Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции изотопного обмена комплексов

    Комплекс химических и физических методов исследования адсорбентов включает использование структурных и различных порометрических методов, электронно-микроскопических методов, включая декорирование, изотопный обмен, газовую хроматографию, разные спектроскопические и электрофизические методы, модельные каталитические реакции, калориметрию. Только подробно изучив геометрию и химию поверхности, можно судить о ее способности к тому или иному взаимодействию с молекулами. [c.104]


    Из тримолекулярных реакций, протекающих в газовой фазе, известны реакции обменного типа, в частности реакции изотопного обмена, и реакции рекомбинации и присоединения по кратной связи, осуществляющиеся по механизму ударной стабилизации (см. 14). Как и в случае бимолекулярных реакци , рассмотрение тримолекулярных реакций возможно на основе газокинетической теории столкновений и на основе метода активированного комплекса. Различие между обменными тримолекулярными реакциями и реакциями рекомбинации и присоединения состоит в том, что если в первых в химическом превращении (заключающемся в перераспределении связей или в перераспределении атомов и атомных групп) участвуют все три сталкивающиеся частицы, образующие активированный реакционный комплекс, 10 в реакциях рекомбинации и присоединения участвуют только две частицы третья частица, выполняющая функцию отвода энергии от стабилизируемой ею квазимолекулы, в результате реакции не из- [c.272]

    В данном случае образование меченых продуктов нельзя объяснить ни переэтерификацией, ни протеканием гидролитических реакций, ни прямым изотопным обменом. Исходя из этого, следует признать факт взаимодействия промежуточных адсорбционных комплексов в изученных системах. [c.177]

    Большое количество данных по изотопному обмену коор-динационно-связанной воды в акво-комплексах переходных металлов собрано в обзорной статье Ханта [59]. Анализируя эти данные, автор приходит к выводу о том, что существует корреляция между донорными свойствами лигандов, находящихся в координационной сфере помимо воды (т. е. эффективным зарядом центрального атома), и ускоряющим действием этих лигандов на реакцию обмена воды в комплексе. Подтверждающие это положение данные для некоторых акво-комплексов никеля(П) приведены в табл. 4 к — константа скорости изотопного обмена при 25° С). [c.84]

    Основные научные работы посвящены применению масс-спект-рометрии для решения широкого круга химических, физических и геохимических задач. Одним из первых начал определять содержание различных изотопов в природных продуктах и указал, что с помощью этих данных можно установить происхождение соответствующих материалов. Показал, что данные, полученные при изучении кинетических изотопных эффектов, являются мощным средством при установлении механизма реакций, особеиио нри определении структуры активированного комплекса. Изучал содержание изотопов серы в различных природных продук-тах. Один из пионеров применения масс-снектрометрии для изучения содержания продуктов ядерного распада определил выход таких продуктов для многих реакций. Внес существенный вклад в изучение функции щитовидной железы с помощью радиоактивного иода. Разрабатывал методы разделения стабильных изотопов (изотопный обмен, термическая диф- [c.493]


    Что же общего во всех этих примерах Они достаточно наглядно и убедительно показывают, что постепенное изменение степени кислотно-основного взаимодействия, начиная от очень слабого (образование водородно связи) вплоть до его завершения переходом протона и ионизацией молекул протолитов, может, не изменяя характерных особенностей реакций водородного обмена, которые определяются протолитической функцией субстрата, влиять на скорость, селективность и в конечном итоге на механизм замещения водорода. Чем сильнее кислотно-основное взаимодействие, тем обычно быстрее происходит обменная реакция. Приведенные примеры подтверждают ранее сделанное заключение о том, что изотопный обмен водорода ускоряется при повышении полярности реакционного комплекса, состоянием предельной поляризации которого является ионизация [62, стр. 6]. Видимо существует симбатность между полярностью промежуточного реакционного комплекса, если он образуется, и полярностью переходного состояния. [c.366]

    Весьма распространен изотопный обмен с образованием крайне нестойких переходных продуктов ассоциации, которым в современной кинетике химических реакций приписывается очень важная роль. Лимитирующей стадией изотопного обмена, протекающего по этому механизму, может быть распад активированного комплекса, приводящий к перегруппировкам химических связей. Этот комплекс, образующийся в результате благоприятных столкновений между реагирующими веществами, может распадаться по двум направлениям. Одно из них приводит к исходному сочетанию атомов, в результате другого образуются новые разновидности исходных соединений, соответствующие иному сочетанию атомов, отличающемуся своим изотопным составом. [c.190]

