Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Калориметры в природе

    В настоящей работе проведено комплексное изучение структуры, термодинамических и дилатометрических свойств димерной фазы С (DS), полученной сжатием фуллерита Сбо до давления 8 GPa при 290 К. Димерная природа образца, структура которого идентифицирована как (г.ц.к.) с параметром решетки а = 14.02 0.05 A, подтверждена методами рентгеновской дифракции. По данным дилатометрии оценено снижение скачка обьема в области вращательного фазового перехода в 30 раз по сравнению с амплитудой эффекта в фуллерите С ). Методами прецизионной адиабатической вакуумной калориметрии изучена теплоемкость DS в области 6 - 350 К с погрешностью, около 0.2%. В изученной области выявлен и охарактеризован ориентационный фазовый переход. Термодинамические характеристики перехода в DS и, для сравнения, в исходном Сбо [3] приведены в таблице. [c.139]


    В области фазовых переходов (плавление, кристаллизация) также наблюдается резкое изменение теплоемкости полимеров. Эти процессы обычно изучаются методами адиабатной калориметрии (точность которой в результате применения электронных схем является достаточно высокой) в широком интервале температур. На температурных зависимостях теплоемкостей полимеров [10.6] проявляются характерные пики (рис. 10.17), которые с увеличением скорости нагревания сдвигаются в сторону повышенных температур (при этом высота их увеличивается). Такой характер изменения теплофизических свойств при переходе поливинилацетата (ПВА) из твердого состояния в жидкое обусловлен релаксационной природой процесса размягчения и связан с тепловой предысторией образцов. Так как температура стеклования ПВА равна 35° С, выдержка его при комнатной температуре равносильна хорошему отжигу. [c.267]

    Таким образом, задача заключается в экспериментальном определении Qa = —А.и и сравнении этой величины с вычисленной на основе того или иного представления о природе поверхностных сил. Процесс адсорбции, как правило, экзотермичен, поскольку и свободная энергия (в самопроизвольном процессе), и энтропия в поверхностном слое (в результате упорядочения) обычно уменьшается и и = АР + ТА8 С 0. Для измерения Qa, в принципе, применим калориметрический метод на практике обычно используют калориметры изотермического и адиабатического типов.  [c.111]

    Аналогичный вывод следует из данных, приведенных на рис. 3.16 [351]. В этом исследовании интерметаллида №зА1, легированного хромом и бором, подвергнутого ИПД кручением при комнатной температуре, было проведено изучение структурных изменений при нагреве непосредственно в колонне электронного микроскопа. Параллельно, используя дифференциальную сканирующую калориметрию, было исследовано тепловыделение в процессе нагрева этого материала. Как можно видеть из полученных данных, пик тепловыделения наблюдается при температуре значительно ниже начала интенсивного роста зерен. Природа этого тепловыделения связана с процессами возврата, а также началом переупорядочения. Следует отметить высокую термостабильность наноструктурного состояния этого интерметаллида, позволившую реализовать его уникальное сверхпластическое течение [242] (гл. 5). [c.143]

    В работах Киселева, Жданова и их сотрудников калориметрия и хроматография использованы как чувствительные методы оценки адсорбционных сил и энергии адсорбции веществ различной химической природы [1—5]. [c.137]


    Теплоемкость, т.е. количество тепла, поглощаемого телом при его нагревании на 1 К, является термодинамическим параметром и, следовательно, зависит от природы молекулярного движения. При появлении нового типа молекулярного движения, например при переходе из стеклообразного в высокоэластическое состояние, кристаллизации или плавлении, теплоемкость возрастает скачкообразно. Обычно экспериментально определяют удельную теплоемкость , при постоянном давлении методом калориметрии ( ее значения приведены в справочных данных для большинства марок каучуков). [c.546]

    Однако, тепловые эффекты уже для р- и у-перехода малы. Зато метод позволяет с надежностью отличать релаксационные переходы от фазовых первого рода и — по определению — чувствителен к переходам второго рода с разрывом теплоемкости. (Мы отказались от обозначения Я-переход, сохранив эту букву для медленных релаксационных переходов). Некоторым неудобством ДСК является также то, что на хороших калориметрах можно наблюдать переходы на грани фазовых и релаксационных (выражение Берштейна). Из общих соображений, такие переходы могут существовать но чтобы разобраться с отнесением слабых полос релаксационных спектров, надо — еще одно отрицание отрицания — изменить природу стрелки действия. Например, от ДСК можно перейти к деформационной калориметрии или другим квазистатическим методам механики полимеров, таким как релаксация напряжений илн деформаций. [c.305]

