Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропанол механизм

    Образование изопропилбензола при сернокислотном алкилировании бензола пропанолами и пропиленом указывает на то, что равновесие между первичными и вторичными пропил-катионами, смещается в сторону последних в результате 1,2-гидридного переноса значительно быстрее реакции алкилирования. Часть изопропилбензола образуется по более сложному механизму, поскольку наблюдается скелетная изомеризация пропильной группы. По-видимому, при алкилировании бензола [1- С]пропанолом-1 в образующемся первичном пропил-катионе наряду с [c.115]


    Какие соединения образуются при нагревании с концентрированной серной кислотой следующих спиртов 1) пропанола-1, 2) 2-метилпропанола-2, 3) 2,3-ди-метилбутанола-2 Объясните механизм сернокислотной дегидратации на примере J. [c.19]

    Конечно, такой обмен легче всего осуществляется в случае относительно кислых протонов, например протонов в а-положении к карбонильной группе, но даже слабокислые протоны могут вступать в реакцию обмена с основаниями, если эти основания достаточно сильные (см. т. 1, разд. 5.5). Для медленного обмена с кислотой протонов, находящихся в -положении к группе ОН (например, метильных протонов в 2-пропаноле), был найден еще один механизм. Это механизм отщепления — присоединения, при котором сначала дегидратируется спирт (т. 4, реакция 17-1), а затем молекула воды снова присоединяется (т. 3, реакция 15-2) [46]. [c.422]

    Большое значение имеет конструкция распылителя и горелки. Так, при применении распылителей с камерами распыления и комбинированных горелок-распылителей механизм влияния органических растворителей различен. Отмечена неоднозначность результатов влияния органических растворителей на интенсивность спектральных линий натрия, полученных разными авторами в различных экспериментальных условиях [248]. Использована пламенно-фотометрическая установка на основе спектрографа ИСП-51. Сравнивалось влияние метанола, этанола, пропанола, бутанола, муравьиной и уксусной кислот, диоксана, ацетилацетона и водных растворов на эмиссию щелочных элементов в пламени ацетилен—воздух. Отмечено полное соответствие между увеличением скорости распыления раствора, уменьшением вязкости в ряду спиртов и ростом интенсивности спектральных линий натрия. Для кислот изменение интенсивности коррелирует с уменьшением вязкости и увеличением поверхностного натяжения. Все органические растворители практически не изменяют скорость распыления. Сделано предположение, что влияние органических растворителей связано с изменением диаметра капли аэрозоля. Из общей схемы выпадает ацетилацетон. Спирты в зависимости от их концентрации в растворе позволяют повысить чувствительность определения щелочных металлов (натрия) в 4—12 раз. [c.125]

    Как и при разделении на ранее описанных полимерных ХНФ, механизм хирального распознавания в данной системе является сложным и до конца не выяснен. Однако основные причины удерживания сорбата были выявлены в ходе систематических исследований влияния его структуры и состава подвижной фазы на коэффициент емкости. Во многих отношениях альбумин-силикагелевый сорбент ведет себя подобно обращенно-фазовым материалам на основе алкилированного силикагеля. Спирты, преимущественно пропанол-1, помогают регулировать время удерживания, поскольку вызывают его быстрое уменьшение вследствие ослабления гидрофобных взаимодействий с сорбентом. Оптимизировать состав подвижной фазы можно, варьируя тремя основными параметрами, а именно pH, ионной силой и органическим растворителем-модификатором [90]. Вероятно, в любой хроматографической системе одновременно наблюдается влияние диполь-ионных и гидрофобных взаимодействий. Кроме того, возможно образование водородных связей и комплексов с переносом заряда. Большое влияние свойств подвижной фазы на значения к разделяемых энантиомеров можно объяснить зависимостью свойств белков от распределения заряда и его конформации. БСА состоит как минимум из 581 остатка аминокислот, связанных в единую цепь (мол. масса 6,6-10 ), и его надмолекулярная структура в значительной мере определяется присутствием в молекуле 17 дисульфидных мостиков. При рН7,0 полный заряд молекулы равен - 18, а изоэлектрическая точка равна 4,7. Как это хорошо известно из химии ферментов, смена растворителя способна вызывать изменения в структуре связывающего центра белка в результате изменения его заряда и конформации. [c.133]


