Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Несвязанные структуры

    В ряде случаев геометрия молекул способствует образованию внутримолекулярных водородных связей (например, в транс-цик-логександиоле-1,2, но не в гранс-циклопентандиоле-1,2). В ряду н-алкандиолов-а,со наиболее прочная внутримолекулярная водородная связь наблюдается у бутандиола-1,4, хотя доля конфор-меров с такой связью больше у этандиола-1,2 вследствие более предпочтительного энтропийного фактора [375]. Ориентация связанных гидроксильных групп в конформере. (161) последнего диола является результатом взаимодействия между гош-эффек-том и водородным связыванием [3]. Объемистые заместители, уменьшающие торсионный угол между связями С—О в виц-п.т-лах (или искажающие углы между связями у атома углерода, в результате чего происходит сближение атомов кислорода), повышают прочность водородной связи. Сходным образом такие заместители благоприятствуют связанным твисг-конформерам (162) в некоторых циклогександиолах-1,4 с уменьшением доли несвязанных структур, имеющих конформацию кресла. Преимущественные конформации альдитов как в кристаллическом состоянии [376], так и в водном растворе [377] в большой степени определяются тенденцией углеродного скелета к вытянутой, плоской, зигзагообразной форме, за исключением тех случаев, когда такое расположение приводит к отталкивающим 1,3-взаимодействиям параллельных связей С—О. Вытянутая конформация )-маннита (163) отличается от изогнутой ( серповидной ) конформации )-сорби-та, образующейся из вытянутой конформации путем вращения вокруг связи С-2, С-3 на 120 °С, в результате чего исчезает взаимодействие между гидроксильными группами при С-2 и С-4, как [c.121]


    При замене в молекуле циклогексана двух или более атомов водорода, находящихся при разных атомах углерода, на радикалы возникает новый вид пространственной изомерии — цис-транс-изомерия ди- и полизамещенных циклоалканов. В согласии с конформационным анализом, цис-1,2-, транс-1,3- и г(ыс-1,4-диметилциклогексаны имеют по одной аксиальной и экваториальной группе. Для них возможна лишь одна конформация, поскольку конверсия кольца дает идентичную структуру (е,а г а,е). В свою очередь, транс-, 2-, цис-, 3- и траке-1,4-диметилциклогексаны могли бы состоять каждый из двух форм —е,е и а,а. Однако в диметилциклогексанах сильное несвязанное 1,3-взаимодействие двух аксиальных СНз-групп с атомами водорода создает дополнительное напряжение в молекуле. Оно настолько велико, что концентрация диаксиальной формы в равновесной смеси ничтожна. [c.41]

    Для описания пространственных структур достаточно двух топологических инвариантов N — числа несвязанных частей и G — рода поверхности раздела фаз. Величина G характеризует связность пространства фазы (безразлично какой), она определяется числом сквозных сечений участков многосвязной области, для которого число несвязанных частей фазы сохраняется неизменным, Любое преобразование многосвязной области, происходящее в результате ее деформации без разрывов и склеек, т. е. без изменений ее связности, называется гомеоморфным. Таким образом, все геометрические объекты, характеризуемые одним числом связности G, гомеоморфны (топологически эквивалентны). Топологическая эквивалентность тел класса G сохраняется также и при изменении размерности тела — при преобразовании точки в объем, при преобразовании участков контакта объемов или поверхностей в отрезки и наоборот. Это справедливо только для гомеоморфных преобразований. Характеристика тела G совпадает с характеристикой связности топологически эквивалентного ему графа — первой группы Бетти, В . Очевидно также равенство числа отдельных частей N тела G = и числа несвязанных частей эквивалентного ему графа N = В . Считая каждую из фаз -фазной. системы телом, ограниченным поверхностью класса G , для эквивалентного ему графа (или сети) может быть записано следующее уравнение Вц = С — -f B i, где B i — нулевая группа гомологий (или нулевая группа Бетти) — число разобщенных частей графа Вц — первая группа гомологий (первая группа Бетти) — число замкнутых одномерных циклов графа Pi — число узлов i — число связей между ними. [c.134]