    Вообще следует заметить, что адсорбционная калориметрия при экстремально низких температурах может дать весьма богатую информацию не только о емкости монослоя, но и об энергетической неоднородности поверхности в чистом виде [1], о характере и природе взаимодействия с адсорбентом и т. д. Наконец, из данных по дифференциальным теплотам адсорбции путем графического интегрирования можно определить теплоту исчезновения адсорбционной пленки и отсюда — удельную поверхность адсорбента [3]. Этого можно достигнуть и непосредственным измерением теплоты смачивания пористого адсорбента с предадсорбированной смачивающей жидкостью [4], [c.141]

    Применение современных физико-химических и физических методов исследования — структурно-сорбционного анализа, калориметрии, ИК-спект-роскопии и ядерного магнитного резонанса позволяет по-новому подойти к вопросу о природе взаимодействия веществ различной полярности с поверхностью дисперсных минералов. Для изучения процессов структурообразования в дисперсиях глин [9] большую роль в настоящее время играют методы физико-химической механики, созданной П. А. Ребиндером и его школой. [c.67]

    Размеры жидкокристаллических структур (несколько сотен ангстрем) требуют использования электронной микроскопии, а их природа (обычно периодическая) указывает на возможность применения малоуглового рассеяния рентгеновских лучей. Так же плодотворно используются некоторые другие методы дифференциальная сканирующая калориметрия, дилатометрия, поляризационная микроскопия, инфракрасная спектроскопия и круговой дихроизм. [c.208]

    Эта задача была решена в методе, предложенном Харкинсом и Юра [3, 49], в котором твердое тело вначале покрывали толстой пленкой жидкости, а затем погружали в большой объем жидкости в калориметре. Таким образом, тепловыделение не зависело от природы твердого тела, поскольку регистрировалось только взаимодействие между поверхностью и объемом жидкости взаимодействие жидкости с твердым телом в измеряемый эффект не входило. [c.365]

    При анализе численных значений Tg для разных полимеров необходимо учитывать кинетическую природу процесса стеклования, в силу которой экспериментальные значения Tg, определенные разными методами, обычно соответствуют разной продолжительности измерений и поэтому могут значительно различаться. Например, в результате изменения скорости охлаждения или нагрева (а также частоты измерения) исследуемого образца на порядок при энергии активации стеклования 350 кДж/моль Tg изменяется от 8—9 К (при Tg = 400 К) до 0,5—1 К (при Tg = 200 К). Экспериментальные значения Tg можно считать конкретной физической характеристикой полимера, если они относятся к некоторой стандартной временной шкале. Все значения Tg, приведенные в табл. 1.1—1.5,соответствуют принятой в настоящее время стандартной скорости изменения температуры около 1—3 К/мин в квазистатических условиях эксперимента (дилатометрия, калориметрия и др.). Для большинства полимеров погрешность табулированных значений не превышает 2—5 К, относительные погрешности значений ДСр, Да составляют в среднем 2—5 %. [c.14]

    Резонансные спектры и спектры поглощения позволяют получить данные о времени жизни и природе связи адсорбированной молекулы, тогда как калориметрия позволяет определить суммарные тепловые эффекты. Калориметрические измерения ясно показывают, что первые адсорбированные молекулы взаимодействуют с наиболее энергетически выгодными центрами, а последние молекулы в широкопористых цеолитах удерживаются только силами межмолекулярного взаимодействия. Баррер и Василевский [211] пришли к выводу, что энергетическая неоднородность растет с увеличением дипольного и квадру-польного моментов или поляризуемости молекул и с ростом поляризующей силы катионов. Влияние всех этих факторов указывает, что катионы смещаются из недоступных положений в дегидратированных цеолитах и соединяются с полярными сорбированными молекулами. О взаимодействии молекул с катионами говорят также многочисленные данные ИК-спектров (см. следующие главы). Например, Рабо и др. [181] наблюдали влияние двузарядных катионов на полосы поглощения молекул СО, сорбированных цеолитами X и Y, [c.95]