    В то время как амины и аминокислоты, несущие положительный заряд, более прочно удерживаются при более высоких значениях pH, для отрицательно заряженных сорбатов справедливо обратное. Систематические исследования, проведенные на серии N-бензоил-о, L-аминокислот, позволили глубже понять механизм взаимодействия сорбата с белком. Влияние изменения свойств подвижной фазы на величины к VI а демонстрирует рис. 7.10. Во-первых, удерживание в значительной степени возрастает с усилением гидрофобного характера аминокислоты (Ser > А1а> Phe). Во-вторых, увеличение суммарного отрицательного заряда белка с увеличением pH вызывает уменьшение к для всех шести соединений (вследствие ионного взаимодействия). Далее, влияние концентрации буфера можно объяснить усилением адсорбции вследствие ионных взаимодействий при низкой ионной силе. Небольшое, но вполне заметное возрастание к для наиболее сильно удерживаемых сорбатов при высоких концентрациях буфера вероятнее всего является результатом усиления гидрофобных взаимодействий. Поскольку ионные (кулоновские) и гидрофобные взаимодействия по-разному подвержены влиянию ионной силы, то оба эффекта приводят к возникновению минимума в адсорбции сорбата (к ) в определенной точке. И наконец, совершенно очевидно влияние органического растворителя-модификатора он всегда приводит к понижению удерживания сорбата и тем сильнее, чем более гидрофобен сорбат. Влияние pH и ионной силы на удерживание незаряженных соединений невелико, но выражено вполне отчетливо. Оно связано исключительно с изменениями в связывающем центре ХНФ. Добавление пропанола-1 вызывает уменьшение удерживания по сравнению с наблюдаемым у заряженных сорбатов, что свидетельствует о преимущественном вкладе в удерживание гидрофобных взаимодействий. Это подтверждает также наблюдаемое очень большое влияние на удерживание длины цепи алканола-1. Высшие спирты являются значительно более эффективными конкурентами за связывающий центр, а потому вызывают более быстрое элюирование сорбата. Возможность регулирования удерживания путем изменения подвижной фазы, которую демонстрирует схема 7.6, говорит о том, что эту особенность данных хроматографических систем можно использовать в целях оптимизации разделения. [c.135]

    Опишите механизм реакции пропанола-1 с хлороводородом. Объясните роль протона в этой реакции. [c.178]

    Авторами настоящей статьи была сделана попытка изучить механизм парофазного гидрирования пропионового альдегида в пропанол при низком давлении на никель-хромовом катализаторе. Обработкой кинетических данных по методу Хоугена было показано, что лимитирующей стадией этой реакции является стадия адсорбции альдегида на поверхности катализатора. [c.9]

    При окислении смеси пропанола с СО также наблюдается сильное тормозящее влияние СО на скорость превращения пропанола [18]. Интересно, что в присутствии метанола скорость превращения СО увеличивается [23, с. 10-13]. При окислении смеси СО с другими спиртами такого эффекта не обнаружено. Возможно, образуются реакционноспособные комплексы с участием компонентов смеси, но этот механизм пока не доказан. [c.136]

    Используйте таблицу энергий связей для того, чтобы исследовать возможность присоединения воды к пропилену при катализе перекисью (К — О — О — Н). Известно, ято у-излучение Со приводит к разложению воды на Н и НО . Может ли это излучение инициировать цепную реакцию присоединения воды к пропилену Сможет ли произойти неценная реакция (т. е. один у-фотон на одну молекулу реагирующего пропилена) Какое соединение должно было бы образоваться в случав неценного механизма — пропанол-1 или пропанол-2 Какие еще продукты могли бы быть получены при неценной реакции Подробно аргументируйте ваши ответы. [c.192]