    При изучении реакций изотопного обмена следует иметь в виду, что они обнаруживают высокую чувствительность к воздействию таких факторов, как каталитическое действие материала стенок сосуда, света, следов посторонних загрязнений и др. Так, например, установлено, что скорость реакции электронного обмена между этилендиаминовыми комплексами двух-и трехвалентного кобальта ([Со(еп)зР+ и [Со(еп)зР+) возрастает в присутствии стекла, парафина, полистирола, никеля и замедляется в присутствии поливалентных катионов. Изотопный обмен между четырех- и шестивалентным ураном при освещении лампой мощностью 300 вт ускоряется примерно в 20 раз по сравнению с реакцией, проводимой в отсутствие света. [c.206]

    В качестве более ясного определения понятий инертный и лабильный можно принять употребительное определение (слегка отличающееся от определения по Таубе), которое говорит, что комплексы относятся к инертным, если реакции с их участием можно изучать статическим методом. Статические методы принадлежат к классическим в них реагирующие вещества смешивают просто сливанием растворов обоих соединений в сосуд, и ход реакции затем контролируют во времени, изучая какие-либо физические или химические характеристики (например, светопоглощение, выделение газа, изменение pH, изотопный обмен). Поточные методы, или [c.187]

    Изотопный обмен протекает в том случае, если обменивающиеся соединения подвергаются термической или электролитической диссоциации (иногда достаточно диссоциации одного из соединений) или образуют промежуточный комплекс. В этих случаях обмен протекает через обратимые химические реакции  [c.184]

    Алюмогели, обработанные дибораном, обладают интересными каталитическими свойствами. Диборан, связанный в виде поверхностных комплексов на силикагеле, неспособен к реакции изотопного обмена бором. Для диборана же, связанного с алюминием, этот обмен происходит легко. [c.190]

    Во всех испробованных нами растворителях (толуол, бром-бензол, спирт, ацетон, диоксан, ацетонитрил, N. М-диметил-формамид, ледяная уксусная и муравьиная кислоты, изоамилацетат, изоамиловый эфир, четыреххлористый углерод, пиридин) либо реакция идет слишком медленно, либо происходит разложение ртутноорганической соли. Исключение представляет хинолин, в котором изотопный обмен идет при 70° со скоростью, удобной для снятия кинетики, и без разложения ртутноорганической соли. В этих условиях, естественно, бромная ртуть, по меньшей мере частично, находится в виде комплекса с хинолином. [c.34]

    Следует в этом же плане вспомнить работы Д. Дрейера [22], молодого тогда ученого из ГДР. Он начал заниматься изотопным обменом в платиновых комплексах с 60-х годов и на этой почве возникла многолетняя дружба между ним и А. А. Гринбергом. Дрейер неоднократно приезжал в Ленинград для обсуждения результатов своих работ и интересных общих проблем по механизму обмена. В частности, обсуждалась возможность участия в механизме обмена промежуточных мостиковых комплексов, в состав которых входит как Р1(11), так и РЬ(1У), а также влияние примесей, катализирующих обмен, изменения pH и освещения на механизм этих реакций. [c.50]

    Показано возникновение и развитие отдельных этапов, приведших к установлению фундаментальных фактов и закономерностей в поведении координационной сферы в растворах обнаружение самого процесса обмена, т. е. лабильности комплексной сферы, обратного соотношения между кинетической лабильностью и термодинамической прочностью, кинетической неравноценности координат в несимметрично построенных комплексах двухвалентной платины, т. е. проявления транс- и цисвлияния на изотопном обмене и также других факторов, таких, как природа растворителя, освещение, на механизмы реакций обмена. [c.198]


    Мы уже отмечали, что, по мнению А. И. Бродского, все прото-литические реакции, так же как и быстрый изотопный обмен водорода, идут в комплексах, образованных водородными связями. Поэтому при исследовании протолитических процессов всегда учитывалась природа образующихся водородных связей, а в ряде работ определялись термодинамические характеристики этих связей между обменивающимися веществами. [c.33]

    Примером таких реакций может служить изотопный обмен между двумя ионами, находящимися в различном валентном состоянии такие взаимодействия не приводят к осуществлению какого-либо химического превращения. Очень тщательно была изучена система Ге " — Ге " в водном растворе. Реакция обычно проводится в присутствии НСЮ4, добавляемой для поддержания постоянной ионной силы и постоянного pH и предотвращения образования комплексов [96, 97]. Обмен идет довольно быстро, и, [c.504]

