Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциальная энергия атом водорода

    Линейный эффект Штарка может наблюдаться только в системе с кулоновской потенциальной энергией (атом водорода), где имеется вырождение по квантовому числу I. Во всех других атомах поле, действующее на электрон, отличается от кулоновского, поэтому уровни, относящиеся к разным I (следовательно, разной четности), имеют разную энергию. Средний электрический момент в этих состояниях равен нулю. В этом случае влияние внешнего электрического поля будет сказываться на положении энергетических уровней только во втором приближении теории возмущений. Изменение энергии состояния nhn) определяется формулой [c.327]


    Строение атома водорода. Атом водорода имеет наиболее простое строение в нем есть только один электрон, движущийся в поле ядра. Для такой системы функция потенциальной энергии, [c.20]

    ПО которому можно построить потенциальную кривую основного состояния (рис. 21). Это кривая с минимумом, т. е. кривая устойчивого состояния (см. 13). При Яоо система распадается на атом водорода и протон, а энергия 65 стремится к —1/2 ат. ед., т. е. к энергии атома водорода. При О энергия неограниченно возрастает. Абсцисса минимума потенциальной кривой указывает равновесное расстояние Я = Гд = 2,157 ат. ед. (1,32 А). При Я = получаем строго определенную энергию электронного уровня основного состояния Ез. Разность энергии при бесконечно удаленных ядрах и в минимуме кривой определяет энергию химической связи  [c.68]

    Квантовомеханическое объяснение строения атома водорода. Атом водорода устроен наиболее просто — он имеет только один электрон, движущийся в поле ядра. В этом случае входящая в уравнение Шредингера функция потенциальной энергии и принимает вид (см. стр. 19) [c.37]

    Простейший атом — атом водорода — образован из двух частиц электрона и ядра, содержащего один протон. Оператор потенциальной энергии такой системы имеет вид, совпадающий с выражением энергии для электростатического притяжения между двумя элементарными зарядами противоположного знака  [c.29]

    Атом водорода — устойчивая система. Поэтому вопрос об образовании иона На сводится к анализу изменения энергии системы при сближении протона с атомом водорода. Прежде всего надо рассмотреть, как изменяется при этом потенциальная энергия. Изменение потенциальной энергии связано с возникновением электростатического притяжения приближающегося протона к электрону атома Н и электростатического отталкивания между протонами. Это изменение потенциальной энергии равно  [c.55]

    Простейший атом — атом водорода — образован из двух частиц электрона и ядра, содержащего один протон. Оператор потенциальной энергии такой системы имеет вид, совпадающий с вы- [c.34]

    Электрон в атоме водорода занимает определенный энергетический уровень, который является наинизшим, если атом не возбужден и находится в изолированном состоянии. При сближении двух атомов их электроны испытывают притяжение со стороны обоих ядер, которое возрастает по мере уменьшения расстояния между ними, и в пространстве между ядрами уровень потенциальной энергии электрона понижается. Вследствие этого объединение двух ядер и одного электрона в единую систему — энергетически выгодный процесс. Присутствие второго электрона усложняет картину вследствие взаимного влияния электронов. Как известно, обладая отрицательным зарядом, электроны отталкиваются друг от друга. Этот эффект называется корреляцией зарядов. Но кроме этого у электрона имеется собственное электромагнитное поле, характеризуемое его спином. Электроны с параллельными (одинаково направленными) спинами отталкиваются друг от друга, а электроны с антипараллельными спинами сближаются, стягиваясь в электронную пару. Этот эффект называется корреляцией спинов ив совокупности с корреляцией зарядов определяет суммарный эффект взаимного влияния электронов — корреляцию электронов. [c.46]


    Силы отталкивания способствуют обмену кинетической и потенциальной энергий между молекулами, установлению термодинамического равновесия. Межмолекулярные химические связи возникают в результате перераспределения электронной плотности в пространстве между молекулами, частичного переноса заряда от молекулы донора к молекуле акцептора. Такой перенос электронного заряда понижает энергию системы и приводит к образованию молекулярных ассоциатов в чистых жидкостях и комплексных соединений в растворах. Разновидностью межмолекулярных химических взаимодействий является водородная связь, осуществляемая с участием водорода. Атом водорода, ковалентно связанный с атомом фтора, кислорода, азота, хлора, серы, фосфора, углерода, может образовать вторую связь с одним из таких же атомов другой молекулы. В воде, спиртах и кислотах энергия водородной связи составляет 20,9 —33,4 кДж/моль в бензоле, растворе ацетон — вода — около 4,2 кДж/моль. [c.247]

