Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика процессов стадии, определяющие скорость

    При экспериментальном изучении кинетики реакции измеряется скорость самой медленной стадии, поскольку именно эта стадия определяет скорость всего процесса в целом. Некоторую информацию [c.383]

    Сложность изучения кинетики реакции в системе с двумя фазами состоит в том, что реагирующие компоненты могут распределяться между обеими фазами и скорость протекания реакций в каждой будет определяться концентрацией этих компонентов. Кроме того, в гетерогенных условиях реакция начинается и в некоторой части протекает на поверхности раздела фаз. Реагирующие вещества должны подойти к поверхности раздела, а продукты реакции отойти от нее. Следовательно, в общем случае скорость диффузии, а также возможности ее увеличения имеют большое значение для хода реакции в гетерогенной среде. Скорость превращения зависит поэтому рт скорости переноса реагирующих веществ из различных фаз в зону реакции, скорости химической реакции и быстроты удаления продуктов реакции из реакционной зоны. Причем скорость такого многостадийного процесса превращения определяется скоростью наиболее медленно текущей стадии процесса и общая закономерность обусловливается, в большей или меньшей степени, соотношением скоростей составляющих процессов. [c.66]


    Из химической кинетики известно, что скорость последовательной реакции определяется скоростью наиболее медленной из ее последовательных стадий, а из ряда параллельных путей наиболее вероятен путь с наименьшими торможениями. Эти же представления справедливы в случае электрохимических процессов. Возникновение электродной поляризации связано поэтому непосредственно с той стадией, которая определяет скорость всего процесса, т. е. с наиболее замедленной стадией. Появление нового пути, обеспечивающего протекание реакции с большей скоростью, способно снижать электродный потенциал, который в отдельных случаях, например при изменении характера электродного процесса, может оказаться даже меньшим, чем обратимый потенциал. Это уменьшение электродного потенциала и процесс, обусловливающий его, называется деполяризацией. [c.292]

    Известно, что рост кристаллов складывается из нескольких последовательных стадий и в самом общем виде может быть представлен растворением, переносом растворенного вещества и присоединением частиц к растущему кристаллу. Процесс растворения обычно характеризуют теми же стадиями, но протекающими в обратном по отношению к росту направлении. Поэтому некоторые кинетические характеристики, в частности перенос вещества, являются общими как для роста, так и для растворения. Суммарная скорость любого гетерогенного процесса определяется скоростями отдельных стадий реакции. Однако, если скорость на одном из этапов процесса меньше, чем скорости на других, то при реакциях, идущих в несколько последовательных стадий, фактическая скорость процесса будет определяться скоростью наиболее медленной. В том случае, когда медленной стадией процесса является подача или отвод реагентов от места реакции, это означает, что процесс идет в диффузионной области или по диффузионной кинетике. Если медленной стадией является стадия химического или физического превраш,ения, то скорость реакции определяется кинетикой присоединения частиц. Если обе стадии сравнимы между собой, то соответствующие реакции относят к гетерогенным реакциям смешанного типа. [c.338]

    Большинство каталитических процессов протекает через ряд последовательных стадий. Часто общая скорость процесса определяется лимитирующей стадией, т. е. стадией, скорость которой является наименьшей. На стадиях, которые не лимитируют процесс, устанавливается квазиравновесное состояние. Можно выделить два принципиальных механизма каталитических реакций слитный и стадийный. Воспользовавшись положениями формальной кинетики, рассмотрим выражения для скорости простейших каталитических процессов, в которых принимает участие катализатор. Слитный механизм многих каталитических реакций может быть представлен схемой бимолекулярной реакции [c.620]


    Кинетику процессов с участием жидких и газообразных реагентов можно рассмотреть на примерах абсорбции (десорбции). Чаще всего общую скорость этих процессов и размеры реакторов определяют физические диффузионные стадии. Для диффузионной области кинетические уравнения в наиболее общем виде можно представить следующим образом  [c.158]

    Совокупное рассмотрение всех стадий ионного обмена трудно осуществимо, поэтому обычно прибегают к упрощениям, используя известный кинетический принцип лимитирующей стадии, согласно которому скорость процесса, идущего в несколько последовательных стадий, определяется скоростью наиболее медленной из них. Если одна из стадий значительно медленнее других, то ход всего процесса удовлетворительно описывается уравнениями кинетики медленной стадии. Поскольку стадия 3 является ионной реакцией, она обычно протекает весьма быстро. Конвективный же перенос вещества вблизи поверхности ионита затруднен вязкими силами, возникающими при движении жидкости у границы с твердым телом и существенно замедляющими этот процесс. [c.197]