    Мы поставили перед собой задачу непосредственного измерения теплот адсорбции, соответствующих весьма малым порциям адсорбирующегося вещества. Описанный нами адсорбционный калориметр с постоянным теплообменом , повидимому, позволяет решать такие задачи для адсорбентов с самой различной активностью. Комбинация этих калориметрических измерений весьма малых теплот, сопровождающих адсорбцию малых порций газа, с описанным выше изучением геометрической структуры поверхности и пор адсорбентов и катализаторов позволит исследовать зависимость дифференциальных теплот адсорбции от степени заполнения поверхности или адсорбционного объема для веществ, резко отличающихся по природе адсорбционных взаимодействий. Анализ этих зависимостей позволит, как мы надеемся, сделать новые заключения об энергетическом состоянии поверхности и о степени и характере ее неоднородности и взаимодействия адсорбирующихся молекул. Однако следует указать, что вопрос о необходимости такого комплексного изучения адсорбентов еще только поставлен, и решение его принадлежит пока будущему. Оно потребует большой, кропотливой и трудоемкой работы как в направлении развития и уточнения экспериментальных методов измерения адсорбции и теплот адсорбции, так и в направлении учета реальной структуры адсорбентов и катализаторов в теоретических построениях и попытках интерпретации результатов адсорбционных опытов. [c.198]

    Особенности температурных измерений. В полученные выше формулы (2-24) и (2-29) вошли две поправки на излучение Д>-л(0 и на нелинейность нагрева Дз которые, однако, не являются единственными. При работе с термопарами, нанример, возникают ошибки из-за наличия в них паразитных термо-э. д. с. и из-за возможных искажений термоэлектродами поля температур в зоне контакта с образцом. Если термопары монтируются внутри калориметра постоянно, то случайные по своей природе погрешности измерения становятся систематическими, причем их суммарное значение оказывается в общем случае функцией температуры и скорости нагрева Ь). Учесть такого рода погрешности термопар можно с помощью специальных приемов градуировки калориметрического устройства и выделения из условного показываемого термопарами перепада температуры " ,(т) действительного перепада  [c.53]

    Основными физико-химическими характеристиками адсорбентов являются, с одной стороны, их структурные характеристики, часто не зависящие или мало зависящие от свойств адсорбирующихся веществ (удельная поверхность, пористость) и, с другой стороны, свойства, определяемые в основном природой системы адсорбент — адсорбат (энергия адсорбции, изотерма адсорбции и т. п.). Все эти величины обычно определяются при помощи адсорбционных опытов в статических условиях. Однако адсорбционные измерения часто бывают весьма длительными и требуют много времени для завершения и получения окончательного результата. В особенности это относится к калориметрическим определениям дифференциальных теплот адсорбции, требующим сложной аппаратуры, весьма чувствительной к колебаниям внешних условий. В послед нее время появляется довольно много работ по газо-хроматографическому исследованию изотерм адсорбции [1]. В ряде работ показано, что хроматографический метод позволяет быстро при некоторых допущениях определить изотерму адсорбции в удовлетворительной близости к изотермам, измеренным в статических условиях в вакуумной аппаратуре. Гораздо в меньшей степени исследованы возможности определения теплот адсорбции по данным газовой хроматографии [2], так как в лабораториях, занимающихся газовой хроматографией, обычно нет калориметров, позволяющих для сопоставления непосредственно измерять теплоты адсорбции для тех же систем. [c.37]

    Несмотря на такие отсталые взгляды на природу теплоты Лавуазье, ему принадлежит большая историческая заслуга в исследовании явлений, сопровождающихся выделением и поглощением тепла. Совместно с Лапласом Лавуазье при помощи сконструированного ими ледяного калориметра провел в течение 15 лет много определений теплот горения и различных тепловых эффектов, а [c.358]

    Для познания природы металлических сплавов значительно большую информацию, чем металлография и калориметрия, дает термический анализ. Теория и экспериментальная техника этого метода разработаны главным образом Н. С. Курнаковым и его школой. [c.148]

    Важная информация о структуре сетчатых полимеров получена при исследовании их молекулярной подвижности методами механической и диэлектрической релаксации, дилатометрии, термостимулированной деполяризации, ЯМР, ЭПР, калориметрии [1, 8, 14, 26]. Эги данные позволяют косвенно судить о некоторых структурных особенностях полимеров, в частности о характере подвижных фрагментов и природе [c.41]