    Однако в отличие от обычных химических реакций в электрохимических процессах энергия активации может существенно изменяться в зависимости от потенциала электрода, как это происходит, например, при поляризации. Рассмотрим изменение потенциальной энергии, происходящее при разряде Н3О+, т. е. на стадии I. Здесь конечным состоянием является адсорбированный атом водорода. Этот атом имеет значительно меньший размер, чем гидратированный протон (ион гидроксония Н3О+). Поэтому равновесное расстояние, на котором атом находится от электрода, мало по сравнению с соответствующим расстоянием для Н3О+. При разряде протон получает от катода электрон и отрывается от Н3О+, а атом водорода адсорбируется на электроде. Такой переход невозможен без преодоления энергетического барьера, разделяющего адсорбированный атом водорода и Н3О+. Вершина барьера соответствует энергии переходного состояния. [c.270]

    В соответствии с уравнением (1) минимальный радиус орбиты электрона, а следовательно, и минимальная потенциальная (и полная) энергия электрона соответствует значению п, разному единице. Состояние атома водорода, которое отвечает значению п—1, называется нормальным НЛП основным. Атом водорода, электрон которого находится на любой другой орбите, соответствующей значениям п = 2, 3, 4,. ... называется возбужденным. [c.49]

    Ориентационные снлы возникают между молекулами с постоянными дипольными моментами. Если бы отсутствовала ориентация обоих диполей в пространстве, то притяжение и отталкивание компенсировались бы. Но так как положение диполей с меньшей потенциальной энергией статистически более вероятно, в результате возникают силы притяжения. Тепловое движение уменьшает силы притяжения, поэтому они всегда сильно зависят от температуры. К этому же типу электростатических сил (Кеезом, 1921) относится водородная связь. Она возникает между двумя веществами, одно пз которых содержит атом водорода, связанный с электроотрицательным атомом, а другое включает одну пару электронов  [c.177]

    Выше была рассмотрена одна частица в потенциальном ящике или один электрон около ядра (атом водорода) Представим теперь, что, как это и бывает в сложных атомах, около ядра находятся несколько электронов Могут ли они вге или хотя бы значительная их часть обладать одной и той же энергией или, что то же самое, находиться на одном и том же уровне энергии [c.48]

    Точный расчет волновых функций многоэлектронных атомов становится затруднительным вследствие большого числа электрон-электрон-ных отталкиваний, которыми мы до сих пор для простоты пренебрегали. В 1927 г. Хартри для разрешения этой проблемы при расчете волновых функций атомов предложил метод, который теперь известен как метод самосогласованного поля (ССП) и который позднее был видоизменен Фоком с учетом принципа Паули. В этом методе предполагается, что каждый электрон движется в сферически-симметричном потенциальном поле, создаваемом ядром и усредненными полями всех других электронов, за исключением рассматриваемого. Расчет начинают с приближенных волновых функций для всех электронов, кроме одного. Определяют средний потенциал, который обусловлен другими электронами, а затем решают уравнение Шредингера для этого одного электрона, используя средний потенциал, обусловленный другими электронами и ядром. С полученной волновой функцией проводят более точный расчет среднего поля и затем из уравнения Шредингера определяют приближенную волновую функцию для второго электрона. Этот процесс продолжают до тех пор, пока набор вычисленных волновых функций будет незначительно отличаться от предыдущего набора. Тогда говорят, что данный набор волновых функций самосогласован. Для расчета волновых функций многоэлектронного атома требуются трудоемкие вычисления. Обсчет какого-либо конкретного атома методом самосогласованного поля дает ряд атомных орбиталей, каждая из которых характеризуется четырьмя квантовыми числами и характеристической энергией. В противоположность атому водорода в этом случае орбитальные энергии зависят как от главного квантового числа п, так и от орбитального квантового числа I. [c.396]