    Различие в механизмах прототропной проводимости ионов водорода и гидроксила обнаруживается также в том, что проводимость и числа переноса кислот и оснований при добавлении неэлектролитов изменяются по-разному. Произведение Лг] для водных растворов КОН с увеличением содержания метанола, этанола и пропанола вначале возрастает, достигает максимума при концентрации спирта 6—8 мол. % и затем заметно снижается [12, 19, 20]. Для растворов с небольшим количеством воды или совершенно безводных значения Лт) почти не отличаются от значений, соответствующих растворам K I или KF (рис. 4.32 и 4.33). Влияние гликоля и глицерина заметно иное. Произведение Atj для растворов КОН плавно снижается до содержания гликоля 15 мол. %, затем в широком интервале концентрации неэлектролита сохраняется постоянным и, наконец, в растворах с низкой концентрацией воды вновь незначительно снижается. В присутствии глицерина минимум Aii соответствует его содержанию примерно 8 мол. %. При большем содержании глицерина Ат) ощутимо возрастает. Изменение структуры воды, обусловленное присутствующим в относительно низкой концентрации электролитом, оказывает на величину Ат] для содержащих гликоль и глицерин растворов КОН влияние, противоположное его влиянию на аналогичные растворы KF, КС1 и НС1. При добавлении небольшого количества гликоля или глицерина проводимость ионов гидроксила снижается в большей мере, чем вследствие повышения вязкости раствора. В отличие от других изученных ионов разупорядочивающее действие ионов гидроксила перекрывается другим эффектом. Возможно, он связан с высокой асимметрией (значительным дипольным моментом) иона 0Н . Заслуживает особого внимания быстрое возрастание значения Лт] при повышении концентрации глицерина. В этом случае Atj значительно выше, чем для любого из указанных растворов электролитов (за [c.453]


    В углеводородной фракции (главным образом пропилен) содержится около 10% циклопропана [105], который, следовательно, может в принципе образоваться при дезаминировании. Изучение поведения циклопропана в условиях реакции дезаминирования также привело к к-пропанолу. В соответствии с этими результатами и по ряду других причин (см. [102]), для дезаминирования к-пропиламина можно принять следующий механизм  [c.575]

    Результаты алкилирования бензола пропанолами в присутствии катализаторов А1С1з и ВРз указывают на различия механизмов этих реакций и реакций сернокислотного алкилирования. Вполне вероятно, что в присутствии А1С1з и ВРз скорость превращения первичного пропил-катиона во вторичный сопоставима со скоростью алкилирования, тогда как более стабильный вторичный пропил-катион превращается в первичный значительно медленнее. Поэтому образующийся из пропанола-2 вторичный пропил-катион успевает присоединиться к ароматическому [c.115]

    Полученные результаты объясняют тем [150 151, 1, с. 46], что при алкилировании бензола пропанолом-1 в присутствии хлорида (или бромида) алюминия в системе находятся слабый внешний комплекс бензола с катализатором, довольно стабильный комплекс с переносом заряда пропанол-1 — хлорид алюминия, л-комплексы алкилбензолов с неполной локализацией заряда на а-углеродном атоме. Отсутствие алкилкатионов при алкилировании н в момент разложения указанных выше систем дает основание считать, что изомеризация через карбониевоионный механизм может иметь место при атаке алкилирующим комплексом субстрата с образованием тройного комплекса в координационной сфере алюминия  [c.140]

    Механизм а включает образование протонированного по углу циклопропана 21 [112] примеры таких ионов уже рассматривались для 2-норборнил- и 7-норборненил-катионов (т. 2, разд. 10.6). Согласно механизму б, интермедиат представляет собой протонированный по ребру циклопропан 22. Механизм в — это одностадийная атака ионом Н+ по 5е2-типу, что приводит к классическому катиону 23, который затем взаимодействует с нуклеофилом. Хотя все три механизма в том виде, в котором они изображены здесь, предсказывают сохранение конфигурации атома углерода, который соединяется с протоном, механизмы а и в могут приводить также и к инверсии конфигурации у этого атома углерода. К сожалению, имеющиеся в настоящее время данные не позволяют сделать однозначного вывода о том, какой из ме.канизмов является исключительным путем реакции в каждом случае. Ситуация осложняется возможностью образования более одного протонированного по ребру циклопропана, по крайней мере в некоторых случаях. При обработке циклопропана 05804 (реакция 15-2) дейтерий обнаружен у всех трех атомов углерода получающегося 1-пропанола [113]. Этот результат можно объяснить рав- [c.159]

    Этот способ синтеза имеет важное значение с точки зрения изучения механизма реакций, главным продуктом которых является пропанол-2-(1-С ). Выход 3,4 г (41 /о), т. кип. 80—84°. Уитмор [3] показал, что при обработке пропиламина азотистъй кислотой образуется 7% пропилового спирта, 32% изопропилового спирта, 28% пропилена и следы простых эфиров. [c.574]