    Для получения наиболее устойчивых систем, в которых большая часть серы находится в связанном состоянии, необходимо проводить процесс длительное время. На связывание серы также оказывают влияние условия контакта и количество добавляемой серы. Перевод серы в связанное состояние необходим потому, что несвязанная сера при дальнейшем нафевании выше 180°С в процессе подготовки и укладки дорожного покрытия будет дегидрировать углеводороды вяжущего с образованием сероводорода. Предположительно, именно внедренная в структуру асфальтенов сера является эффективным модификатором пластических свойств получаемых материалов [4] и наиболее термоустойчива. [c.77]


    В приведенном примере гиперконъюгацию можно рассматривать как перекрывание ст-орбитали связи С—Н и я-орбитали связи С—С, аналогичное рассмотренному ранее перекрыванию п—я-орбиталей. Надо полагать, что авторы, отвергающие возможность резонанса в бутадиене (разд. 2.2), считают его еще менее вероятным, если он включает несвязанные структуры. [c.93]

    Таким образом, полученные данные позволяют представить картину поведения серы при взаимодействии с нефтяными остатками. Предположительно, при добавлении серы сначала происходит ее взаимодействие с дисперсионной средой, в которой она частично растворяется и частично взаимодействует с образованием полисульфидов. Причем существует уровень насыщения серой дисперсионной среды, который зависит от химического состава и количества дисперсионной среды, только после достижения этого уровня происходит взаимодействие серы с дисперсной фазой -асфальтенами. Взаимодействие с асфальтенами приводит к внедрению серы в кристаллическую решетку надмолекулярных асфальтеновых ассоциатов, предположительно, без образования химической связи. Внедренная сера при последующем нагревании может взаимодействовать с асфальтенами с образованием химической связи либо выделяться из асфальтенов и взаимодействовать с дисперсионной средой. При достижении какого-то предельного содержания в асфальтенах сера перестает внедряться в их кристаллическую структуру, практически не реагируя на термообработку и механоактивацию. Дальнейшее увеличение количества добавленной серы не приводит к ее взаимодействию с углеводородами нефтяного остатка, при этом несвязанная сера находится в системе в диспергированном состоянии, размер мелкодисперсных частиц [c.79]

    Структура жидкой воды. Для объяснения аномальных свойств воды в жидком состоянии учеными созданы различные модели ее структуры. В основе многочисленных моделей жидкая вода рассматривается как кристаллическое вещество (жидкие кристаллы). Упорядоченное (кристаллическое) расположение частиц воды в жидком состоянии доказано экспериментально. Полагают, что прн плавлении льда его решетка частично разрушается и эти пустоты и ажурная структура льда заполняются освободившимися молекулами воды. Плотность жидкой воды вследствие этого увеличивается. Учеными подсчитано, что в жидкой фазе при 0°С несвязанные, заполняющие пустоты молекулы составляют около 16% от их общего количества. [c.9]

    Согласно описанию P. . Малликена [7] донорно-акцепторный комплекс в основном состоянии (N) является соединением компонентов, которые по-существу являются несвязанной структурой (Д А) с незначительным вкладом структуры (Д -А ) (Д - донор, А - акцептор). Спектры комплексов, характеризующие перенос заряда, связывают с электронными переходами во второе из этих двух состояний. [c.42]