    Несколько особое, но весьма важное место среди кинетических исследований занимает изотопный обмен в молекулах лигандов. Изотопный обмен позволяет метить молекулы комплексонов стабильными спектроскопически активными изотопами, что в значительной степени облегчает интерпретацию данных физических методов исследования Методом ПМР в D2O изучена реакция обмена атома водорода на дейтерий в метиленовой группе ЭДТА в комплексах [ oedta] . Найдено, что при pD = 8,6 и 37°С в комплексе происходит реакция обмена на дейтерий только атомов Н метиленовой группы внеплоскостного хелатного кольца лиганда. Полупериод реакции составляет приблизительно 2,5 ч. При нагревании до 80 и повышении pD до 12,5 обмениваются также и атомы Н метиленовой группы плоскостного кольца лиганда [645]. В отсутствие комплексообразования заметного протекания реакции не наблюдается. [c.349]

    Рнс.2.13. Изотопный обмен кислорода в фрагменте миозина. 1. Изотопный обмен О, который, благодаря образованию комплекса М .АДФ с фрагментом миозина , выступает в качестве катализатора [2.4]. Рабочая частота для наблюдения спектра Р равна 146 МГц (это соответствует рабочей частоте для Н 360 МГ . (а) Изменение концентраций отдель1шх изото-померов неорганического Фосфата P . Н3Р О4 (V), НзР °Оз О (+), Н3Р О2 О2 (х), НзР 0 °0з (А и НзР °04 ( ). (Ь) Спектр ЯМР Р изотопомера Р,- спустя 23,5 ч после начала реакции (вверху приведен экспериментальный спектр, внизу - теоретический спектр, моделирующий экспериментальный). [c.87]

    Еще в 30-х годах для выяснения механизма каталитических реакций этого типа нами был поставлен комплекс работ с использованием радиогалогенов. Для этого сначала был исследован изотопный обмен галогенидов металлов со свободными галогенами, галогеноводородами и органическими галогенидами [3]. Эти работы показали наличие интенсивного обмена при низких температурах у наиболее активных катализаторов и существование четких закономерностей, связывающих легкость изотопного обмена с химическим строением галогенидов металлов и органических галогенидов. Эти результаты были подтверждены и дополнены обширным новым материалом в работах советских и иностранных авторов [4, 5]. [c.201]

    В свое время А. А. Баландин и Н. Д. Зелинский предположили, что такие процессы протекают без промежуточных стадий прямым присоединением водорода к мультиплетно адсорбированному циклу. Для бензола в качестве исходного состояния принималась секстетная адсорбция. Плоское расположение органических циклов на поверхности катализатора правдоподобно и согласуется с данными Кембелла [52] по изотопному обмену водорода у цикланов на металлических катализаторах. Как отмечалось нами на конференции по органическому катализу (1962 г.), для ароматических соединений такое плоское расположение может быть обусловлено особенностями поверхностных я-комплек-сов ароматических молекул. Такие л-комплексы — наиболее вероятные первичные хемосорбционные формы каталитического гидрирования. Одновременное присоединение шести или, соответственно, восьми атомов Н неправдоподобно. Конечно, процесс протекает в несколько этапов,— вероятно, с молекулой, сохраняющей It-комплексную связь с поверхностью. Это — своеобразная шести- или, соответственно, восьмичленная закрепленная цепь каталитического гидрирования. В качестве промежуточных состояний возникают я-комплексы с менее совершенной системой сопряжения и с более ограниченной делокализацией л-электро-нов. При этом комплексы с четным числом я-электронов, как например я-комплексы хемосорбированных циклогексадиена и циклогексена, вероятно, стабильнее и живут дольше во время реакции, чем комплексы с нечетным числом я-электронов и их ква-зистационарная поверхностная концентрация выше. Это увеличивает вероятность десорбции циклогексена и циклогексадиена в газовый объем, как это наблюдалось в недавних работах советских и иностранных исследователей [49а, б]. Не имея возможности разбирать сколько-нибудь подробно другие примеры, напомним только о существовании закрепленных цепей при мягком и глубоком каталитическом окислении углеводородов. К такому выводу для низкотемпературной области привело нас применение комплекса кинетических, адсорбционных и изотопных данных [48, 50]. При повышении температуры начинается заметный выход реакции в объем. Длинные и короткие безэстафетные закрепленные цепи, по-видимому, широко распространены в катализе. [c.504]

