляются в камеру на отверждение. Отверждение проводится при [c.64]

    Полученная таким образом геометрическая конфигурация соответствует одночервячному экструдеру. Остается изготовить из твердой цилиндрической заготовки винтовой канал, как показано на рис. 10.11 и поместить этот винт в полый цилиндр. Вместо цилиндра можно вращать червяк, только в противоположном направлении. Проблемы входа и выхода теперь решаются просто. Первая может быть решена при помощи отверстия в цилиндрическом корпусе, в то время как вторая решается сама по себе — червяк берется требуемой длины и расплав просто прокачивается через головку. [c.320]

    Экструдер с вращающимся винтовым каналом. Канал червяка образует спираль. Экструдер состоит из винтового канала, свободно вращающегося на валу. Различие между этим экструдером и обычным заключается в том, что сердечник червяка неподвижен относительно стенок канала червяка и относительно цилиндра. [c.459]

    Оь — внутренний диаметр цилиндра экструдера (12.2-1)  [c.624]

    Vb — скорость движения цилиндра экструдера относительно червяка (10.3 3)  [c.627]

    Для уменьшения содержания остаточного этилена в грануляте экструдеры первичной грануляции иногда оснащают специальными устройствами для вакуумирования расплава. Описан способ отгонки остаточного этилена с водяным паром, подаваемым в цилиндр экструдера [16]. [c.41]

    Значительная часть выпускаемых экструдеров снабжается устройством для дегазации, которая может осуществляться в бункере, у питающего отверстия или в самом цилиндре манпи1ы [207]. Экструдеры с дегазацией обычно выпускаются с удлиненным шнеком (24 1 — 30 1) и снабжаются дросселирующим клапаном, установленным перед зоной отсоса и позволяющим поддерживать пулевое давление в этой зоне. Регулирование давления в головке экструдера может осуществляться [c.179]

    На современных экструдерах применяется независимая система нагрева, охлаждения и регулирования температуры для каждой зоны цилиндра. Количество зон в зависимости от типа машины можеп меняться от 2 до 12. На экструдерах, выпускаемых в США, применяются различные системы нагрева паровая, электрическая, масляная, индукционная. Наиболее перспективным является индукционный нагрев. Применяются системы принудительного воздушного и водяного охлаждения. Интенсивность охлаждения внутренней полости шнека эквивалентна уменьшению глубины его канала, а следовательно, также может использоваться в качестве переменного параметра при переработке различных материалов. Для регулирования температуры-головки и стенки цилиндра применяют термометры безконтактного типа, точность показаний которых может составлять 0,5° С. В современных экструди-онных машинах США применяются три типа приводов, которые по мере возрастания стоимости могут быть перечислены в следующей последовательности  [c.180]

    Фирма National Rubber Ma hinery производит экструдеры со шнеком диаметром 25—375 мм [208]. Основными особенностями этих машин являются патентованная жидкостная система охлаждения, индукционный нагрев цилиндра и пирометрический контроль температуры (шкала прибора от —18 до +467° С). Стандартная длина шнеков 20 и 24 диаметров. [c.181]

    Цилиндр и головка червячного экструдера нагреваются при помощи электрон.агревателей. Ниже приведены температуры нагрева по зонам (в °С)  [c.23]

    В экструдере, состоящем из нескольких зон, одновременно с перемещением массы вдоль цилиндра происходит пропитка наполнителя олигомером, интенсивное перемешивание и гомогенизация массы. Скорость вращения шнека меняется в широких пределах (1—52 об/мин). В зонах экструдера в зависимости от заданных свойств пресспорошка поддерживается определенный температурный режим (например, 95—130°С). После экструдера прессмате-риал охлаждается на шнеке 10 и поступает на размол в дробилку 11. Просеянный на конусном сите [c.62]

    Температура в цилиндре экструдера по зонам постеиенпо повышается от 145 до 180°С, а в головке от 200 до 210°С. [c.107]