    Для изучения неустойчивых частиц, включенных. в твердые тела, могут быть применены спектроскопия, электронный парамагнитный резонанс (ЭПР), измерения магнитной восприимчивости, калориметрия и другие физические методы. Наиболее эффективным для таких исследований оказался метод ЭПР, который дает возможность не только получить данные о природе и строении парамагнитных образований, к которым принадлежат некоторые ионы, атомы и радикалы, но и производить измерения количества этих частиц при разных условиях, в том числе в поле излучения.  [c.329]

    При анализе значений Tg для разных полимеров необходимо не забывать кинетическую природу процесса стеклования, в силу которой значения Tg, определенные различными методами, обычно соответствуют различной продолжительности наблюдения и поэтому могут значительно различаться. Например, изменение Tg в результате изменения скорости охлаждения или нагревания (а также частоты измерения) исследуемого образца на порядок для типичного значения энергии активации стеклования = 335 кДж/моль (см. разд. П. 1) составляет согласно уравнению (11.9) от 8—9 К (для Tg = 400 К) до 0,5—1 К (для Те = = 200 К). Тем не менее, экспериментальные значения могут считаться конкретной физической характеристикой полимера при условии, что они относятся к некоторой стандартной временной шкале. Все значения Tg, рассматриваемые в дальнейшем, соответствуют принятой в настоящее время стандартной скорости изменения температуры 1—3 К/мин в квазистатических условиях эксперимента (дилатометрия, калориметрия и т. п.) [55, 56, 59]. [c.79]

    Средняя кинетическая энергия молекул зависит только от температуры, а не от объема или химической природы газа. Это было доказано экспериментально Гей-Люссаком, а затем и Джоулем следующим образом. Два сосуда — один, заполненный газом, а другой пустой — соединяют краном и погружают в калориметр. Когда открывают кран, газ проходит в пустой сосуд до тех пор, пока не уравняется давление. В калориметре не обнаруживается ни повышения, ни понижения температуры. Опыт дает одинаковые результаты для любого газа. [c.42]

    Соотношение между отдельными пиками на кривой плавления, полученной динамическим калориметрическим методом или методом ДТА, также может зависеть от скорости нагрева из-за кинетических условий переходов кристалл—кристалл, и потому окончательное заключение о природе мультиплетности кривой плавления может быть сделано лишь после исследования с использованием метода равновесной калориметрии (в этом случае также должна наблюдаться мультиплетность) и рентгеноструктурного исследования возможности существования различных кристаллографических модификаций. [c.98]

    Фазовый переход Rl- RJI (гомологи с и=23 и 25) по данным дифференциальной сканирующей калориметрии (ДСК) характеризуется небольшим пиком. Два других интенсивных пика соответствуют переходам С- Ш я RII- L. В случае н-парафина С23Н48 эти переходы осуществляются при температурах 41.5 и 48.5 °С соответственно. Кроме того, эти авторы [228], а затем Г. Унгар [397] обратили внимание еще на один широкий и небольшой пик при =42.5 °С, но ничего не сообщили о его природе. [c.64]

    Найдено, что в ряду растворителей от о-ксилола до хлороформа скорость реакции присоединения тетрацианэтилена к антрацену возрастает в 70 раз [125]. Замена этилацетатной среды на уксусную кислоту ускоряет реакцию между циклопентадиеном и акролеином в 35 раз [129]. Маловероятно, чтобы столь слабая чувствительность к природе растворителя была обусловлена биполярным активированным комплексом. Экспериментальные данные лучше согласуются со следующим механизмом сначала диен и диенофил образуют комплекс типа ДЭП/АЭП, который затем через электроноизбыточный поляризуемый активированный комплекс непосредственно превращается в продукт реакции. В некоторых случаях замена растворителя приводит к существенному изменению энтальпии активации реакции Дильса—Альдера. Определение относительных величин энтальпии сольватации исходных веществ в раствори-телях-ДЭП и АЭП методом калориметрии показало, что в растворителях-ДЭП стабилизированы реагенты, тогда как в более электроотрицательных растворителях-АЭП стабилизируется электроноизбыточный активированный комплекс [128]. Отсюда следует, что влияние растворителей на энтальпию активации реакции Дильса — Альдера с участием электронодефицитного малеинового ангидрида и тетрацианэтилена в качестве диено-фила можно объяснить электронодонорными (или электроноакцепторными) свойствами растворителя, при км сольватация диенофила возрастает в растворителях-ДЭП [128, 538—540] (см., однако, работу [130]). [c.238]