    Сделаны первые попытки создания радикально-цепной теории, основанной на трактовке активных центров как свободных валентностей [58, 2] и на механизмах полупроводникового катализа. Влияние контактных реакций на орто-пара-щеаращеъже водорода и изотопный обмен целыми радикалами при этих реакциях [59] указывают на существование лабильных радикалов или радикалонодобных форм при классическом органическом катализе. В то же время делается очевидным, что как и в гомогенном катализе, в жидкостях в качестве отправного элементарного акта чаще, чем образование обычных ковалентных связей и переход электронов, происходит образование лабильных комплексов присоединения со всем широким набором химических связей, встречающихся в электронной химии лигандов и твердых тел. Дальнейшая конкретизация структуры и свойств этих соединений и изучение закономерностей химии двухмерных поверхностных координационных соединений — задача ближайшего времени. Вторая актуальная задача — установление роли свободных радикалов и цепных реакций в осуще- [c.511]

    Основные научные исследования — в области кинетики и механизма химических реакций, а также гомогенного и металлокомплексного катализа. Совместно с Я. Я. Семеновым открыл (1963) новый тип разветвленных цепных реакций с энергетическими разветвлениями в основном на примере фторирования водорода и органических соединений в газовой фазе. Открыл (1966—1970) новые реакции молекулярного азота (образование комплексов с соединениями металлов, каталитическое восстановление до гидразина и аммиака в водных и спиртовых растворах). Открыл (1969) совместно с сотрудниками реакции алканов в растворах комплексов металлов (изотопный обмен, окисление, платинирование ароматических и алифатических углеводородов). Разработал (с 1977) ряд систем, способных к фотокаталитическому образованию водорода и кислорода из воды с участием соответственно доноров и акцепторов электрона, фотосенсибилизаторов и катализаторов. Сформулировал принцип много-электронных превращений в координационной сфере металла в ме-таллокомилексном катализе. [c.616]

    Изотопные эффекты углерода, рассмотренные в предыдущих разделах, относятся к отчетливо выраженному типу реакций разложения. Переходные комплексы можно здесь изображать как агрегаты, состоящие из двух центров. К трехцентровым реакциям, кроме реакций с участием водорода, относятся многие реакции 52-типа (по терминологии Ингольда), т. е. бимолекулярные одностадийные реакции замещения. Переходный комплекс образован из одного остатка, одного ирисоединяющегося и одного отщепляющегося заместителя. Наиболее важными являются реакции 5д,2 нри углероде, в которых происходит замещение одной связанной с углеродным атомом частицы со свободной парой электронов на другую. Углеродный атом обычно входит в состав алифатической молекулы. Примером совершенно симметричной реакции может служить обмен иона галогена с галогенным алкилом [c.158]

    Согласно работам Д. Н. Курсанова с сотрудниками [173, 177], в изопарафиновых углеводородах водород не обменивается, если вместо дейтеросерной кислоты взять дейтероуксусную или дейтерофосфорную кислоты. Авторы объяснили это наблюдение тем, что названные кислоты ие обладают окислительным действием. Более вероятно, что при этом играет роль меньшая сила этих кислот [194] (ср. величины функции кислотности io стр. 76). Что касается водородного обмена с серной кислотой, то он тоже зависит от степени кислотности последней. Бик и его соавторы [170] на примере изобутана показали суш,ество-вание линейной зависимости между скоростью обмена и функцией кислотности серной кислоты. По их мнению, фактором, от которого зависит обменная реакция, может быть образование комплекса между очень слабым основанием — изобутаном и сильной кислотой. Ингольд [161, 162] считает, что изотопный обмен водорода между дейтеросерной кислотой и углеводородом (безразлично ароматическим или насыш енным) имеет об-1цие закономерности, в частности, легче всего подвержены атаке кислоты участки молекулы с повышенной электронной плотностью. По Ингольду, единственным способом, каким серная кислота может участвовать в реакции изотопного обмена, является отдача протона (или дейтрона). [c.236]