    Если же медленной стадией процесса является подвод реагентов к поверхности или отвод продуктов реакции, то скорость процесса всецело определяется скоростью диффузии, и макроскопическая кинетика реакции не имеет ничего общего с истинной кинетикой на поверхности. Эту предельную область гетерогенного процесса называют диффузионной. [c.46]

    Кинетику процесса адсорбции определяет наиболее медленно протекающая стадия. При отсутствии перемешивания это может быть первая стадия при обеспечении достаточной турбулентности кинетика адсорбции может определяться внутридиффузионным переносом сорбата. Собственная адсорбция, по-видимому, не лимитирует скорость процесса. На скорость адсорбции влияют также размер зерен угля, скорость потока воды через угольную загрузку, концентрация загрязнений, температура, реакция среды. [c.87]

    Особенностью глубоких стадий поликоиденсации в расплаве является взаимодействие реакционных центров в среде расплава полимера. Действительно, на глубоких стадиях процесса кинетика иоликонденсации начинает определяться скоростью отвода низкомолекулярного продукта из зоны реакции. Об этом свидетельствуют данные, приведенные на рис. 4.6. Из рисунка видно, что скорость изменения степени поликоиденсации полиэфира сильно зависит от того, в каком слое расплава протекает поликонденсация в тонком или толстом. Это свидетельствует о том, что в данном случае лимитирующей стадией процесса поликонденсации является удаление низкомолекулярного продукта реакции из слоя расплава. На очень глубоких стадиях процесса лимитирующей стадией может быть процесс диффузии концевых реакционных центров макромолекул друг к другу. [c.123]

    Скорость большинства экстракционных процессов определяется массопередачей, т. е. эти процессы протекают в диффузионной области. Однако возможны случаи, когда общая скорость процесса экстракции определяется скоростью его химической стадии (процесс протекает в кинетической области). Изучение кинетики химической стадии процесса экстракции позволяет получить более ясное представление о механизме химического взаимодействия реагирующих веществ и приблизиться к решению вопроса о том, в какой фазе образуется экстрагируемое соединение. [c.202]

    Время проведения процесса Тд определяется скоростью наиболее медленной стадии процесса химического взаимодействия, теплообмена или диффузии. Если скорость процесса определяется скоростью химического взаимодействия, то время на проведение процесса может быть рассчитано по законам химической кинетики. Скорость химической реакции V в данный момент времени пред- [c.44]

    Скорость разложения определяется скоростями трех процессов скоростью химической реакции или фазового превращения, скоростью отвода газообразных продуктов и скоростью десорбции с внешней поверхности. Скорость процесса в целом всегда определяется его наиболее медленной стадией. При невысоких давлениях десорбция происходит гораздо быстрее, чем два первых процесса, т. е. скорость процесса будет определяться скоростью, химической реакции (фазового перехода) и скоростью диффузии газообразных продуктов внутри материала в том случае, если лимитирующей стадией процесса является диффузия, то говорят, что сам процесс разложения протекает в диффузионной области. Чаще всего он описывается уравнением реакции первого порядка, так как скорость диффузии прямо пропорциональна концентрации вещества в объеме. В диффузионной области кинетика процесса не имеет ничего общего с истинной кинетикой гетерогенных химических реакций если же скорость химических реакций значительно меньше скорости диффузии, то скорость процесса в целом будет определяться скоростью собственно химической реакции. В этом случае процесс разложения протекает в кинетической области и описывается уравнением химической кинетики той реакции, которая протекает на поверхности. Поскольку при понижении [c.37]


    Из положений кинетики реакций следует, что именно одноэлектронная стадия определяет скорость этой реакции. Элементарный акт перехода электрона к кислороду совпадает с процессом хемисорбции. При этом выделяется энергия, равная 1,47 эВ/моль = 141,3 кДж/моль. [c.66]

    Очевидно, что в ритмах живого лежат последовательности превращений молекул. Что определяет протекание биологических процессов во времени Каковы пути и возможности ускорений биохимических реакций Какая стадия определяет скорость того или иного биологического явления Какие события на молекулярном уровне задают динамику развития в целом Постановка такого рода в высшей степени интересных и сложных вопросов связана с развитием области количественных исследований, которая называется биологической кинетикой (биокинетикой). [c.3]