    Поскольку такой хиральный сорбент продемонстрировал прекрасные разделяющие свойства по отнощению к 3,5-динитро-бензоильным производным рацемических соединений, подобных аминокислотам, применение принципа обратимости (означающего, что если оптически активное соединение А разделяет энантиомеры В, то оптически активное соединение В должно разделять энантиомеры А) привело к синтезу (Я)-Ы-(3,5-динитробензоил)фе-нилглицина в качестве хирального селектора тг-кислотного типа. Обычно его удобно использовать в сочетании с 3-амино-пропилсиликагелем, элюентом при этом служит смесь пропанол-2(0—20%)—гексан. Исследование разделения различных замещенных антраниловых спиртов на этих ХНФ в очень большой степени способствовало пониманию механизма хирального распознавания при энантиоселективной адсорбции, что позволило во многих случаях достигнуть высоких значений а [146]. [c.149]

    Исходя из этилена, соответствующего металлокомплекса и неорганических веществ, получите бутен-1, полиэтилен, ацетальдегид, уксусную кислоту, пропанол-1, пропаналь, пропионовую кислоту, диэтилкар >-нат. Предложите условия проведения реакций и укажите возможные побочные продукты. Приведите схемы механизмов реакций. [c.628]

    Для первичных спиртов реализуется, вероятно, иной механизм дегицратации в концентрированной серной кислоте. Первичные спирты подвергаются дегидратации в гораздо более жестких условиях по сравнению со вторичными и третичными спиртами. Пропанол-1 дает пропилен при нагревании с 96%-й серной кислотой при 170-190 С, в этих же условиях из этанола получается этилен  [c.262]

    Механизм окисления спиртов под действием хромового ангидрида и хромовой кислоты подробно изучен. Эта реакция включает несколько стадий. В первой стадии из спирта и СгОз образуется сложный эфир хромовой кислоты. Во второй, ключевой стадии происходит окислительно-восстановительное элиминирование, приводящее к образованию альдегида или кетона и частицы, содержащей Сг(1У). При окислении дейтерированного СНзСВСНз и недейтерированного пропанола-2 наблюдается ки- Н [c.270]

    В качестве первой помош и при остром кадмиевом отравлении рекомендуется свежий воздух, полный покой, предотвраш ение охлаждения. При раздражении дыхательных путей — теплое молоко с содой, ингаляции 2 -ным раствором NaH Og. При упорном кашле — кодеин, дионин, горчичники на грудную клетку необходима врачебная помош ь. Противоядием при отравлении, вызванном приемом во внутрь кадмиевых солей, служит альбумин с карбонатом натрия. Специфическое лечение кадмиевых отравлений — применение комплексообразуюш их препаратов (2,3-димеркапто-пропанол-1, двойной атилендиаминтетрацетат кальция и натрия) но клинический опыт их использования еш е недостаточен. Выделение кадмия из организма (через почки и кишечник) происходит чрезвычайно медленно введение 2,3-димеркаптопропанола-1 увеличивает его примерно в 3 раза. Механизм токсического действия кадмия заключается, по-видимому, в связывании карбоксильных, аминных и особенно сульфгидрильных групп белковых молекул, в результате чего угнетается активность ферментных систем. В связи с ядовитостью кадмия и его соединений их контакт с пищевыми продуктами недопустим [72а 293, стр. 345 619, стр. 175]. [c.14]

    На основании спектральных исследований алкилирования бензола пропанолом в присутствии хлористого алюминия установлено, что в системе находятся слабый внешний комплекс бензола с катализатором, в котором ароматическое ядро возмущено меньше, чем при представлении о бензолониевых ионах, довольно стабильный комплекс с переносом заряда пропанол-1-А1С1д, 5Г - комплексы алкилбензолов с неполной локализацией заряда на ос -углеродном атоме. Отсутствие алкилкатионитов при алкилировании и в момент разложения вышеуказанных систем дает основание считать, что изомеризация через кар-бониево-ионный механизм может иметь место при атаке алкилирующим комплексом субстрата с образованием тройного комплекса в координационной сфере алюминия [44]  [c.42]