    Измерены константы комплексообразования (константы устойчивости) для ряда комбинаций краун-эфир - неорганическая соль - растворитель посредством УФ-спектроскопии, калориметрии, с помошью ионоселективных электродов и другими способами. Наблюдалось четкое соответствие.между константой комплексообразования и диаметром катиона, т.е. максимальное значение константы комплексообразования соответствует катиону, диаметр которого наиболее близок размеру полости краун-зфира. Получены данные по термодинамике, а недавно стало возможным с помошью ЯМР-спектроскопии на ядрах Н, Li, Na, 39[( и 3(]д измерить и кинетические параметры, такие, как константы комплексообразования или константы диссоциации. Как отмечалось ранее, комплексы краун-э4мров с катионами становятся растворимыми даже в неполярных органических растворителях благодаря гидрофобной природе органических фрагментов, расположенных по внешней стороне полиэфирного кольца. В этих [c.97]

    Фазовый переход из кристаллического в жидкокристаллическое состояние является эндотермическим процессом количество тепла, необходимое для плавления цепей жирных кнслот, можно определить в калориметре (рис. 3.5). Если липпдный бислой состоит только из одного липида, то фазовый переход пропсходит в узком интервале температур. Так как биологические мембраны обычно состоят из большого количества разных липидов, они не имеют четко выраженного фазового перехода и при физиологических температурах являются жидкокристаллическими. Однако очевидно, что текучесть биологических мембран может быть весьма различной как в разных органах, так даже и в разных частях мембраны одной клетки. На это указывает различный липидный состав разных мембран или их доменов. Хотя еще не установлена общая зависимость между текучестью мембран и их биологической функцией, некоторые факторы, влияющие на текучесть, были выявлены в экспериментах на искусственных липидных мембранах. Накапливаются данные, свидетельствующие о том, что те же факторы действуют и в биомембранах. Температура фазового перехода зависит от природы боковых цепей жирных кислот. [c.71]

    Методами К. определяют теплоемкость индивидуальных в-в и физ.-хим. систем, теплоты фазовых переходов, тепловые эффекты хим. р-ций, растворения, смачивания, сорбции, радиоактивного распада и др. Данные К. использ. для расчета термодинамич. св-в в-в, составления тепловых балансов технол. процессов, расчета хим. равновесий, установления связи между термодинамич. характеристиками в-в и их св-вамв, строением, устойчивостью, реакц. способностью. Важное значение имеет калориметрич. изучение природы и структуры р-ров. Калориметрия Тиана — Кальве широко примен. для изучения кинетики и определения энтальпий медленно протекающих процессов растворения, смешения, гелеобразования, этерификации полимеров. Дифференциальная сканирующая К, наиб, применение находит при изучении жидких крист., для идентификации и изучения св-в полимеров (напр., степени кристалличности и кинетики кристаллизации), в аналит. химии. [c.235]

    Многие авторы для определения удельной поверхности адсорбентов использовали теплоты смачивания. Нэтрик и Гримм сделали попытку определения удельной поверхности силикагеля, допустив, что его поверхность покрыта пленкой конституционной воды, имеющей нормальное значение полной поверхностной энергии обычной жидкой воды, т. е. 118.5 эрг/см . Разделив измеренную в калориметре теплоту смачивания водой сухого силикагеля на эту величину, Пэтрик и Гримм получили удельную поверхность. Очевидно, что сделанное допущение является весьма грубым приближением, пригодным лишь для оценки порядка величины удельной поверхности. Бартелл и Фу пытались учесть влияние природы поверхности твердого тела, введя величины так называемых адхезионных констант. Методы их определения и вычисления по ним удельных поверхностей из теплот смачивания подробно рассмотрены нами в обзорной статье о работе и теплоте адсорбции жидкостей , поэтому здесь мы не будем на этом останавливаться. [c.176]

    Широкое использование термодинамического метода предусматривает на1шчие надежных термодинамических данных о разнообразных свойствах растворов для возможно большего круга систем и интервалов внешних условий. Для выявления роли растворителя особый интерес представляют энтальпийные и энтропийные характеристики сольватации и связанные с ними величины, мольные объемы, растворимость благородных газов (вследствие чувствительности ее к структурным изменениям растворителя) и др. При этом весьма существенным является установление зависимости этих величин от общих свойств частиц, природы и состава растворителя, внешних условий. В настоящее время такие термодинамические характеристики получают с использованием методов калориметрии, электрохимии, тензи-метрии, денсиметрии и др. Следует, однако, отметить, что указанных характеристик, особенно для неводных растворов, явно недостаточно, поэтому их определение остается одной из основных задач химии растворов. [c.27]