    В первом приближении можио считать, что атом водорода, присоединенный к тяжелому атому в большой молекуле, обладает потенциальной энергией 2 ах +Ьу +с2 ), где X, у, 2 — смещения от положения равновесия, выраженные в атомных единицах, в [c.306]

    Сопоставим структуры цианистого метила и метилового спирта. На основе изучения более простых молекул известно, что две связи в С— =N вытянуты в линию, а две связи в С—О—Н расположены под углом. Соответствующее размещение атомов в цианистом метиле и метиловом спирте показано на рис. 12. Представим себе метильную группу фиксированной в качестве подставки, поддерживающей замещающие атомы. Теплоемкость газообразного дициана показывает, что группа N не вращается вокруг главной оси молекулы. Атом водорода, связанный с атомом кислорода, способен, однако, к такому движению, которое по своей природе является заторможенным вращением, рассмотренным в гл. II. При малых смещениях атома водорода перпендикулярно плоскости чертежа возникает гармоническое колебание однако при сообщении достаточной энергии атом может описать полную окружность вокруг главной оси молекулы. Совершая такой круг, атом пересекает три плоскости, каждая из которых содержит другой атом водорода. Такое движение подобно двин ению детской карусели, у которой лошадка трижды подпрыгивает в течение полного оборота карусели вокруг столба. Приняв простейшее допущение относительно вида функции потенциальной энергии, можно следующим образом объяснить эти эффекты  [c.456]

    Здесь Fg—максимум потенциальной энергии, или высота барьера ф — угол между плоскостью, в которой находится атом водорода, и плоскостью, от [c.456]

    На эту проблему пролила свет работа Леннард-Джонса [341 Он показал, что атом, адсорбированный на металлической поверхности, нарушает периодическое потенциальное поле (вызванное правильным расположением металлических ионов) около металлической поверхности. Это приводит к появлению локального уровня энергии в поверхности металла вблизи адсорбированного атома, и электрон в этом уровне в благоприятных условиях будет обмениваться с электроном в адсорбированном атоме, приводя преимущественно к гомеополярной связи. Там-мом [42] и позлее другими исследователями были также сделаны попытки рассматривать уровни поверхностной энергии металла в отсутствие адсорбированных газов. Ссылки на эти работы можно найти в статье Шокл л [43]. Поллард [44] пытался соединить сообралсения Тамма с соображениями Леннард-Длсонса. Он вычислил кривую адсорбционной потенциальной энергии для водорода на металле и нашел, что энергия активации для адсорбции подобна энергии активации, обсул<даемой Тейлором [25]. [c.166]

    Сказанное выше в большей или меньшей степени относится также к циклопентанам. Стереохимия этих соединений в настоящее время изучена достаточно подробно. Экспериментальное измерение энтропии циклопентана [67], константы Керра [68] и расчетные данные [64] показали, что циклопентановое кольцо не может быть ко-планарным. На моделях хорошо видно, что в плоском кольце цнкло-пентана все 10 атомов Н были бы расположены так же, как в заслоненной конформации этана. Суммарная энергия взаимодействия этих атомов водорода составила бы не менее 58,7 кДж/моль. Чтобы избежать увеличения потенциальной энергии, кольцо изгибается таким образом, что один атом С оказывается выше, а другой ниже плоскости трех остальных атомов С кольца,—конформация полу-кресло . Другая возможная конформация — конверт из плоскости кольца выходит только один атом С. В обоих случаях потенциальная энергия молекулы циклопентана уменьшится на 15 кДж/моль. Согласно еще одной очень распространенной точке зрения [69], место выхода атома углерода из плоскости кольца циклопентана непрерывно перемещается по кольцу, т. е. атомы углерода кольца поочередно выходят из плоскости и затем возвращаются в нее. Такое движение называют псевдоаращением или псевдоротацией. Необходимо, однако, отметить, что эта концепция не бесспорна. Измеренные константы Керра плохо с ней согласуются [68] и отвечают только форме полукресла. Тем не менее, существует веское мнение [70], что сумма всех имеющихся данных говорит все же скорее в пользу псевдовращения. [c.43]