    Велики трудности создания математически разработанной теории растворов электролитов. Было бы очень просто, если бы можно было рассматривать такую систему, как совокупность заряженных шариков-ионов в растворителе, представляющем собой непрерывную среду с диэлектрической проницаемостью е. Такая модель не может дать согласия с опытом. Ведь надо учесть совокупное действие ряда факторов изменение а растворителя в зависимости от природы ионов и их концентрации, влияние собственного объема ионов, влияние концентрации несвязанного растворителя, возможность формирования сложных (тройных и др.) частиц, изменение энергии сольватации ионов с концентрацией раствора, неполноту диссоциации электролита, изменение структуры раствора с его концентрацией. Обилие этих факторов и различный их вклад (в зависимости от природы компонентов раствора, его концентрации и температуры) делает невозможным их строгий количественный учет во всей совокупности. Современный уровень квантовомеханического и электростатического подходов совершенно недостаточен для этого. [c.173]

    Таким образом, мы имеем 3(7+ 1) несвязанных систем трехточечных уравнений порядка 2(7—1). Нетрудно видеть, что каждая из них имеет точно такую же структуру, что и (28), и поэтому может быть решена прогонкой по формулам (31). [c.143]

    Проведенный анализ экспериментальных значений температур плавления и кристаллизации можно расширить рассмотрением данных по теплотам плавления и модификационных переходов смесей, которые представлены на рис. 6.18. Минимумы значений свидетельствуют об окончании формирования коагуляционной структуры смолисто-асфальтеновыми веществами нефтяных остатков и начале их сольватации несвязанными молекулами н-парафинов, [c.168]

    Суммирование потерь энергии на всех частицах цепи и затем на всех цепочках в единице объема дает величину диссипации на структуре Складывая ее с потерями в среде и на несвязанных частицах, определяемых формулой Эйнштейна = Ло (I + ф) V . можно найти полную диссипативную функцию д у) структурированной системы и далее величину сдвиговых напряжений х = д(у)/у. [c.209]

    Как указывалось выше, структурированные системы не подчиняются закону Ньютона. Это может быть обусловлено либо наличием в жидкости несвязанных Друг с другом обрывков структуры, либо малопрочной сплошной структурной сеткой, способной разрушаться при действии на систему сравнительно малых усилий. [c.328]


    Согласно большинству физических и химических методов, четыре связи в молекуле метана эквивалентны (например, ни ЯМР-, ни ИК-спектр метана не содержит пиков, которые можно было бы отнести к разного вида связям С—Н), однако имеется такой физический метод, который позволяет дифференцировать восемь валентных электронов в молекуле метана. Это метод фотоэлектронной спектроскопии [10]. Суть его состоит в том, что молекулу или свободный атом облучают в вакууме ультрафиолетовым светом, вызывая выброс электрона, энергию которого измеряют. Разность между этой энергией и энергией использованного излучения есть потенциал ионизации вырванного из молекулы электрона. Молекула, содержащая несколько электронов различной энергии, может терять любой электрон, энергия которого ниже, чем энергия использованного излучения (каждая молекула теряет только один электрон, потеря двух электронов одной молекулой практически никогда не имеет места). Фотоэлектронный спектр состоит из серий полос, каждая из которых соответствует орбитали определенной энергии. Таким образом, спектр дает прямую экспериментальную картину всех орбиталей в зависимости от их энергии, при условии что энергия используемого излучения достаточно высока [11]. Широкие полосы в спектре обычно соответствуют сильно связанным электронам, а узкие полосы — слабо связанным или несвязанным электронам. Типичным примером является спектр молекулярного азота, показанный на рис. 1.8 [12]. Электронная структура молекулы N2 показана на рис. 1.9. Две -орбитали атомов азота комбинируются, давая две орбитали — связываю- [c.24]

    Дифосфаты входят в состав многих электролитов для получения гальванических покрытий. Их благоприятное действие на структуру получаемых осадков связано с прочным комплексообразованием, обусловленным хелатным эффектом (при электроосаждении металлов, как правило, желательно иметь малую концетрацию несвязанных ионов металла при большом общем содержании соединений металла в растворе). [c.421]