    В настоящем сообщении приведены данные, позволяющие количественно оценить структурно-энергетические изменения дисперсной системы битумов различной природы и степени окисленнос-ти в процессе старения. Объектами исследования служили битумы с Тр=50,70 и 90 С по КиШ, полученные из гудронов западносибирской, ромашкинской и арланской нефтей. Структурные и энергетические параметры дисперсной системы битумов определяли методами рентгеноструктурного малоуглового анализа и дифференциальной сканирутацей калориметрии. [c.6]

    Я только предупредил бы читателя, что с азотной кислотой вообще очень неприятно иметь дело и что из-за самой ее природы псе операции с нею значительно осложнены, так что для нее не следует ожидать столь н<е точных результатов, как для серной кислоты. Как на одну из трудностей, достаточно указать хотя бы на то, что я не мог пользоваться калориметром, так как применять его можно было бы только в том случае, если бы он был внутри сделан из платины. Однако и этой предосторожности еще недостаточно, поскольку необходимо, чтобы один металл возможно более плотпо прилегал к другому, а это очень трудно осуществить в приборе, который должен подвергаться изменениям температуры. Вследствие этого я вынужден был ограничиться только методом смешения, каковой может быть проведен в стеклянных сосудах. [c.68]

    Бонди с соавторами [32] отмечают капиллярную природу сил, удерживающих масло между мыльными волокнами и в ячейках кристаллической решетки. Броунинг [30] считает, что мыльные волокна удерживают масло за счет поверхностных сил, Думан-ский с сотрудниками [85] провели ряд работ по изучению теплот смачивания натриевых мыл различных жирных кислот водой и углеводородами методом калориметрии. Оказалось, что образование гидратных форм мыла сопровождается значительным тепловым эффектом, достигающим 1300 кал г при образовании моногидратов натриевых мыл стеариновой и пальмитиновой кислот. Было установлено, что теплота смачивания мыл углеводородами в 3—4 раза меньше, чем водой, причем с уменьшением числа углеродных атомов в углеводородной цепи мыла теплота смачивания закономерно понижается. Эти авторы пришли к выводу, что в консистентных смазках мыло прочно в стехиометрических соотношениях связывает как воду, так и масло, образуя гидратированные олеокристаллы типа СНз(СН2)пСНз(СН2)тСООЫа НгО, где п — число метильных групп в углеводороде т — то же в углеводородной цепи мыла. [c.77]

    Для полиакрилонитрила получены [237] кривые дифференциальной сканирующей калориметрии и эмиссии света в азоте, кислороде и воздухе при разных температурах. Во всех случаях начальная эмиссия света имела оксилюминесцентную природу, что было связано с образованием гидропероксидных радикалов. [c.496]

    Приведены результаты измерений удельной теплоемкости водны.ч растворов солей, являющихся компонентами маточников производства нефелиновой соды. Опыты проводились при температурах 25, 35, 50 и 90° С в калориметре с изотермической оболочкой путем электрического нагрева погрешность измерения составляла 0,1%. Отмечено влияние природы присутствующих в растворе ионов и структуры раствора на их теплоемкостные свойства. [c.101]

    Данные, приведенные в табл. 1, получены при помощи криоскопической установки, снабженной адиабатическим калориметром и платиновым термометром сопротивления [2], Платиновый термометр градуировался по точкам плавления бензола (99,9%), к-гексана (99,7%), изооктана (99,1%) и точке таяния льда такой способ градуировки обусловил погрешность привязки к температурной шкале около 0,1° С, хотя чувствительность термометра составляла около 0,003° С. Однако такая погрешность позволяет определять степень чистоты с погрешностью 0,01—0,05% мол. и криоскопические константы с погрешностью 0,001—0,002 град в зависимости от чистоты и природы того или иного препарата. [c.221]


Смотреть страницы где упоминается термин Калориметры в природе: [c.146]    [c.235]    [c.73]    [c.729]    [c.10]    [c.30]    [c.272]    [c.23]    [c.97]    [c.102]   
Основы общей химии Том 2 (1967) -- [ c.312 , c.317 ]




ПОИСК





Смотрите так же термины и статьи:

Калориметр

Калориметрия



© 2025 chem21.info Реклама на сайте