    На рис. XXIV, 3 изображены потенциальные кривые адсорбированных на электроде атома водорода (66) и иона гидроксония аа) в зависимости от расстояния х от поверхности электрода. В положении А энергия адсорбированного гидроксония минимальна. При движении гидроксония от точки А к В энергия его возрастает до достижения точки пересечения аа и ЬЬ, после прохождения этой точки протон получает электрон от электрода, отделяется от молекулы НгО и превращается в адсорбированный атом водорода, приближаясь к равновесному расстоянию в точке В. Величина энергии активации разряда гидроксония 1 показана на рисунке. Для реакции ионизации [c.626]

    Квантовомеханическая теория атома и молекулы сводится к нахождению удовлетворяющих уравнению Шрёдингера волновых функций гр и значений энергий Е. Рассмотрим решение уравнения Шрёдингера для электрона в потенциальном поле ядра. Примерами такой системы являются атом водорода и водородоподобные атомы, т. е. одноэлектронные ионы с зарядом ге ядра. [c.14]

    Для атома водорода уже в 1927 г. были получены точные решения уравнения Шрёдингера. Эти решения приводят к понятиям атомной орбитали, квантовых чисел и квантованию энергии, которые являются фундаментальными в современной теории валентности. Атом водорода состоит из электрона и протона. Если г — расстояние между этими частицами, то их потенциальная энергия равна — г. Так как протон значительно тяжелее электрона, при рассмотрении движения электрона в атоме водорода можно считать, что протон покоится и находится в центре масс. Тогда уравнение Шрёдингера для электрона в атоме водорода запишется [c.14]

    Энергетический барьер экзотермической химической реакции обусловлен перестройкой электронной структуры реагирующих частиц. Если атом А реагирует с молекулой ВС, то в реакции рвется связь В - -С и образуется связь А — В. Такую перестройку приближенно можно описать как суперпозицию двух волновых функций г з = а 115а, вс 4 + С Фав, с, где г15д, вс описывает взаимодействие А с молекулой ВС, а я1)ав, с — атома С с молекулой АВ коэффициенты а и с меняются вдоль координаты реакции. Качественное представление об общем характере поверхности потенциальной энергии дает рассмотрение двух независимых поверхностей, одна из которых описывается функцией 1 А, вс, другая Фав, с- Эти две поверхности пересекаются. При взаимодействии А с ВС пересечение исчезает и образуются нижняя и верхняя поверхности потенциальной энергии, система движется по нижней поверхности. В реакции атома водорода с молекулой водорода функции [c.87]

    Механизм образования химической связи удобнее всего рассмотреть на примере образования молекулы водорода из атомов. Формула электронной конфигурации ато1 водорода — 15, т. е. у него имеется только один неспарен ный электрон. В соответствии с законами квантовой механики атом водорода, содержащий неспаренный электрон, находится в неустойчивом состоянии, поскольку обладает избытком потенциальной энергии. Такой атом будет притягивать к себе другой атом водорода при условии, если спин его электрона имеет противоположное направление. Взаимное притяжение атомов приводит к тому, что их атомные орбитали перекроются, при этом оба электрона станут в равной мере принадлежать обоим атомам, т. е. образуется пара электронов с противоположно направленными спинами, которая осуществляет химическую связь. Электронное облако, образуемое этой парой электронов, охватывает, связывает воедино ядра обоих взаимодействующих атомов. Такая связывающая два одинаковых атома двухэлектронная связь называется ковалентной. [c.69]

    Атом водорода состоит из электрона и гораздо большего по массе протона, поэтому для упрощ,ения задачи целесообразно считать протон неподвижным. Электрическое взаимодействие между электроном и протоном описывается законом Кулона, из которого следует, что потенциальная энергия этой системы равна V = —(е 1г), где г — расстояние между двумя частицами. Именно эту потенциальную энергию необходимо подставить в уравнение (П1.2). Для поля со сферической симметрией, как это имеет место в данном случае, уравнение Шрёдингера проще решать в сферических, а не в декартовых координатах X, у, г. Сферические координаты г, ф показаны на рис. И1.1. С их использованием волновая функция записывается в виде произведения трех функций, каждая из которых зависит только от одного переменного  [c.164]