    Полимеры чувствительны к температуре, и продолжительное воздействие высоких температур может привести к их термической деструкции. Степень деструкции зависит от температурно-временной предыстории полимера. Зачастую полимеры перерабатывают в присутствии реакционноспособных добавок (вспенивающие агенты, сшивающие агенты), активируемых температурой, или полимеры сами реакционноспособны (например, реактопласты). В таких системах глубина протекания химических реакций зависит от температурно-временной истории деформирования. Экструдаты многих полимеров (например, полиамида 6,6) содержат некоторое (непостоянное) количество геля , что может быть результатом избыточного пребывания небольшой фракции полимера в цилиндре экструдера. Во всех перечисленных случаях количественный расчет и проектирование требуют подробного знания функции распределения времен пребывания (ФРВП). Кроме того, в технологии переработки полимеров время, необходимое для очистки системы или заправки материала, также определяется природой этой функции. Поэтому помимо описанной ранее взаимосвязи ФРД с ФРВП для проектирования и управления процессом переработки полимеров важное значение имеют расчет и экспериментальная оценка ФРВП. [c.210]

    Пытаясь устранить этот недостаток, Вестовер [24] сконструировал плунжерный экструдер непрерывного действия, который состоял из четырех цилиндров с плунжерами два для плавления и два для нагнетания расплава. Оригинальный пробковый кран соединял между собой все цилиндры и обеспечивал непрерывность экструзии. В современной практике переработки полимеров плунжерные устройства гораздо чаще применяются для литья под давлением и прессования, чем для экструзии. В этих случаях прерывистый характер их работы не имеет существенного значения, так как сами методы переработки предполагают периодичность работы. [c.348]

    Двухчервячные экструдеры с незацепленными противоположно вращающимися червяками . Двухчервячные экструдеры с незацепляющимися червяками состоят из двух одинаковых червяков, вращающихся в цилиндре, как показано на рис. 10.48. Приняв ньютоновский изотермичный характер течения и считая, что каналы постоянных размеров имеют малую глубину, выведите следующую зависимость для производительности  [c.365]

    Упоминавшееся ранее приближенное моделирование путем суммирования и корректирования выражений для вынужденного течения и потока под давлением [2с1], однако, позволяет нам иногда использовать его как приближенный метод оценки неизотермических эффектов. На практике в первую очередь представляет интерес определение влияния неизотермических условий на производительность и среднюю температуру экструдата. Во многих реальных процессах червяк является термонейтральным, т. е. он не нагревается и не охлаждается. В таких случаях, как было показано в работе [2е], температура червяка очень близка к температуре расплава. Следовательно, основное влияние на расход оказывает наличие существенной разности между температурами цилиндра и расплава. Как видно из уравнения (10.2-46), разность температур может оказывать сильное влияние на расход вынужденного течения. С другой стороны, увеличение средней температуры экструдата является следствием постепенного изменения температуры в направлении течения. Применим метод смазочной аппроксимации и, разделив червяк на малые элементы конечных размеров, проведем детальный расчет для каждого элемента. Предполагая, что средняя температура в пределах элемента постоянна, составим уравнение теплового баланса, учитывающее тепло, передаваемое от стенок цилиндра, и диссипативные тепловыделения. Такой метод расчета позволяет определить изменения температуры по длине червяка и значения параметров степенного закона течения из общей кривой течения [т] (7, Т) ] для каждой ступени расчета при локальных условиях течения, а также вести расчет для червяка с переменной глубиной винтового канала. Таким образом, данная модель может быть названа обобщенной кусочнопараметрической моделью , в которой внутри каждого элемента различные подсистемы представляют собой либо кусочно-параметрические модели, либо модели с распределенными параметрами. Далее следует принимать во внимание неизотермический характер течения неньютоновских жидкостей при исследовании процессов формования в головке экструдера. Этой проблеме посвящен разд. 13,1. [c.427]

    Процесс пластицирующей экструзии довольно сложен и отличается от процесса экструзии расплава протекающими физическими процессами, и в частности наличием стадии плавления. Его нелегко предсказать и смоделировать на основе известных принципов, не-прибегая к экспериментальным исследованиям. Качественное понимание процесса плавления стало возможным только после того, как Мэддок [9] и Стрит [10] разработали простой и остроумный экспериментальный метод визуального исследования процесса. Методика эксперимента заключалась в следующем. Экструдер, работающий в установившемся режиме, резко останавливали, охлаждали цилиндр до температуры, при которой расплав затвердевал в канале червяка, а затем быстро нагревали цилиндр, выталкивая червяк из цилиндра. [c.428]