    Полосы поглощения, относящиеся к валентным колебаниям металл— лиганд, лежат в области 100—800 см и мало характерны для различных типов связей. Поэтому основные сведения о структуре комплексов получают анализом положения полос, характерных для лигандов. Лигандные полосы поглощения подтверждают присутствие лиганда в комплексе, а иногда позволяют указать ту его таутомерную форму, которая участвует в комплексообразовании. В результате смещения электронной плотности в лиганде под действием иона металла кратность связей в лиганде изменяется. Это ведет к сдвигу полос валентных колебаний (увеличение кратности связи увеличивает частоту) и позволяет судить о способе присоединения лиганда. Наконец, по расщеплению некоторых полос можно судить о симметрии комплексной частицы и ее фрагментов или установить присутствие неэквивалентно связанных и несвязанных лигандов или функциональных групп. [c.27]

    Сетчатые структуры в полимерах могут образовываться и по принципиально иному пути, без предварительного получения несвязанных друг с другом макромолекул. Этот путь заключается в образовании разветвленных, а затем сетчатых структур при ступенчатых реакциях синтеза полимеров из мономеров или олигомеров с концевыми функциональными группами при их содержании не менее трех хотя бы в одной из реагирующих молекул мономера или олигомера. Получающиеся при этом сетчатые структуры, как правило, являются более совершенными и лучше описываемыми количественно по сравнению с сетками, образующимися при соединении друг с другом (сшивании) макромолекул полимера. [c.294]

    Сетчатые структуры отличаются от несвязанных между собой химическими связями макромолекул полимеров прежде всего отсутствием способности к необратимым перемещениям при действии теплоты, механических напряжений, растворителей. Если по- [c.295]

    Структурные формы пересыщенного раствора, обусловливающие концентрацию т, включают структурные формы насыщенного раствора и образования, свойственные для состояния пересыщения и начала кристаллизационного акта. В кристаллизационном процессе, очевидно, могут принимать участие, в первую очередь, несвязанные (активные) формы вещества. Связанные формы могут вовлекаться в кристаллообразование по мере расходования свободных форм при соответствующем разрушении комплексов. При этом число частиц в системе растет не пропорционально увеличению Дт, а в некоторой другой зависимости, обусловленной возрастанием условного значения молекулярной массы образующихся структур Му. Для твердых веществ Му = 1, [c.102]

    Робертсон [237], обсуждая некоторые ароматические молекулярные соединения, заметил, что иногда не может быть никаких сомнений в образовании необычной или устойчивой ковалентной связи между компонентами. Однако, следуя Малликену, он отмечает, что в некоторых случаях возможен механизм общего типа, при котором наблюдается притяжение льюисовских кислот и оснований. Например, в п-ни-троанилине может возникнуть связь между донорными электронами бензольного кольца и акцепторными орбитами питрогруппы. Конечно, сила взаимодействия меняется в зависимости от присутствия ароматических заместителей. При этом возможны все случаи — от полного переноса электронов до незначительного перекрывания орбит с резонансом между несвязанной структурой п структурой с переносом зарядов или ионной структурой. [c.77]

    Квантовая теория связывания в молекулярные комплексы [32], которая рассматривает резонанс между несвязанной структурой (учитывая диполь-диполъное и индуцированное, дипольное взаимодействия) и ионной формой, указывает возможный механизм взаимодействия, по крайней мере, в некоторых системах такого типа. ЕсЛи донором является пиридин, а акцептором — легко поляризуемое галогенпроизводное углеводорода (СХ4), ионная форма, которая обычно вносит лишь очень небольшой вклад в основное электронное состояние, возможна в виде структуры 26)  [c.222]

    Согласно описанию Малликена [6], донорно-акцепторный комплекс в основном состоянии является соединением комнонен-тов, которое по существу описывается несвязанной структурой (О А) с очень незначительным вкладом донорно-акцепторной структуры (0+—А"). Спектры комплексов, характеризующие перенос заряда, связывают с электронными переходами во второе из этих двух состояний [см. уравнения (3) и (4) глава I]. До-норно-акцепторпая форма может участвовать в резонансной стабилизации основного состояния, только если оно имеет синг-летный характер (а не триплетный). [c.136]