    Строение атома яодорода. Атом водорода имеет наиболее простое строение один электрон движется в поле ядра. Для такой системы функция потенциальной энергии, входящая в уравнение Шредингера, имеет вид  [c.23]

    На рис. 2.4 представлена потенциальная кривая вращения вокруг связи С—О в СН2С1ООН. Наиболее устойчивым 5[вляется ОН—И-анти-кои-формер, поскольку в нем реализуется единственное взаимодействие непо-деленной электронной пары (НЭП) с атомом хлора. Наибольший барьер вращения (51.1 кДж/моль) соответствует ОН—С1-заслоненной структуре. На 24.1 кДж/моль выше абсолютного минимума лежит ОН—С1-он/пм-кон-формер. Повыщение энергии связано с реализацией в этой конформации двух взаимодействий НЭП атома кислорода с атомом С1. Качественно аналогичный вид имеет конформационный потенциал вращения вокруг связи С-О в дихлорметилгидропероксиде (рис. 2.5). Две 0Н-С1 заслоненные структуры характеризуют вращательные барьеры высотой 39.7 и 34.9 кДж/моль. Третий максимум значительно ниже, всего 13.8 кДж/моль. Среди трех минимумов энергия ОН—Н <зн/им-конформера на 1.5 кДж/моль ниже энергии несимметричного ОН—С1 он/им-конформера. Предпочтительность первой структуры объясняется [18] тем, что в ней расстояние ООН—С1 несколько меньше (2.851 и 2.907 А соответственно). Наконец, третий минимум находится на 8.6 кДж/моль выше второго вследствие того, что атом Н гидропероксигруппы ориентирован в нем по направлению к атому водорода метильной группы. [c.85]

    Теперь мы переходим к квантовомеханическому решению задачи об атоме водорода. Эта задача имеет точное решение, выражаемое в аналитической форме, и его можно получить как в гейзенберговском, так и в шредингеровском представлении. Здесь мы продемонстрируем шредингеровский подход. Атом водорода состоит из одного электрона и ядра. Заряд электрона равен —е. Для общности рассмотрения предположим, что ядро имеет заряд - -2е, где 2 — атомный номер. Потенциальная энергия одноэлектронного атома является функцией только расстояния между ядром и электроном  [c.90]

    В кристаллических решетках углеводородов расстояние наибольшего сблин<ения атомов водорода соседних молекул равно 2,4— 2,6 А [310]. Часто это значение принимается равным равновесному расстоянию / о,н....н межмолекулярного взаимодействия двух атомов Н. Однако расчеты кристаллических решеток углеводородов на основании атом-атомных потенциальных функций межмолекулярного взаимодействия С и Н показывают [172, 186, 228], что расстояние наибольшего сближения атомов Н соседних молекул в решетке приблизительно на 0,3 А меньше значения равновесного расстояния 0,Н...Н) принятого в расчетах потенциала межмолекулярного взаимодействия двух атомов Н. Это обусловлено главным образом тем, что расстояния между атомами сложных молекул в кристаллической решетке определяются минимумом потенциальной энергии межмолекулярного взаимодействия всех силовых центров рассматриваемой молекулы со всеми силовыми центрами остальных молекул, а не потенциальным минимумом межмолекулярного взаимодействия только наружных атомов Н. Таким образом, расстояние наибольшего сближения атомов Н в молекулярных кристаллах пе равно значению о,н...нДля потенциальной функции межмолекулярного взаимодействия этих двух изолированных атомов Н. Чтобы из атом-атомных потенциальных функций межмолекулярного взаимодействия получить расстояние наибольшего сближения атомов Н в кристаллической решетке к-гексана, равное экспериментально наблюдаемому, для равновесного расстояния Го,н...н взаимодействия двух атомов Н необходимо принять значение, равное 2,8—3,2 А [228, 229]. Необходимость введения более высокого, чем 2,4—2,6 А, значения для Го, н. .. н было отмечено и в других работах [173, 227]. [c.266]