    Экструзию (шприцевание, выдавливание) применяют для формования из термо- и реактопластов разл. длинномерных изделий-волокон, пленок, листов, труб, профилей разнообразного поперечного сечения. Переработка термопластов осуществляется на поршневых и винтовых машинах (экструдерах) путем выдавливания материала, переведенного в нагреват. цилиндре экструдера в вязкотекучее состояние, через формообразующую головку проходного типа (рис. 4). Выходящее из головки изделие охлаждается, отводится тянущим устройством и сматывается в бухты или разрезается на отрезки необходимой длины. Скорость отвода изделия м. б. больше скорости выхода из головки, тогда происходит ориентация материала в направлении оси изде- [c.7]

    Рнс. 12.7, Схема пластицирующего червячного экструдера (в зоне загрузочного бункера цилиндр охлаждается). Пояснеппе в тексте. [c.428]

    В результате экспериментов установлено, что на большей части червяка экструдера сосуш,ествуют твердая и жидкая фазы, однако разделение их приводит к образованию слоя расплава у толкающего гребня червяка и твердой полимерной пробки у тянущего гребня. Ширина слоя расплава постепенно увеличивается в направлении вдоль винтового канала, в то время как ширина твердой пробки умень -шается. Твердая пробка, имеющая форму непрерывной винтовой ленты изменяющейся ширины и высоты, медленно движется по каналу (аналогично гайке по червяку), скользя по направлению к выходу и постепенно расплавляясь. Все поперечное сечение канала червяка от точки начала плавления до загрузочной воронки заполнено нерасплавленным полимером, который по мере приближения к загрузочному отверстию становится все более рыхлым. Уплотнение твердого полимера позволяет получать экструдат, не содержащий воздушных включений пустоты между частицами (гранулами) твердого полимера обеспечивают беспрепятственный проход воздушных пузырьков из глубины экструдера к загрузочной воронке. Причем частицы твердого полимера движутся по каналу червяка к головке, а воздушные пузырьки остаются неподвижными. Хотя описанное выше поведение расплава в экструдерах является достаточно общим как для аморфных, так и для кристаллических полимеров, малых и больших экструдеров и разнообразных условий работы, оказалось, что при переработке некоторых композиционных материалов на основе ПВХ слой расплава скапливается у передней стенки канала червяка [12]. Кроме того, в больших экструдерах отсутствует отдельный слой расплава на боковой поверхности канала червяка, чаще наблюдается увеличение толщины слоя расплава на поверхности цилиндра [131. Как отмечалось в разд. 9.10, диссипативное плавление — смешение возможно в червячных экструдерах в условиях, которые приводят к возникновению высокого давления в зоне питания. В данном разделе будет рассмотрен процесс плавления, протекающий по обычному механизму. Отметим, что на большей части длины экструдера [c.429]