    Осуществление этих реакций требует расхода серной кислоты и гидроксида натрия высокой частоты. Ион цианида является активным лигандом, легко образующим комплексы с тяжёлыми металлами, которые содержатся в техническом гидроксиде. Образовавшиеся амидные комплексы практически не участвуют в изотопном обмене углерода. Это обстоятельство приводит к тому, что образовавшийся в верхнем узле цианидный комплекс (напомним, что концентрируется в НСМ) переносит тяжёлый изотоп вниз по колонне изотопного обмена, что приводит к снижению эффективности разделения, обусловленному изотопным разбавлением. Основным недостатком этой рабочей системы является её высокая токсичность. Тем не менее, в США долгое время работал четырёхступенчатый каскад, который производил около одного грамма в сутки углерода, содержащего 60 ат.% тяжёлого изотопа. Отметим, что другие реакции химического изотопного обмена оказались менее эффективными. [c.259]

    Такие реакции могут протекать через образование свободных радикалов или через промежуточный комплекс. Например, диариль-ные производные ртути с двумя различными заместителями вступают в изотопный обмен ртутью с металлической ртутью, при [c.511]

    Если даже для реакции (41) исключить плоское квадратное переходное состояние, все же остается возможность для того, что некоторое другое расположение атомов Н должно иметь более низкую энергию иможет выступать в роли активированного комплекса. Возможные структуры — линейная, прямоугольная, ромбическая, тетраэдрическая, треугольная и т. д. Детальные расчеты показывают, что все эти структуры также имеют слишком высокую энергию [36, 37, 42]. Структурой с низшей энергией является линейная Н4, но она может только вести к изотопному обмену, если при этом возникают свободные атомы. [c.60]

    Кац с сотр. [28 — 30] исследовали реакции изотопного обмена фтора между гептафторидом иода и фтористым водородом и между гептафторидом иода и фтором. Обменные реакции между газообразным JF, и HF [29] завершаются за 3 мин. при комнатной температуре и атмосферном давлении. Не удалось однозначно ответить на вопрос, происходит ли обмен по атомному механизму или вследствие образования промежуточных комплексов, по аналогии с обменом в системе IF3—HF, где образуется комплекс [c.300]

    Бойер и его сотрудники исследовали изотопный обмен в различных двухсубстратных ферментативных реакциях, которые были достаточно детально исследованы методами стационарной кинетики [12—15]. Моррисон и Клеланд [3] изучили изотопный обмен в креа-тинкиназной реакции и получили данные, которые расширили представление о ее механизме, полученное при исследовании стационарной кинетики (см. выше). Розе и др. [16] с помощью этого метода окончательно установили, что реакция, катализируемая мышечной аль-долазой, основана на механизме с замещением фермента. Дальцилю и Дикинсону [17] принадлежит особенно интересная работа, в которой для исследования алкогольдегидрогеназы печени были использованы и методы стационарной кинетики, и методы изотопного обмена. Было установлено, что если субстратами являются вторичные спирты, то максимальная скорость реакции лимитируется распадом тройного комплекса, [c.152]

    Согласно литературным данным, гомомолекулярный изотопный обмен идет на предварительно прогретых в вакууме или восстановленных при высокой температуре окиси цинка, закиси никеля, у-А120з и окислах редкоземельных элементов [6,7]. Механизм реакции не установлен. Обычно предполагается, что она идет через образование адсорбированных трех или четырех атомных кислородных комплексов [c.136]

    Количественные данные о взаимодействии КрОг с хлор-ионами получены в связи с изучением кинетики изотопных обменных реакций Кр (V) JI>Np (VI) в растворах [5]. Данные, полученные при концентрациях кислоты вплоть до 1,5 М, были интерпретированы как в предположении образования одного комплекса, так и в предположении образования двух комплексов. В последнем случае реакциям [c.22]

    Наряду с реакцией изотопного обмена между ВРз и его анизольным комплексом был исследован также обмен бора между ВРз и его молекулярным соединением [c.69]


Смотреть страницы где упоминается термин Реакции изотопного обмена комплексов: [c.136]    [c.29]    [c.266]    [c.279]    [c.146]    [c.108]    [c.140]    [c.68]    [c.93]    [c.34]    [c.30]    [c.466]    [c.55]    [c.27]    [c.105]    [c.37]   
Органические синтезы через карбонилы металлов (1970) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Изотопные реакции

Изотопный обмен

Обмен изотопный Изотопного обмена

Обмен изотопный Изотопного обмена реакции

Обменный комплекс

Реакции изотопного обмена

Реакции изотопного обмена Изотопного обмена реакции

Реакции обмена

Реакции обменные



© 2024 chem21.info Реклама на сайте