    Если молекула хемосорбируется без диссоциации, что наблюдается для окиси углерода на некоторых металлах, то можгю построить подобные же кривые потенциальной энергии DFG, изображающей эту молекулу в некотором возбужденном состоянии и способную к образованию связи с поверхностью. Более того, подобные кривые можно построить для изображения ионизации атомов или молекул. Так, например, если атом водорода потерял электрон, перешедший к металлу, то необходимая для этого энергия равна el —е ф, где / — ионизационный потенциал водорода, а ф — работа выхода металла. Ион и его заряд-изображение в металле притягиваются и дают энергию изображения , равную e lAR, где 2Я — расстояние между ионом и его изображением. Поэтому энергия [c.180]

    Наиболее простой моделью переходного состояния для электрофильного замещения в алканах является СНз -ион. Для этого иона были предложены три конфигурации с симметрией Оз , Сду и g. Расчет методом ND0/2 показал, что наиболее стабильной будет конфигурация с симметрией g [35 ]. Этот результат был подтвержден данными вычислений с использованием других методов [36]. Было найдено также, что вращение СНг-группы вокруг оси, проходящей через атом углерода и перпендикулярной плоскости трех других атомов водорода, происходит без затраты энергии, так что и энтропийный, и энергетический факторы благоприятствуют механизму электрофильного замещения с сохранением конфигурации. Расчет поверхности потенциальной энергии показывает, что приближение Нз вдоль оси третьего порядка СНз -катиона приводит к стабильной конфигурации и не требует энергии активации, в то время как образование иона с симметрией zv (конфигурации с симметрией 4V и D31, являются граничными структурами) требует высокой энергии активации [37]. [c.28]

    Центральная часть потенциальной поверхности многоатомной нежесткой молекулы имеет несколько минимумов, соответствующих различным стационарным конфигурациям молекулы. Энергетически наиболее выгодный путь, соединяющий эти минимумы, определяет характер внутреннего вращения. Если в состав молекулы входят протонодонорные и протоноакцепторные группировки и в некоторых конформациях между ними возможно взаимодействие через атом водорода, то это сказывается на ряде физических и химических свойств молекулы, что позволяет говорить о существовании внутримолекулярной водородной связи. Энергией] внутримолекулярной связи называют обычно разность энергий этой конформации и какой-нибудь другой стабильной конформации, в которой возможность непосредственного взаимодействия между донорной и акцепторной группами отсутствует. В случаях, когда таких конформаций несколько, энергия внутримолекулярной связи зависит от выбора конечного состояния. Например, для молекулы салицилового альдегида существует три возможных значения энергии внутримолекулярной водородной связи в соответствии с выбором конфигураци конечного состояния  [c.236]

    Некоторые авторы анализировали нормальные моды колебаний малых групп молекул воды, имеющих такое же расположение, как и во льду, и относили полосы в решеточной области наблюдаемого спектра к этим нормальным. модам. Этот прием дает качественное представление о молекулярных движениях, которые соответствуют данным полосам в спектре 1. могут быть полезными при выборе приближенных функций потенциальной энергии системы (п, 3,7,2), В одном из таких исследований [404] рассмотрена система из пяти атомов, состоящая из центральной молекулы воды и двух соседних атомов кислорода, со-едипенных водородными связями с их атомами водорода. Кио-гоку (1960) в более тщательном исследовании проанализировал систему нз девяти атомов, содержащую центральный атом кислорода, четыре окружающих его атома водорода и четыре соседних атома кислорода. Уэлрафен [369] рассмотрел нормальные моды системы из пяти молекул (см. п. 4.7.3), В этих трех исследованиях полоса спектра л л была отнесена к заторможенным вращательным движениям, а полоса Гт — к заторможенны.м трансляционны.м движениям. [c.136]


Смотреть страницы где упоминается термин Потенциальная энергия атом водорода: [c.374]    [c.28]    [c.68]    [c.10]    [c.12]    [c.99]    [c.103]    [c.93]    [c.175]    [c.41]    [c.339]    [c.41]    [c.310]    [c.428]    [c.220]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.29 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциальная яма

Энергии с водородом

Энергия атома

Энергия атома водорода

Энергия потенциальная



© 2025 chem21.info Реклама на сайте