    В загрузочной воронке мы начинаем медленное и в некоторой степени неустойчивое движение вниз, которое сопровождается многократно повторяющимися столкновениями с соседними гранулами и кратковременными зависаниями в своде. Это продолжается до тех пор, пока мы не достигнем зоны сужения — горловины питающего отверстия. Здесь винтовой гребень подхватывает гранулы и толкает их вперед. Он мгновенно догоняет нашу гранулу, и она начинает вращаться (при этом изменяется ее система координат). Теперь мы регистрируем свое движение относительно червяка, и поэтому кажется, что цилиндр вращается в противоположном направлении. Мы находимся в мелком канале, ограниченном гребнями червяка, его сердечником и поверхностью цилиндра, и начинаем медленное движение по каналу, сохраняя свое местоположение относительно ограничивающих канал стенок. По мере передвижения соседние гранулы нажимают на нашу гранулу со все возрастающим усилием, причем пространство между гранулами постепенно уменьшается. Большинство гранул испытывает такое же воздействие, за исключением тех, которые контактируют с цилиндром и червяком. Движущаяся поверхность цилиндра оказывает интенсивное тормозящее воздействие, в то время как трение о поверхность червяка приводит к возникновению силы трения, направленной вдоль винтового канала. Из разд. 8.13 известно, что это торможение о поверхность цилиндра является движущей силой, вызывающей перемещение частиц твердого полимера в канале червяка. Оба эти фрикционных процесса приводят к выделению тепла, возрастанию температуры полимера, и в особенности слоя, расположенного у поверхности цилиндра. В каком-то сечении температура слоя может превысить температуру плавления или размягчения полимера, и фрикционное торможение переходит в вязкое трение, т. е. твердый полимер перемещается по каналу червяка за счет напряжений сдвига, генерируемых в пленке расплава. Однако в более общем случае еще до начала сколько-нибудь значительного фрикционного разогрева экстремальные условия достигаются на тех участках, где цилиндр разогрет до температуры, превышающей температуру плавления, что ускоряет появление пленки расплава. Это означает окончание той части процесса транспортировки гранул, которая происходит в зоне питания, когда в экструдере присутствует только твердый нерасплавленный материал. К этому моменту наша гранула оказывается до некоторой степени деформированной соседними гранулами, с которыми она тесно контактирует, образуя вместе с ними достаточно прочный, хотя и деформируемый твердый блок, движущийся подобно пробке по каналу червяка. Тонкая пленка, отделяющая слой нерасплавлениого полимера от цилиндра, подвергается интенсивной деформации сдвига. Разогрев твердой пробки происходит как за счет тепла, генерируе- [c.431]

    Возвращаясь к нашей грануле, отметим, что зона задержки заканчивается, когда находящийся на пробке расплавленный полимер начинает медленно двигаться по поверхности цилиндра. В какой-то точке экструдера нанга гранула окажется на поверхности раздела пленка расплава — твердый полимер в этот момент ее температура экспоненциально повышается до температуры плавления полимера. Образовавшаяся жидкая частица быстро переместится в область, занятую расплавом и расположенную у толкающей стенки. При экструзии аморфных полимеров размягченные частицы движутся по направлению как к поверхности цилиндра, так и к толкающей стенке канала. [c.432]

Рис. 12.12. Диаграмма, иллюстрирующая долю общей мощности, истребляемой на разных участках червяка в зоне питания экструдера НЮь 0,15 fjfb = onst) в зависимости от угла трения Ф (Pwb — диссипативные тепловыделения на поверхности раздела цилиндр—пробка — основная компонента потребляемой мощности P s ч Pwj — мощности, рассеиваемые на сердечнике червяка и его стейках — мощность, расходуемая иа сжатие Рис. 12.12. Диаграмма, иллюстрирующая <a href="/info/1772066">долю общей</a> мощности, истребляемой на разных участках червяка в <a href="/info/333824">зоне питания экструдера</a> НЮь 0,15 fjfb = onst) в зависимости от угла трения Ф (Pwb — диссипативные тепловыделения на <a href="/info/3853">поверхности раздела</a> <a href="/info/392803">цилиндр—пробка</a> — <a href="/info/8300">основная компонента</a> потребляемой мощности P s ч Pwj — мощности, рассеиваемые на <a href="/info/318231">сердечнике червяка</a> и его стейках — мощность, расходуемая иа сжатие
    Профиль пробки в червячных экструдерах. Определите профиль пробки и продолжительность плавления ПЭНП, перерабатываемого в экструдере с одно-заходным червяком диаметром 6,35 см (шаг диаметральный), имеющим следующие характеристики, при следующих условиях зона питания состоит из 3,5 витка глубиной 1,27 зона сжатия с постоянной величиной конусности и сердечника состоит из 12 витков зона дозирования состоит из 12 витков глубиной 0,318 см ширина гребня витка 0,635 см зазор между гребнем витка и поверхностью цилиндра незначителен. Параметры процесса частота вращения червяка 82 об/мин, температура цилиндра 150 °С, производительность 54,4 кг/ч. Используйте показатели физических свойств полимера из Примера 12.3 и предположите, что плавление начинается за один виток до конца зоны питания. Отвепг. В конце зоны питания XlW = 0,905, в конце зоны сжатия XlW = 0,023.) [c.459]