    Контролирующим процессом называют процесс, кинетика которого определяет скорость коррозии, т. е. стадию процесса коррозии, которая имеет наибольшее сопротивление по сравнению с остальными стадиями и поэтому оказывающую основное влияние на скорость коррозии металла. Для определения контролирующего процесса нужно сравнить С , С и С или ДУ , ДУ, и ДУ . [c.274]

    Как обычно для кинетики таких сложных процессов, состоящих из нескольких последовательных стадий, общая скорость процесса определяется наиболее медленно протекающей стадией взаимодействия. В зависимости от условий катодная деполяризация в целом может определяться различными стадиями. Так, при отсутствии перемешивания жидкой фазы часто наиболее медленной стадией, определяющей скорость всего процесса, является процесс диффузии растворенного кислорода от поверхности жидкости к поверхности электрода. [c.456]

    В случае сложной реакции, протекающей через ряд последовательных стадий, обычно можно выделить одну стадию, называемую лимитирующей, которая в наибольшей степени определяет скорость реакции. Определение факторов, влияющих на каждую стадию, и степени этого влияния является важной задачей. Только после ее решения удается получить ясную картину зависимости скорости реакции от указанных параметров. Более того, только имея эту информацию, можно уверенно использовать данные по кинетике, полученные в лаборатории, для предсказания результатов протекания процесса в промышленных аппаратах. [c.23]

    СОМ будет ионизация адсорбированного водорода с переходом его в раствор. Таким образом, эта область потенциалов отвечает только стадии разряда (при катодном толчке) и ионизации (при анодном толчке), что позволяет исследовать кинетику одной этой стадии без наложения осложняющих эффектов, связанных с процессами рекомбинации или диссоциации молекул водорода. Изучение зависимости емкости двойного слоя и омического сопротивления (эквивалентного торможению па стадии разряда) от частоты наложенного тока в этой области потенциалов позволило Долину, Эрш-леру и Фрумкину впервые непосредственно измерить скорость акта разряда. Параллельные поляризационные измерения при небольщих отклонениях от равновесного потенциала, где неренапряжение еще линейно зависит от плотности тока, дали возможность найти скорость суммарного процесса и сопоставить ее со скоростью стадии разряда. Было установлено, что акт разряда протекает с конечной скоростью, причем ее изменение с составом происходит параллельно изменению скорости суммарной реакции. В то же время скорость стадии разряда всегда больше, чем скорость суммарной реакции (в 27 раз в растворах соляной кислоты и в И раз в растворах гидроксида натрия). Таким образом, акт разряда хотя и протекает с конечной скоростью, но не определяет скорости всего процесса выделения водорода на гладкой платине и не является здесь лимитирующей или замедленной стадией. [c.416]

    Рассмотрим подробно наиболее интересную стадию физико-химических превращений в массе кокса — десорбцию и удаление вторичных сернистых соединений. Кинетика процесса обессеривания нефтяных коксов в общем случае определяется скоростью теплопередачи и химическими факторами (температура, время, энергия активации процесса). При этом возможны трп варианта  [c.222]

    Выше мы предполагали, что при протекании электрохимической реакции лимитирующей является либо стадия массопереноса, либо стадия разряда—ионизации. В реальных условиях кинетика электродных процессов всегда в той или иной степени зависит от скорости обеих этих стадий. В связи с этим рассмотрим протекание электрохимической реакции (А) в условиях смешанной кинетики, когда ф определяется одновременно и скоростью массопереноса веществ Ох и Red, и скоростью перехода электронов через границу электрод/растВор. Отличие см от i и I M от i связано только с тем, что в условиях смешанной кинетики (токи i и i<. ) концентрации веществ Ох и Red на обращенной к раствору границе ионного двойного слоя и не равны сЬж. и fted- Если толщина двойного электрического слоя значительно меньше толщины диффузионного слоя, то в стационарных условиях можно использовать следующие приближенные формулы  [c.220]