    Растворы низкомолекулярпых веществ в растворителях, инертных по отношению к исследуемым полимерам, вводили тщательным перемешиванием указанных растворов с полимерами. Таким растворителем низкомолекуляр-ных веществ, используемых для смешения с нитратцеллюлозой, являлся метиленхлорид, а для смешения с триацетатцеллюлозой — диэтиловый эфир. После удаления растворителей с помощью нагревания смесей и последующей вакуумизацией из самих полимеров и их смесей с низкомолекулярными веществами прессовали таблетки диаметром 10 мм и высотой 3 мм. Прессование проводили при давлении 50 кГ1см и температуре, близкой к температуре стеклования полимера. Образцы в виде таких таблеток подвергали испытанию на динамометрических весах с постоянной нагрузкой 160 г/мм в широком интервале температур. Повышение температуры проводили с постоянной скоростью 2° в 1 мин. В результате проведенных испытаний было получено пять серий термомеханических кривых. Температуры стеклования Тс) триацетатцеллюлозы и смесей обоих эфиров целлюлозы с низкомолекулярными веществами находили по началу изгиба термомеханических кривых [11]. Температуру стеклования для самой нитратцеллюлозы определяли экстраполяцией прямой зависимости от концентрации в ней дибутилфталата на ось ординат, т. е. на нулевую концентрацию дибутилфталата [12]. Зная концентрацию низкомолекулярных веществ в смеси с эфирами целлюлозы и получив значения Т для каждой такой смеси, мы построили графические зависимости изменения Тс смесей от концентрации в них низкомолекулярпых продуктов. Эти зависимости для смесей с нитратцеллюлозой приведены на рис. 1, а и для смеси с триацетатцеллюлозой — на рис. 1, б. Как следует из приведенных рисунков, низкомолекулярные вещества, неограниченно смешивающиеся с полимером, понижают Tq смеси в тем большей степени, чем большая концентрация их введена в эти смеси. Такими веществами являются для нитратцеллюлозы дибутилфталат, широко используемый как пластификатор указанного эфира целлюлозы, а для триацетатцеллюлозы — 1-нитро-2-метил-2-пропанол (прямые 1 на рис. 1). Для этих примеров пластифицирующего действия молекулярный механизм хорошо известен [1, 2]. Здесь следует только подчеркнуть, что при введении в полимер подобных низкомолекулярпых веществ в нем осуществляется, по-видимому, распад любых надмолекуляр- [c.388]

    Окисление хромовой кислотой. При окислении спиртов протекают весьма разнообразные реакции, механизмы которых часто очень сложны. Метод определения лимитирующей стадии путем измерения изотопных эффектов применялся уже давно Вестхаймером с сотрудниками, которые изучали преимущественно окисление изопропилового спирта хромовой кислотой. Вследствие большого числа валентных состояний хрома механизм реакции очень сложен и включает несколько окислительных стадий. Здесь нет возможности входить в обсуждение схемы суммарной реакции, но нужно упомянуть об оригинальной работе Вестхаймера и Николаидеса [99], которые установили, что скорость превращения 2-пропанола-2-0 при [c.111]

    Тот же вывод сделан и в работах по исследованию механизма образования циклопропана при диазотировании н-пропиламина [49—51] и восстановлении -пропанола [44]. Была сделана попытка выяснить, по какому механизму образуется циклопропан через карбоний-ион или через промежуточный карбен, который, как известно, дает такое же отношение циклопропан олефин, как и получаемое при деаминировании (9 1) и восстановлении (10 1). Для распознавания обоих направлений восстанавливали 1,1-дидейтеропропанол-1 при этом должны были получаться или дважды меченный ион — СНз — СНд или однократно меченный карбен СВ — СН-з — СНд  [c.239]