    Теоретический анализ литья под давлением включает все элементы анализа установившейся непрерывной пластицируюш,ей экструзии, а кроме того, осложняется анализом неустойчивого течения, обусловленного периодическим враш,ением червяка, на которое накладывается его осевое перемеш,ение. Для управления процессом литья под давлением важной является зона плавления в цилиндре пластикатора. Экспериментально показано, что механизм плавления полимера в цилиндре литьевой машины подобен пластикации в червячном экструдере [1 ]. На этом основана математическая модель процесса плавления в пластикаторе литьевой машины [2]. Расплав полимера скапливается в полости, образующейся в цилиндре перед червяком. Гомогенность расплава, полученного на этой стадии, влияет как на процесс заполнения формы, так и на качество изделий. В настоящем разделе рассматривается только процесс заполнения формы. Предполагается, что качество смешения и температура расплава остаются постоянными на протяжении всего цикла литья и не изменяются от цикла к циклу. [c.518]

    Гранулирование экструзией иногда применярот при относительно небольшой производительности установок. Этот метод заключается в предварительной пластификации исходного материала его нагреванием или смешением с жидкой добавкой. Затем пластичная масса поступает в экструдер, в котором продавливается через отверстия в матрицах. Из отверстий материал выходит в виде шнуров и разрезается затем ножом на равные кусочки. Можно использовать два соприкасающихся перфорированных цилиндра, вращающихся в противоположных направлениях. Гранулируемая масса поступает между цилиндрами и продавливается сквозь отверстия внутрь, где расположены срезающие ножи. При круглых отверстиях гранулы имеют цилиндрическую форму. Путем обкатки с добавкой исходного порошкообразного материала и пластификатора их можно превращать в сферические гранулы. Экструзия позволяет получать однородные по размеру гранулы высокой прочности. [c.291]

    Открытопористые эластичные П. производят диспергированием воздуха в низковязкий пластизоль, содержащий ПАВ, и фиксацией образовавшейся пены при 80-160°С насыщением пастообразного ПВХ СО2 под давлением 0,5-1,0 МПа в автоклаве или роторно-пленочном смесителе при 15-25 °С с послед, помещением массы на транспортерную ленту или др. подложку, где происходит ее вспенивание вследствие десорбции СО2 (т-ра фиксации пены 160-170 °С). При замене СО2 хладонами благодаря их лучшей р-римости в пластизолях облегчается контроль структуры П. и кажущейся плотности формуемых изделий (листы, блоки, плиты). Аналогичные изделия, а также пленки, трубы, жгуты изготовляют (в т. ч. и из замкнутоячеистого жесткого П.) экструзией (степень сжатия 1-3, скорость перемешивания 60-110 об/мин) с введением хладона в зону декомпрессии цилиндра экструдера. [c.457]

    Рис, 5. Производство изделий зк-струзионио-раздуиггым формованием а-получение заготовки 6-раздуваине заготовки и оформление изделия б-извлечение изделия из формы 1-винт экструдера 2 - материальный цилиндр экструдера 3-кран для подачи сжатого воздуха 4-дорн 5-угловая головка 6-заготовка 7, 8-полу-формы для раздува 9-привод по-луформы 10-изделие. [c.8]

    В зоне загрузки гранулята в экструдер корпус воронки оснащают регулируемым водяным охлаждением. Этим предотвращается пластификация загружаемого материала и прилипание его к поверхности шнека, препятствующее его захвату шнеком. Шнеки изготовляют из специальной хромоникелевой стали и,так же как и цилиндр, подвергают термообработке. Внутренние стенки цилиндра (гильзы) футеруют ксалоем — износоустойчивой лигатурой. Нанесение ксалоевой футеровки методом центрифугирования горячей лигатуры обеспечивает равномерный обогрев через стенки биметаллического цилиндра. Обогрев цилиндра по зонам осуществляют электрическими нагревателями, состоящими из нихромовой спирали и керамических изоляторов. [c.192]


Смотреть страницы где упоминается термин Экструдер цилиндры: [c.114]    [c.133]    [c.182]    [c.184]    [c.114]    [c.357]    [c.373]    [c.456]    [c.457]    [c.308]    [c.258]    [c.274]    [c.281]   
Оборудование предприятий по переработке пластмасс (1972) -- [ c.239 ]




ПОИСК







© 2025 chem21.info Реклама на сайте