    Интегрирование проводится по поверхностям отдельных несвязанных структур или доменов, а суммирование ведется по всем структурам в единице объема. Величина, которая часто называется интегральной кривизной,/А обладает замечательным свойством если 5 это замкнутая поверхность порядка р то ее интегральная кривизна равна 4тт(1—р) согласно теореме Гаусса - Бонне [25]. Если р велико, как в спучае развитой биконтинуальной структуры, то эта формула является хорошим приближением даже в спучае, когда поверхность не абсолютно замкнута, т.е. когда имеется небольшая часть разорванных краев. Таким образом, К р [c.559]

    Формула 7.2 является типичной для мостиковых карбониевых ионов с дефицитом электронов. Было высказано предположение, что устойчивость таких бициклогептильных катионов частично обусловлена резонансом между структурами 7.15 и 7.16, т. е. наличием мостиковой связи между двумя центрами, несущими часть заряда катиона. В формуле 7.2 трехчленный цикл изображается с помощью частичных связей резонанс между 7.15 и 7.16 — это резонанс двух несвязанных структур. Ни одна из этих формул не содержит полноценного циклопропанового кольца, поскольку изображаемая ими система не обладает достаточным для образования обычной ст-связи числом электронов. [c.264]

    ЛИШЬ около 30% имеюшихся в нем водородных связей. Жидкая вода не состоит из изолированных, несвязанных между собой молекул напротив, она содержит области, или кластеры, молекул, связанных водородными связями. Таким образом, в жидкой воде частично сохраняется структура водородных связей кристаллического льда. По мере повышения температуры кластеры разрушаются, и объем жидкости продолжает уменьшаться. Но при дальнейшем повышении температуры начинает сказываться тепловое расширение. Поэтому жидкая вода имеет минимальный молекулярный объем, т.е, максимальную плотность, при 4°С. [c.621]

    Вместе с тем, если для реакции 1,2-цис—>-1,2-транс характерно выделение тепла и высокая константа равновесия, то для аналогичной реакции 1,3-диалкилзамещенных — поглощение тепла и низкая константа равновесия. Соответственно в равновесных смесях 1,2-диалкилзамещенных будет больше трансизомера, а в смесях 1,3-диалкилзамещенных — цис-изомера. Различная термодинамическая устойчивость транс- и цис-изо-меров в зависимости от расстояния между алкильными заместителями объясняется с позиций конформационного анализа высокой устойчивостью только таких структур, в которых минимально отталкивающее взаимодействие несвязанных атомов. Ясно, что такое взаимодействие будет весьма значительным для 1,2-цис-, но не для 1,3-цис-структур. Расчеты показывают, что в 1,2-диметилциклопентанах содержание цис-изомера составляет только 5%, в то время как для 1,3-диметилзамещен-ных —уже 62%. Отметим сразу, что с позиций конформационного анализа трудно объяснить большую термодинамическую устойчивость 1,3-цис по сравнению с 1,3-транс-изонерами. В экспериментальных исследованиях достигаемое соотношение этих изомеров близко к единице [35, 36], вследствие чего нет уверенности в точном определении термодинамических параметров [c.196]

    По структуре фильтровальные перегородки подразделяют на гибкие и негибкие. При этом гибкие перегородки могут быть металлическими и неметаллическими, а также состоять из смещан-ных материалов. Негибкие перегородки могут быть жесткими (состоящими из связанных твердых частиц) или нежесткими (состоящими из несвязанных твердых частиц). Такая классификация принята в дальнейщем изложении. [c.363]