    Добавление органических растворителей к водным растворам амфифильных соединений может стабилизировать (понизить ККМ) или дестабилизировать (увеличить ККМ) мицеллярное состояние. Те добавки, которые включаются в мицеллу, повышают ее устойчивость. Все непроникающие органические неэлектролиты, за исключением наиболее полярных, должны дестабилизировать мицеллярное состояние согласно одному из двух следующих механизмов понижения коэффициента активности мономера RX (за счет улучшения растворяющей способности среды) и увеличения отталкивания между заряженными полярными группами (за счет понижения диэлектрической проницаемости). По способности увеличивать ККМ додецилтриметиламмонийбро-мида при 25 °С за счет добавок (их мольная доля составляет 0,04) в водный раствор растворители располагаются в следующий ряд про-панол-1 < пропанол-2 < этанол < метанол < гликоль < глицерин < про-пандиол-1,3 < мочевина < ацетон < ацетамид < диоксан < /V, /V -диметил-мочевина< тетраметилмочевина [168]. Влияние на додецилсульфат натрия носит аналогичный характер. Эти добавки снижают также число агрегации. Первые три спирта из указанного выше ряда на самом деле снижают ККМ и, вероятно, проникают в мицеллу. В мочевине отсутствуют группы углеводородного типа, и она увеличивает диэлектрическую проницаемость воды своей эффективностью в разрушении мицелл мочевина обязана способности разрушать или менять образованную водородными связями структуру воды, устраняя часть движущей силы образования гидрофобной связи. Мицеллы и явление ККМ могут сохраняться при относительно высоких концентрациях дестабилизирующих органических растворителей. Например, кривая электро- [c.512]

    Стереохимия восстановления замещенных циклогексанонов была использована в качестве теста при исследовании механизмов восстановления гидридами металлов, однако при этом возникло много осложнений. При восстановлении тетрагидроборатом натрия пространственно незатрудненных циклогексанонов в основном протекает аксиальная атака реагентом и образуется до 95 % экваториального спирта. Стереоизбирательность реакции заметно снижается с увеличением пространственных затруднений у карбонильной группы более того, селективность может даже стать обратной в случае сильно пространственно затрудненных циклогексанонов [212]. Несмотря на различные объяснения этого удивительного и чрезвычайно полезного явления, истинная его природа не установлена [212, 213]. Концепции стерического контроля и контроля образованием конечных продуктов [214] (раннее или позднее переходное состояние) подверглись серьезной критике [215]. Приводились и другие объяснения этого явления, такие как торсионное напряжение [216], орбитальный контроль [217], неравномерное распределение электронной плотности у карбонильной группы [218, 219]. Для понимания необходимо знать специфические активационные параметры аксиальной и экваториаль ной атаки с тем, чтобы детально оценить различные переходные состояния. С этой целью недавно исследовано [212] восстановление 19 циклогексанонов тетрагидроборатрм натрия в пропаноле-2 в интервале температур от О до 35°С, определены константы [c.327]

    Изучено восстановительное элиминирование 5а,бр-дихлорхоле-стана и некоторых его производных в пропаноле-2, промотируе-мое тетрагидроборагом натрия. Наличие Зсх-гидроксильной группы сильно ускоряет процесс полученные данные свидетельствуют о протекании внутримолекулярной реакции с электрофильным содействием. Для тех соединений, у которых отсутствует За-гидро-ксильная группа, предложен механизм 2 [252]. [c.335]

    Из циклопропана и дейтеросерной кислоты образуется дейтерированный циклопропан, хотя размыкание цикла происходит быстрее, чем дейтерирование 57]. Наиболее вероятным механизмом является протонирование и размыкание цикла с образованием 1-пропильного катиона с последующей конкуренцией между циклизацией его в циклопропан и образованием производных пропанола-1 (вероятно, кислого 1-пропилсульфата). Обмен дейтерия на водород был обнаружен для СВ4 в 50з — Н23 04 [58]. [c.401]

    Галогенгидрины с третичным а-атомом галогена восстанавливаются согласно третьему механизму, включающему внутримолекулярный гидридный сдвиг. При восстановлении 2-метил-2-хлор-пропанола-1 с помощью ЫА 04 с выходом 32,4% образуется продукт реакции, который состоит из 85% 2-метилпропанола-1-0-1 (XXVIII) и 15% 2-метилпропанола-1-Р-2 [934]  [c.266]


Смотреть страницы где упоминается термин Пропанол механизм: [c.115]    [c.140]    [c.88]    [c.222]    [c.181]    [c.217]    [c.881]    [c.134]    [c.28]    [c.309]    [c.255]    [c.112]    [c.388]    [c.384]    [c.129]    [c.326]    [c.227]    [c.339]   
Изотопы в органической химии (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Пропанол



© 2025 chem21.info Реклама на сайте