    Как уже говорилось во введении, процесс горения слагается из двух стадий подвода окислителя (и отвода продуктов сгорания) за счет молекулярной или турбулентной диффузии (смешения) и протекания химической реакции. В зависимости от условий либо та, либо другая стадия может стать определяющей, либо влияние диффузионных и кинетических факторов может быть сопоставимым. Если скорость химической реакции гораздо больше скорости диффузии, то определяющей является диффузия, процесс горения протекает в диффузионной области. В противоположном случае процесс определяет кинетика (кинетическая область горения). При сопоставимом влиянии диффузии и кинетики процесс протекает в промежуточной области. [c.63]

    Процесс вытеснения из растаора меди никелем можно разделить на начальную и конечную стадии, причем можно утверждать, что скорость осаждения в первой и последней стадиях определяются диффузионной кинетикой. [c.367]

    Поэтому вопросы перенапряжения рассматриваются в главе, посвященной кинетике. Для выяснения механизма перенапряжения следует рассмотреть стадии, из которых состоит процесс превращения ионов водорода в молекулу при электролизе кислых растворов. Опыт показывает, что перенапряжение зависит от природы металла, из которого состоит электрод. Например, оно очень мало на платине. Поэтому скорость разряда не может определяться скоростью диффузии ионов в растворе. Следовательно, наиболее медленными стадиями, требующими рассмотрения, являются два процесса. Первый — это реакция разряда иона гидроксония НзО и переход атомов водорода в адсорбированное состояние на поверхности электрода  [c.398]

    В зависимости от того, в одной или нескольких фазах находятся компоненты, реакции, различают кинетику гомогенных реакций и кинетику гетерогенных реакций. В гетерогенных системах процесс в целом состоит по меньшей мере из двух последовательных стадий диффузии реагирующих веществ к поверхности раздела фаз и химической реакции на поверхности. Разница между скоростями каждой стадии может быть очень большой. В этом случае скорость процесса в целом определяется скоростью наиболее медленной стадии, которая называется лимитирующей, или определяющей стадией. Если скорость процесса определяется химическим взаимодействием веществ на поверхности, то говорят, что реакция протекает в кинетической области. Если же определяющая стадия — подвод реагирующего вещества в зону реакции за счет диффузии, то считается, что реакция протекает в диффузионной области. Скорости реакции и диффузии могут быть соизмеримы. Тогда скорость всего процесса представляет собой сложную функцию кинетических и диффузионных явлений, и процесс протекает в переходной области. [c.228]

    Важной особенностью процесса обжига клинкера в кипящем слое является то, что большую и даже определяющую роль играют кинетика некоторых физико-химических процессов клинкерообразования, время пребывания отдельных частиц-гранул в реакторе и проскоки частиц недообожженных гранул, содержащих СаО , , в готовую продукцию. Это обусловлено следующим. Образование алюминатов и ферритов кальция происходит при относительно низких температурах (до 1000° С) весьма быстро в твердой фазе, и эта стадия процесса протекает практически одновременно с нагреванием гранул. Следовательно, процесс здесь протекает не в кинетической, а в теплодиффузионной области, так как он не лимитирован химической кинетикой отдельных стадий процесса, а определяется скоростью подвода тепла к поверхности гранул (внешняя задача) и скоростью их прогрева и диффузии карбонатной СО (внутренняя задача). [c.319]

    Кинетика процесса окисления определяется совокупностью его элементарных стадий. При этом в уже развившемся процессе скорость образования свободных радикалов зависит исключительно от стадии разветвления цепи, поскольку скорость первичного инициирования очень мала. Принцип стационарности дает следующие соотношения скоростей отдельных стадий (шобр- — скорость обрыва цепи, оУв-р —скорость вырожденного разветвления), устанавливающиеся в процессах с квадратичным обрывом цепи на перекисных радикалах при втором порядке реакции разветвления цепи  [c.502]

    Изучеиа кинетика алкилнрования нитрила акриловой кислоты в нрисутствии концентрированной серной кислоты. Составлена и рассчитана на ЭВМ БЭСМ-6 математическая модель кинетики процесса. Найдены константы скоростей и энергия активации отде. н иых стадий процесса и определена его лимитирующая стадия. [c.124]

    Обе стадии протекают с различной скоростью, и кинетика растворения зависит от соотношения этих скоростей. Классические работы в этой области Нойеса и Уитнея, Бруннера и Нернста, Щукарева и др. привели их к заключению, что скорость растворения твердых тел определяется скоростью диффузии. Позднее Нернст более детально разработал диффузионную теорию кинетики гетерогенных процессов. Согласно этой теории процесс взаимодействия твердого тела с растворителем на границе раздела фаз идет значительно быстрее диффузии продуктов растворения в объем и растворителя к поверхности. В таком случае скорость растворения определяется скоростью диффузии, как наиболее медленной стадии процесса. [c.227]