    В случае, когда размерность символической математической модели ХТС очень высока, а используемая ЦВМ может работать в режиме мультипрограммирования, необходимо рассмотреть вопрос о выборе такого набора базисных переменных, при котором исходный двудольный граф распадается на несвязные между собой подграфы. Оптимальным будем считать такой набор базисных переменных, для которого разме р максимальной компоненты связности исходного двудольного графа наименьший. Для уменьшения объема вычислительных операций при выборе набора базисных переменных, обеспечивающих оптимальную структуру информационного графа, предложены оценки вершин двудольного графа с точки зрения декомпозиции лрафа на несвязанные подграфы. Каждая вершина А двудольного графа характеризуется степенью р(Л) и отклоненностью е(А). Степень вершины р(Л) оценивает сверху связность графа, т. е. минимальное число вершин, которые необходимо удалить из двудольного графа, чтобы граф стал несвязным. Удаляемые при этом вершины образуют множество сочленения Т, включающее вершины с определенной отклоненностью от центра графа и обладающие наибольшей степенью р. [c.99]

    В плановой экономике основным критерием объединения различных структур была народно-хозяйственная эффективность. В рыночной экономике действует критерий локальной коммерческой прибыльности. Это приводит к тому, что разнообразие форм объединений существенно выше, чем в плановой. Однако управлять крупнейшими из образовавшихся за последние годы финансово-промышленных групп сложно сразу по следующим причинам из-за масштаба ввиду разнородности объектов управления в силу несвязанности этих объектов между собой отсутствует централизованный. механизм финансирования такой группы, а значительная часть этих объектов сохраняет менталитет получения дешевых государственных денег внутри группы не существует единых стандартов управления не существует обоснованных рекомендаций по созданию эффек-тцвной структуры для таких групп. [c.83]

    Циклогексановое кольцо в атом соединении имеет конформацию кресла, несколько искаженную около атома углерода в мостике (С-8). Циклонентановое кольцо имеет форму конверта, причем в отличие от пятичленных колец в норборнане здесь имеет место лишь весьма небольшое отклонение в связях 1—8 и 5—8 от байеровского валентного угла. Атомы углерода 1, 5, 6 и 7 лежат в одной плоскости. Связи, образующие циклонентановое кольцо (5—6 и 1—7), ориентированы аксиально, однако это не приводит к энергетически невыгодной структуре, ибо 1,3-диак-сиальное взаимодействие несвязанных атомов в данном случае отсутствует. [c.67]

    Однако при наличии слишком большого числа заместителей между ними начинают появляться энергетически неблагоприятные взаимодействия между несвязанными атомами, что приводит к уменьшению устойчивости многозамещенных углеводородов. В углеводородах ряда циклопентана эти взаимодействия определяются как г ис-вицинальные, что энергетически соответствует двум скошенным бутановым взаимодействиям и составляют величину, равную 1800 кал1моль. В углеводородах ряда циклогексана неблагоприятные взаимодействия могут возникнуть из-за транс-вицинальных (ее) замеш,ений (одно бутановое взаимодействие), из-за неизбежной аксиальной ориентации одного из заместителей в геминальной группе (два бутановых взаимодействия), из-за г ис-вицинального взаимодействия в углеводородах, имеюш,их структуру 1,1,2-триметилциклогексана (четыре бутановых взаимодействия), и из-за 1,3-диаксиальных взаимодействий. [c.120]

    Влияние объемного изменения грунтов на покрытие. Механическое воздействие грунтов в зависимости от их структуры моя<ет быть различным. Грунты несвязанные (гравелистые и другие), а также грунты, обладающие постоянным объемом при увлаяшении и высыхании, действуют на защитное покрытие прежде всего силой тяжести, вызывая его сдвиг и продавливание. Связанные грунты при увлажнении и высыхании изменяют свой объем. Они действуют на покрытие не только своим весом. Обладая высокой липкостью, эти грунты в период усадки и набухания развивают сдвиговые усилия, вызывающие разрывы покрытия и отрыв его от трубы. [c.54]