    Любая из стадий каждого из челырех вариантов может быть замедленной и определять скорость всей реакции. Чтобы сделать выбор между этими теоретически во. шожными случаями и установить действительные причины кислородного перенапряжения, следует воспользоваться критериями, вытекающими из общей теории кинетики электродных процессов. Одним из таких критериев может служить величина наклона полулогарифмических прямых. Как следует из табл. 20.1, наклон Ь при выделении кислорода изменяется в очень широких пределах, принимая, в зависимости от материала анода и состава раствора, следующие значения  [c.425]

    Можно предположить поэтому, что кинетика всего процесса определяется скоростью чисто электрохимических стадий разрядом молекул воды в кислых растворах и разрядом ндроксид-иопов в щелочных. С теорией замедленного разряда А. Н. Фрумкина согласуется также и характер влияния состава расгвора на перенапряжение кислорода в рассматриваемых двух случаях. [c.426]

    В области малых плотностей тока выделение кислорода на ни- е ю (см. рнс. 20.1, кривая 1, нижний участок) наклон кривой Ь равен 0, что трудно согласовать с предположением о замедленности разряда 1 идроксил-ионов. На этом участке поляризациотиюй кривой кинетика процесса определяется скоростью стадий I, 3 II, 3 или стадией взаимодействия атомарного кислорода [образующегося но уравнению (20.8)] с оксидом никеля  [c.426]

    Присоединение адсорбированных атомов водорода как стадия, определяющая кинетику электровосстановления. По дру- ому варианту скорость процесса лсктровосстановления определяется ирисоединением адсорбироЕ.анных атомов водорода к восстанавливаемым частицам. Первой стадией в этом случае является разряд водородных ионов с получением адсорбированных атомов водорода [c.438]

    Если скорость химической реакции на поверхности катализатора достаточно велика, то адсорбционное равновесие не достигается и степени заполнения поверхности молекулами реагентов нельзя определить из уравнения изотермы адсорбции. В предельном случае, когда адсорбция одного из реагентов является наиболее медленной стадией, скорость процесса лимитируется скоростью адсорбции этого реагента, и можно говорить о протекании реакции в адсорбционной области. Скорость адсорбции определяется константой скорости адсорбции и концентрацией сорбируемого вещества следовательно, кинетика процесса в адсорбционной области формально следует уравнению реакции первого порядка. Поэтому различить кинетическую и адсорбционную области только по кинетическим измерениям нельзя и при необходимости следует ставить специальные эксперименты по измерению скорости адсорбции или применять другие прямые методы исследования, например, спектроскопию адсорбированных молекул. [c.84]

    Соединения АОД, ДОД, АОФ и ДИ практически не влияют на параметры катодной реакции и, следовательно, на механизм выделения водорода. При введении в коррозионную среду соединений 01, 02, МД и КБ величины кинетических параметров близки к расчетным значениям, 1юлученным по теории замедленного разряда. По-видимому, в данном случае лимитирующей является стадия разряда. Поскольку кинетика коррозии металла в кислых сероводородсодержащих средах определяется реакцией катодного выделения водорода, соединения 01. 02, МД и КБ, эффективно препятствуя этому процессу, значительно снижают скорость общей коррозии. [c.184]

    Рассмотрим электрохимическую кинетику для случая, когда собственно электрохимическая реакция является лимитирующей стадией и практически полностью определяет скорость процесса в целом. Это может быть, например, кинетика электроосаждения меди на медный электрод, погрунсенный в раствор, содержащий ионы меди. Скорость любой химической гетерогенной мономолекулярной реакции ю на поверхности раздела твердая фаза — жидкость, отнесенная к единице площади, равна  [c.348]


Смотреть страницы где упоминается термин Кинетика процессов стадии, определяющие скорость: [c.335]    [c.106]    [c.337]    [c.431]    [c.436]    [c.293]    [c.553]    [c.328]    [c.44]    [c.18]    [c.328]    [c.352]    [c.155]   
Синтез углеводородов из окиси углерода и водорода (1954) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика процессов

Процесс скорость

Скорость определяющие стадии



© 2025 chem21.info Реклама на сайте