    По структуре фильтровальные перегородки подразделяются на г и б -кие и негибкие. Гибкие перегородки могут быть металлическими или неметаллическими, негибкие перегородки — жесткими, состоящими из связанных твердых частиц, или нежесткими, состоящими из несвязанных твердых частиц. [c.197]

    Экстремальное изменение термодинамических параметров смесей высокомолекулярных компонентов нефтяных систем объясняется на основе представлений, согласно которым при малых добавках трикозана структурообразование смеси определяется кристаллизацией наиболее высокоплавкого компонента смеси — нафталина [167]. Ассоциация нафталиновых молекул и сольватация ими асфальтенов сопровождается вытеснением примесных молекул трикозана на границу растущего структурного элемента. Такое концентрирование и сжатие молекул или ассоциатов парафина приводит к резкому уве личению теплоты плавления кристаллов на участке аб (рис. 6.10) и к исчезновению модификационных переходов. Научастке бв (рис. 6.10), очевидно, происходит расслоение системы с образованием несвязанных друг с другом плотноупакованных надмолекулярных структур парафина. Термодинамические данные, полученные на модельных смесях, подтверждают механизм структурообразования и изменения физико-химических свойств в реальных парафинонаполненных нефтяных системах. Из данных рис. 6.10 можно предположить, что на участке кривой вг происходит распад парафиновых структур и включение молекул трикозана в [c.155]

    Известно, что вода — сильно структурированная жидкость. Существующие модели жидкой воды признают наличие в ней ближнего порядка — участков, имеющих льдоподобную ажурную тетраэдрическую структуру (кластеров), в которых молекулы воды соединены водородными связями. Кластеры находятся в равновесии с несвязанными молекулами воды, заполняющими области неплотной упаковки внутри структуры воды. Вода, связанная в кластерах, имеет меньшую энергию и энтропию, чем свободная, так как образование водородных связей сопровождается выделением тепла и возрастанием упорядоченности в системе. Структурированная вода обладает также меньшей плотностью и трансляционной подщжност1>ю, большей теплоемкостью. Несвязанная вода имеет большую плотность, но лишена упорядоченности. [c.51]

    Степень диссоциации электролита а — это по существу доля 1 моль вещества, находящегося в состоянии ионов, не связанных между собой. Степень диссоциации такого электролита, как Na l, равная, например, 807о, говорит о том, что, хотя молекул Na l в растворе нет, только 80% ионов Na+ и С1 находятся в несвязанном состоянии, а 20% их связаны между собой в различного рода структуры (ионовые пары, ионные тройники и т. п.). [c.157]

    И, наконец, в-третьих, классификация может быть основана на характере изменения химической структуры макромолекул в результате химических реакций в них. Эта классификация представляется наиболее информативной с точки зрения состояния и свойств конечных, т. е. целевых, продуктов реакции. Согласно этой классификации различают полимераналогичные, внутримолекулярные и межмакромолекулярные реакции полимеров. Если при химической реакции происходит только изменение химического состава и природы функциональных групп в полимере без изменения исходной длины макромолекулы, то такие превращения полимеров называются полимераналогичными. Если в результате реакции изменяется длина исходной макромолекулярной цепи (как правило, в сторону уменьшения) или в цепи появляются циклические структуры, но сами макромолекулы остаются химически несвязанными друг с другом, то такие реакции называются внутримолекулярными. Если же исходные макромолекулы соединяются друг с другом химическими связями в результате реакции функциональных групп макромолекул друг с другом или взаимодействия полифункциональных низкомолекулярных реагентов с разными макромолекулами, то такие реакции называются межмакромолекулярными. Они приводят [c.218]


Смотреть страницы где упоминается термин Несвязанные структуры: [c.121]    [c.75]    [c.263]    [c.141]    [c.135]    [c.205]    [c.132]    [c.148]    [c.155]    [c.283]    [c.94]   
Карбониевые ионы (1970) -- [ c.263 ]




ПОИСК







© 2025 chem21.info Реклама на сайте